首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
To characterize the contribution of the human flavin-containing monooxygenase form 3 (FMO3) in the metabolism and disposition of drugs and xenobiotics, we determined the single nucleotide polymorphisms in the coding region and adjacent splice junctions of FMO3 in 134 African Americans and 120 Caucasians from the United States. In the regions examined, DNA resequencing or high throughput MassEXTEND studies coupled with mass spectrometric genotyping showed that 12 sites of variation were present. Three variants encoding synonymous mutations and four polymorphisms were observed in the noncoding region. Another three variants, Lys158-FMO3, Met257-FMO3 and Gly308-FMO3, previously reported in similar populations, were prominent polymorphisms. Two new polymorphisms, His132-FMO3 and Pro360-FMO3, were identified in this study. Both variants were found only in African Americans. To evaluate the effect of the amino acid substitutions on the function of FMO3, each amino acid substitution was introduced by site-directed mutagenesis into a wild-type FMO3 cDNA. Selective functional activity was studied with methimazole, trimethylamine, and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl) phenothiazine. Both His132-FMO3 and Pro360-FMO3 variants were able to metabolize the substrates examined. Compared with wild-type FMO3, the His132-FMO3 was less catalytically efficient. The His132-FMO3 variant moderately altered the catalytic efficiency of FMO3 (decrease of 30%, 60% and 6% with methimazole, trimethylamine and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine, respectively). The Pro360-FMO3 variant was more catalytically efficient than wild-type FMO3. Pro360-FMO3 oxygenated methimazole, trimethylamine and 10-(N,N-dimethylaminopentyl)-2-(trifluoromethyl)phenothiazine, respectively, 3-, 5- and 2-fold more efficiently than wild-type FMO3. Based on the functional activity of the variant FMO3 enzymes, it is likely that population differences exist for compounds primarily metabolized by FMO3.  相似文献   

3.
The flavin-containing monooxygenase gene family (FMO1-6) in humans encodes five functional isoforms that catalyze the monooxygenation of numerous N-, P- and S-containing drugs and toxicants. A previous single nucleotide polymorphism (SNP) analysis of FMO1 in African-Americans identified seven novel SNPs. To determine the functional relevance of the coding FMO1 variants (H97Q, I303V, I303T, R502X), they were heterologously expressed using a baculovirus system. Catalytic efficiency and stereoselectivity of N- and S-oxygenation was determined in the FMO1 variants using several substrates. The I303V variant showed catalytic constants equal to wild-type FMO1 for methimazole and methyl p-tolyl sulfide. Catalytic efficiency (V(max)/K(m)) of methyl p-tolyl sulfide oxidation by R502X was unaltered. In contrast, methimazole oxidation by R502X was not detected. Both H97Q and I303T had elevated catalytic efficiency with regards to methyl p-tolyl sulfide (162% and 212%, respectively), but slightly reduced efficiency with regards to methimazole (81% and 78%). All the variants demonstrated the same stereoselectivity for methyl p-tolyl sulfide oxidation as wild-type FMO1. FMO1 also metabolized the commonly used insecticide fenthion to its (+)-sulfoxide, with relatively high catalytic efficiency. FMO3 metabolized fenthion to its sulfoxide at a lower catalytic efficiency than FMO1 (27%) and with less stereoselectivity (74% (+)-sulfoxide). Racemic fenthion sulfoxide was a weaker inhibitor of acetylcholinesterase than its parent compound (IC(50) 0.26 and 0.015 mM, respectively). The (+)- and (-)-sulfoxides were equally potent inhibitors of acetylcholinesterase. These data indicate that all the currently known FMO1 variants are catalytically active, but alterations in kinetic parameters were observed.  相似文献   

4.
To characterize the contribution of amino acid 360 to the functional activity of the human flavin-containing monooxygenase form 3 (FMO3) and form 1 (FMO1) in the oxygenation of drugs and chemicals, we expressed four FMO3 variants (i.e., Ala360-FMO3, His360-FMO3, Gln360-FMO3, and Pro360-FMO3) and one FMO1 variant (i.e., Pro360-FMO1) and compared them to wild-type enzymes (Leu360-FMO3 and His360-FMO1, respectively). The amino acid substitutions were introduced into wild-type FMO3 or FMO1 cDNA by site-directed mutagenesis. The thermal stability of variants of Leu360 FMO3 was also studied, and the thermal stability was significantly different from that of wild-type FMO3. The influence of different substrates to modulate the catalytic activity of FMO3 variants was also examined. Selective functional substrate activity was determined with mercaptoimidazole, chlorpromazine, and 10-[(N,N-dimethylaminopentyl)-2-(trifluoromethyl)]phenothiazine. Compared with wild-type FMO3, the Ala360-FMO3 and His360-FMO3 variants were less catalytically efficient for mercaptoimidazole S-oxygenation. N-Oxygenation of chlorpromazine was significantly less catalytically efficient for His360-FMO3 compared with wild-type FMO3. Human Pro360-FMO1 was significantly more catalytically efficient at S-oxygenating mercaptoimidazole and chlorpromazine compared with wild-type FMO1. The data support the mechanism that the Pro360 loci affect thermal stability of FMO3. Because different amino acids at position 360 affect substrate oxygenation in a unique fashion compared with that of FMO3 stimulation, we conclude that the mechanism of stimulation of FMO3 is distinct from that of enzyme catalysis. A molecular model of human FMO3 was also constructed to help explain the results. The increase in catalytic efficiency observed for Pro360 in human FMO3 was also observed when the His of FMO1 was replaced by Pro at loci 360.  相似文献   

5.
Sequence polymorphisms in enzymes involved in drug metabolism have been widely implicated in the differences observed in the sensitivity to various xenobiotics. The flavin-containing monooxygenase (FMO) gene family in humans catalyzes the monooxygenation of numerous N-, P- and S-containing drugs, pesticides, and environmental toxicants. Six genes (FMO1-6) have been identified so far, but the major alleles of FMO2 and FMO6 encode nonfunctional proteins due to a nonsense mutation and splice-site abnormalities, respectively. Data on structural variants exist for human FMO2 and 3, whereas very little is known about the other FMO genes. FMO1-6 were scanned in 50 individuals of African-American descent using the method, detection of virtually all mutations-single-strand conformational polymorphism. A total of 49 sequence variants were identified in a total 1.35 megabases of scanned sequence, of which 29 were variants affecting protein structure or expression. Some of these are expected to affect the activity of the protein, including a nonsense mutation in FMO1 (R502X) and missense mutations in FMO1 (I303T), FMO4 (E339Q), and FMO5 (P457L) that occur in highly conserved amino acids. Additional deleterious substitutions in FMO2 (del337G) and FMO6 (Q105X) were also identified. Multiple structural variants in the FMO gene family were observed in this African-American sample. Some of the substitutions identified in this study might be useful markers in future association studies assessing sensitivity to environmental toxicants and common disease.  相似文献   

6.
The flavin-containing monooxygenases (FMOs) are important for xenobiotic metabolism. FMO3, the predominant FMO enzyme in human adult liver, exhibits significant interindividual variation that is poorly understood. This study was designed to identify common FMO3 genetic variants and determine their potential for contributing to interindividual differences in FMO3 expression. FMO3 single nucleotide polymorphism (SNP) discovery was accomplished by resequencing DNA samples from the Coriell Polymorphism Discovery Resource. Population-specific SNP frequencies were determined by multiplexed, single-base extension using DNA from 201 Hispanic American (Mexican descent), 201 African American, and 200 White (northern European descent) subjects. Haplotypes were inferred and population frequencies estimated using PHASE version 2.1. Multiple site-directed mutagenesis was used to introduce inferred upstream haplotypes into an FMO3/luciferase construct for functional analysis in HepG2 cells. Sequence analysis revealed seven FMO3 upstream SNPs, 11 exon SNPs, and 22 intron SNPs. Five of the latter fell within consensus splice sites. A g.72G>T variant (E24D) is predicted to impact the structure of the Rossmann fold involved in FAD binding, whereas a g.11177C>A variant (N61K) is predicted to disrupt the secondary structure of a conserved membrane interaction domain. Seven common (>1%) promoter region haplotypes were inferred in one or more of the study populations that differed in estimated frequency among the groups. Haplotype 2 resulted in an 8-fold increase in promoter activity, whereas haplotypes 8 and 15 exhibited a near complete loss of activity. In conclusion, FMO3 promoter haplotype variants modulate gene function and probably contribute to interindividual differences in FMO3 expression.  相似文献   

7.
8.
9.
The decreased capacity of the flavin-containing monooxygenase 3 (FMO3) to oxygenate xenobiotics including trimethylamine is believed to contribute to metabolic disorders. The aim of this study was to functionally characterize FMO3 variants recently found in a Japanese population and compare them with selective functional activity of other FMO3 variants. Recombinant Glu158Lys and Glu158Lys-Glu308Gly FMO3 expressed in Escherichia coli membranes showed slightly decreased N-oxygenation of benzydamine and trimethylamine. Selective functional S-oxygenation of these variants by methyl p-tolyl sulfide or sulindac sulfide was comparable to that of wild-type FMO3. The Glu158Lys-Thr201Lys-Glu308Gly and Val257Met-Met260Val variants showed significantly decreased oxygenation of typical FMO3 substrates (i.e., approximately one-tenth of the V(max)/K(m) values). Val257Met FMO3 had a lower catalytic efficiency for methyl p-tolyl sulfide and sulindac sulfide S-oxygenation. However, compared with wild-type FMO3, Val257Met FMO3 showed a similar catalytic efficiency for N-oxygenation of benzydamine and trimethylamine. The catalytic efficiency for benzydamine and trimethylamine N-oxygenation by Arg205Cys FMO3 was only moderately decreased, but it possessed decreased sulindac sulfide S-oxygenation activity. Kinetic analysis showed that Arg205Cys FMO3 was inhibited by sulindac in a substrate-dependent manner, presumably because of selective interaction between the variant enzyme and the substrate. The results suggest that the effects of genetic variation of human FMO3 could operate at the functional level for N- and S-oxygenation for typical FMO3 substrates. Genetic polymorphism in the human FMO3 gene might lead to unexpected changes of catalytic efficiency for N- and S-oxygenation of xenobiotics and endogenous materials.  相似文献   

10.
Human pregnane X receptor (hPXR) gene polymorphisms (spanning exon 2 to exon 5) and alternative mRNA splicing were investigated as possible contributors to individual variability in CYP3A metabolic activity measured both in vivo and in vitro. None of the 9 variants evaluated, including the 2 most common nonsynonymous variants (Pro27Ser and Gly36Arg), was found to be associated with midazolam 1'-hydroxylation rate measured in a bank of human livers (48 European Americans, 4 African Americans, 2 Hispanics). In contrast, 3 linked hPXR variants (g.252A > G, g.275A > G, and g.4760G > A) were significantly (P < .05) associated with oral midazolam clearance in a mixed race/ethnicity population (n = 26) and the African American subpopulation (n = 14) but not in European Americans (n = 9). Although the amount of hPXR mRNA normally spliced at the exon 4-5 junction correlated well with midazolam 1'-hydroxylation activities (P < .05), none of the 6 hPXR mRNA splice variants identified was associated with midazolam 1'-hydroxylation. In conclusion, several hPXR polymorphisms have been identified that may have predictive value for oral midazolam clearance, particularly in African Americans.  相似文献   

11.
Polymorphic human flavin-containing monooxygenase (FMO) 3 is an important drug-metabolizing enzyme for nitrogen- or sulfur-containing compounds. Cynomolgus macaques, a non-human primate species widely used in drug metabolism studies, have corresponding FMO3 molecular and enzymatic similarities to humans; however, genetic polymorphisms have not been investigated in macaques. In this study, re-sequencing of FMO3 in 64 cynomolgus and 32 rhesus macaques found a total of 18 non-synonymous variants. Nine variants were unique to cynomolgus macaques, of which 4 (including Q506K) were found only in Indochinese, 4 (including V299I, E348H, and G530A) only in Indonesian lineages, and one was common. Other five variants (including S504T at >10% allele frequencies) were unique to rhesus macaques. By functional characterization using cynomolgus FMO3 proteins heterologously expressed in Escherichia coli, FMO3 R509H variant appeared to suppress methimazole and benzydamine S- or N-oxygenations. Seven variants showed substantially lower benzydamine N-oxygenation as compared with wild-type FMO3 protein. Further analysis indicated that two of these variants, FMO3 G530A and R417H, showed significantly lower benzydamine N-oxygenation in liver microsomes of the homozygotes as compared with wild-type animals. Therefore, inter-animal variability of FMO3-dependent drug metabolism is at least partly accounted for by genetic polymorphisms in cynomolgus and rhesus macaques, similar to humans.  相似文献   

12.
Flavin-containing monooxygenase (FMO) 5 belongs to a family of enzymes that catalyze the oxygenation of nucleophilic N- and S-containing compounds. The FMO enzyme family consists of five forms (FMOs1-5) that share about 50-60% sequence identity to each other. A comparison of FMOs showed that the pH-dependence profile for functional activity of FMO5 differed significantly from that of other FMO enzymes. The objective of this study was to examine the pH-dependence of FMO5 to gain insight into the mechanism of action of FMO5. Recombinant mouse and human FMO5 (mFMO5 and hFMO5, respectively) were expressed as maltose-binding fusion proteins from Escherichia coli, purified with affinity chromatography, and examined for their N-oxygenation functional activity at different pH values. hFMO5 showed a broader range and greater functional activity from pH 6 to 11 compared to mFMO5. mFMO5 lost almost all functional activity at pH 6, while hFMO5 maintained almost normal enzyme activity. In order to identify the amino acid residues involved in the effects of pH on hFMO5 and mFMO5 functional enzyme activity, pH-studies in the range of pH 6-9 were done with chimeras of recombinant mouse and human FMO5 and variants of both. Results of these studies and molecular modeling showed that residues responsible for the differences in the pH profile between mFMO5 and hFMO5 were located at positions 227 and 228 of the enzyme. Further variants were made to investigate the role of these amino acids. The results of this study may help to explain the mechanism of FMO function.  相似文献   

13.
Flavin-containing monooxygenase (FMO) activity was determined in 82 Korean volunteers by taking molar concentration ratio of theobromine and caffeine present in the 1 h urine (between 4 and 5 h) samples collected after administration of a cup of coffee containing 110 mg of caffeine. Among 82 volunteers, there were 19 women and 63 men (30 smokers and 52 non-smokers). Volunteers were divided into two groups comprising low (0.53-2.99) and high (3.18-11.95) FMO activities separated by an antimode of 3.18. Peripheral bloods were sampled from these volunteers and their genomic DNAs were amplified by polymerase chain reaction with oligonucleotides designed from intronic sequences of human FMO3 gene. Comparing nucleotide sequences of the amplified FMO3 gene originating from randomly selected individuals with low and high FMO activities, nine point mutations were identified in the open reading frame sequences. Among these nine mutations, three FMO3 mutant types (FMO3/Stop148, Lys158 and Gly308) were selected and correlated with FMO activities observed in our Korean population. A rare FMO3/Stop148 mutant allele originating from FMO3/Gly148 occurred by substitution of G442T in exon 4 and yielded a premature TGA stop codon. The stop codon was detected in one individual having the second lowest FMO activity and he had the mutation in heterozygous state. In a pedigree study, he was found to have inherited the mutation from his mother who also had a heterozygous stop codon and equally low FMO activity. In our volunteers, two other common mutations were detected in exons 4 and 7. The one in exon 4 resulted from a G472A change eliminating a HinfI restriction site and produced an amino acid substitution from Glu158 to Lys. The other mutation in exon 7 resulted from an A923G change generating a DraII restriction site and produced a non-conservative replacement of Glu308 to Gly. Based on the secondary structure maps of FMO3 enzyme proteins for these two mutant types, FMO3/Gly308 mutation transformed the helix structure into a sheet shape and indicated that dysfunctional FMO3 may be produced. FMO3/Lys158 mutation did not alter the secondary structure. Approximately 80% of volunteers with homozygous and/or heterozygous mutations on either one or two of these mutations had low FMO activities. Thus, individuals with these FMO3 gene mutations may have defective metabolic activity for many clinically used drugs and dietary plant alkaloids which are oxidized primarily by hepatic FMO3.  相似文献   

14.
15.
目的:研究原发性肝癌中DNMT3b基因剪接变异体的表达情况及其在肝癌发生发展中的作用。方法:通过RT-PCR的方法对30例肝癌、30例癌旁组织中DNMT3b基因的剪接变异体进行检测,并将结果与肝癌患者临床指标进行统计学分析。结果:RT-PCR结果显示DNMT3b基因以四种剪接变异体(DNMT3b1、DNMT3b3、DNMT3b4和DNMT3b5)的形式表达,其总的表达率肝癌组为93.3%(28/30),癌旁组为93.3%(28/30)。其中DNMT3b4在肝癌组中的表达高于癌旁组(P<0.05),与肝癌病理分化和CLIP评分无相关性(P>0.05)。结论:DNMT3b基因剪接变异体DNMT3b4可能参与肝癌的发生演变。  相似文献   

16.
CYP3A5 mRNA degradation by nonsense-mediated mRNA decay   总被引:3,自引:0,他引:3  
The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.  相似文献   

17.
We sequenced all exons and exon-intron junctions of the flavin-containing monooxygenase 3 (FMO3) gene from 27 Japanese individuals who are trimethylaminuria volunteers judged by self-reported analysis. We found two novel single nucleotide polymorphisms (SNPs) (21246 T>A and 21265 C>T) causing amino acid substitutions (Asp(198)Glu and Arg(205)Cys in exon 5), respectively. The Asp(198)Glu allele also presented together with known SNPs (20852 C>T in exon4, 20960_20962 CTT deletion, 21115 G>A in intron 4, and 21243_21244 TG deletion in exon 5) in the same allele of the FMO3 gene to form a novel haplotype.These sequences are as follows:1) SNP, 030609Fujieda019; GENE NAME, FMO3; ACCESSION NUMBER, AL021026; LENGTH, 25 base; 5'-TTCGGGCTG(TG/-)AT/AATTGCCACAGAA-3'.2) SNP, 030609Fujieda020; GENE NAME, FMO3; ACCESSION NUMBER, AL021026; LENGTH, 25 base; 5'-ACAGAACTCAGCC/TGCACAGCAGAAC-3'.  相似文献   

18.
The primary genetic form of trimethylaminuria (TMAU) is caused by inherited defects in the flavin-containing monooxygenase 3 (FMO3) gene. Defective FMO3 has a decreased ability to catalyze the N-oxygenation of the dietary-derived malodourous amine, trimethylamine. We report two novel deleterious mutations identified in two unrelated individuals affected by the disorder. Sequence analysis of the FMO3 coding exons amplified from genomic DNA revealed that the mutation from individual 1 was heterozygous for a G>A missense mutation in exon 2 of the FMO3 gene. The mutation changed a GAG encoding Glu at codon 32 to AAG encoding Lys. Wild-type and mutant E32K FMO3 were expressed in Escherichia coli as maltose binding-fusion proteins and assayed for their ability to catalyze oxygenation of various FMO3 substrates. The results showed that the E32K mutation abrogated the catalytic activity of the enzyme. Individual 2 was identified as heterozygous for the P153L mutation. In addition, individual 2 was also heterozygous for a novel single nucleotide deletion of A191 in exon 3 at codon 64. The deletion resulted in a frame shift and caused premature termination of the FMO3 gene immediately after codon 65. Family pedigree analysis revealed that the P153L and the deletion mutation were carried on different alleles for this individual. Therefore, both alleles of the FMO3 gene for individual 2 were affected by mutations abolishing the catalytic activity of the enzyme, explaining the severe TMAU condition. The two deleterious mutations reported herein were rare mutations with estimated allelic frequencies of less than 1%.  相似文献   

19.
Mutations of the flavin-containing monooxygenase type 3 gene (FMO3) that encode the major functional form present in adult human liver, have been shown to cause trimethylaminuria. We now report a novel homozygous deletion of exons 1 and 2 in an Australian of Greek ancestry with TMAuria, the first report of a deletion causative of trimethylaminuria. The deletion occurs 328 bp upstream from exon 1. The 3'-end of the deletion occurs in intron 2, 10013 base pairs downstream from the end of exon 2. The deletion is 12226 bp long. For the proband homozygous for the human FMO3 gene deletion, it is predicted that in addition to loss of monooxygenase function for human FMO3 substrates, such as TMA and other amines, the proband will exhibit decreased tolerance of biogenic amines, both medicinal and those found in foods.  相似文献   

20.
1. The mouse and rat exhibit substantial differences in the gender expression of flavincontaining monooxygenase (FMO) forms. Hepatic FMO1 is gender-dependent in both species,selective to the male in rat, female in mouse.Human FMO1 is nearly undetectable. FMO3 in mouse is gender-specific to the female, but gender-independent in rat and man. FMO5 is gender-independent for mouse, rat and man. 2. Gender differences in substrate metabolism do not reflect overall FMO or isoform differences. Methimazole, imipramine and thiobenzamide are much better substrates for FMO1 than for FMO3 or FMO5. 3. Activities of microsomal samples toward these substrates reflect the relative abundance of FMO1. Hepatic samples show a 3-fold greater activity toward methimazole in the female mouse and male rat. Human microsomal samples show minimal activity. 4. Developmentally, FMO1 and FMO5 are expressed in foetuses as early as gestation days 15 and 17 and equally between genders until puberty. FMO3 is not found until 2 weeks post - partum and is found equally in the male and female until 6 weeks post - partum when it becomes undetectable in the male. 5. An event takes place after birth but beforepuberty that confers the ability to produce FMO3.The developmentalpattern observed for mouse FMO3 is similar tohumanFMO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号