首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Konishi E  Terazawa A  Fujii A 《Vaccine》2003,21(25-26):3713-3720
This study demonstrated viral antigen production in muscle tissues following inoculation with DNA vaccines and examined its relation to antibody induction in mice using the flavivirus system. To achieve detectable levels of antigen production, we used a needle-free jet injector and examined 10% homogenate of quadriceps muscle for viral antigens in a sandwich enzyme-linked immunosorbent assay. We compared DNA vaccines against dengue type 1 (designated pcD1ME), dengue type 2 (pcD2ME) and Japanese encephalitis (pcJEME). The amounts of viral envelope (E) antigen contained in muscle homogenate 1, 2, 3 and 4 days following inoculation with 50 microg of pcJEME were 1.1, 1.0, 0.3 and <0.1 ng/ml, respectively. Muscles from pcD2ME- and pcD1ME-inoculated mice did not contain detectable levels of E antigen (<0.1 ng/ml) during 4 days following inoculation. The E amounts released from Vero cells transfected with DNAs were in the order pcJEME>pcD2ME>pcD1ME. Levels of neutralizing antibody induced by two immunizations with 100 microg of each DNA vaccine using needle-free or normal needle/syringe injection systems also were in the order pcJEME>pcD2ME>pcD1ME, 2-11 weeks after the first immunization. However, the difference in antibody levels among three DNA vaccines 14-18 weeks after immunization was smaller than that in the early phase of immunization. These results provide fundamental information useful for developing combination DNA vaccines, such as a dengue tetravalent DNA vaccine, which require adjustment of immunogenicity of each component.  相似文献   

2.
Konishi E  Kosugi S  Imoto J 《Vaccine》2006,24(12):2200-2207
We developed a dengue tetravalent DNA vaccine consisting of plasmids expressing premembrane and envelope genes of each of four serotypes of dengue viruses. BALB/c mice immunized twice with the tetravalent vaccine at a dose of 100 microg (25 microg for each serotype) using a needle-free jet injector developed neutralizing antibodies against all serotypes. There was no interference among the four components included in this combination vaccine. Tetravalent vaccine-immunized mice showed anamnestic neutralizing antibody responses following challenge with each dengue serotype: responses to challenges from serotypes different to those used for neutralization tests were also induced.  相似文献   

3.
Formulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses. A single dose of monovalent DENVax-4 also provided complete protection against wt DENV-1 challenge and significantly increased the survival times after challenge with wt DENV-2. In studies using tetravalent mixtures, DENVax ratios were identified that: (i) caused limited viremia, (ii) induced serotype-specific neutralizing antibodies to all four DENV serotypes with different hierarchies, and (iii) conferred full protection against clinical signs of disease following challenge with either wt DENV-1 or DENV-2 viruses. Overall, these data highlight the immunogenic profile of DENVax, a novel candidate tetravalent dengue vaccine and the advantage of sharing a common attenuated genomic backbone among the DENVax monovalent vaccines that confer protection against homologous or heterologous virus challenge.  相似文献   

4.
Imoto J  Konishi E 《Vaccine》2007,25(6):1076-1084
We previously developed a dengue tetravalent DNA vaccine that can induce neutralizing antibodies against four dengue viruses in mice. Here, we demonstrated that immunogenicity of our tetravalent vaccine is synergistically increased in mice by co-immunization with dengue type 2 virus (DENV2) subviral extracellular particles (D2EPs) or inactivated Japanese encephalitis vaccine (JEVAX). A single immunization with a mixture of 100 microg of the tetravalent vaccine and 150 ng of D2EPs or a 1/10 dose of JEVAX induced moderate levels of neutralizing antibodies in a 90% plaque reduction assay. Immunized mice were protected from "artificial" viremia created by intravenous injection with DENV2.  相似文献   

5.
A DNA vaccine expressing dengue-4 virus premembrane (prM) and envelope (E) genes was produced by inserting these genes into a mammalian expression plasmid (pCI).Following a thorough screening, including confirmation of protein expression in vitro, a recombinant clone expressing these genes was selected and used to immunize BALB/c mice. After 3 immunizations all the animals produced detectable levels of neutralizing antibodies against dengue-4 virus. The cytokines levels and T cell proliferation, detected ex vivo from the spleen of the immunized mice, showed that our construction induced substantial immune stimulation after three doses. Even though the antibody levels, induced by our DNA vaccine, were lower than those obtained in mice immunized with dengue-4 virus the levels of protection were high with this vaccine.This observation is further supported by the fact that 80% of the vaccine immunized group was protected against lethal challenge. In conclusion, we developed a DNA vaccine employing the genes of the prM and E proteins from dengue-4 virus that protects mice against this virus.  相似文献   

6.
Konishi E  Terazawa A  Imoto J 《Vaccine》2003,21(17-18):1826-1832
Gene-based and protein-based vaccines are two distinct types of vaccines. In this report, we examined if combined use of DNA and protein vaccines would increase their own abilities to induce neutralizing antibody in murine models for Japanese encephalitis (JE) or dengue type 2 (DEN2). DNA vaccines for JE (pcJEME) or DEN2 (pcD2ME) were inoculated intramuscularly, and protein vaccines consisting of subviral extracellular particles (EPs) containing JE (JEEP) or DEN2 (D2EP) virus antigens were inoculated subcutaneously with Freund's adjuvant. Two immunizations of ICR mice with pcJEME and/or JEEP in the prime-boost protocol indicated that levels of neutralizing antibody induced by the pcJEME prime-JEEP boost vaccination were two to eight-fold higher than those induced by pcJEME alone, but were equivalent to those induced by JEEP alone and slightly higher than those induced by the JEEP prime-pcJEME boost regimen. On the other hand, simultaneous immunization of ICR mice with pcJEME and JEEP provided synergistically higher neutralizing antibody titers than those provided by immunization with either immunogen. Immunization with graded doses of pcJEME and JEEP confirmed the synergism. The synergistic increase in neutralizing antibody titer by simultaneous immunization with DNA and protein vaccines was also shown by immunization with pcD2ME and D2EP in ICR and ddY mice. Both IgG1 and IgG2a antibodies were induced by combined immunization with pcJEME and JEEP.  相似文献   

7.
In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM + E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.  相似文献   

8.
Men R  Wyatt L  Tokimatsu I  Arakaki S  Shameem G  Elkins R  Chanock R  Moss B  Lai CJ 《Vaccine》2000,18(27):3113-3122
Dengue epidemics increasingly pose a public health problem in most countries of the tropical and subtropical areas. Despite decades of research, development of a safe and effective live dengue virus vaccine is still at the experimental stage. To explore an alternative vaccine strategy, we employed the highly attenuated, replication-deficient modified vaccinia Ankara (MVA) as a vector to construct recombinants for expression of the major envelope glycoprotein of one or more dengue virus serotypes. MVA recombinants expressing the highly immunogenic C-terminally truncated dengue type 2 virus (DEN2) or dengue type 4 virus (DEN4) envelope protein (E), approx. 80% of the full-length, were evaluated for their protective immunity in animal models. Each of these recombinants elicited an elevated antibody response to DEN2 or DEN4 E in mice following the booster inoculation, as detected by radio-immunoprecipitation. Recombinant MVA-DEN2 80%E, but not MVA-DEN4 80%E, induced a neutralizing antibody response. The MVA-DEN2 80%E recombinant was chosen to further evaluate its ability to induce resistance to wild type DEN2 challenge in monkeys. Monkeys immunized twice with recombinant MVA-DEN2 80%E developed a low to moderate antibody response and were partially protected against DEN2 challenge, as determined by the viremia pattern. Importantly, the subsequent study showed that all four monkeys immunized with the recombinant in a three dose schedule developed an increased level of antibodies and were completely protected against DEN2 challenge. The potential efficacy of recombinant MVA-DEN2 80%E to protect primates against dengue infection suggests that construction and evaluation of MVA recombinants expressing other serotypes of dengue virus E for use in a tetravalent vaccine strategy might be warranted.  相似文献   

9.
Japanese encephalitis (JE) virus causes abortion and stillbirth in swine, and encephalitis in humans and horses. We have previously reported that immunogenicity of a DNA vaccine against JE was synergistically enhanced in mice by co-immunization with a commercial inactivated JE vaccine (JEVAX) under a needle-free injection system. Here, we found that this immunization strategy was also effective in miniature pigs. Because of the synergism, miniature pigs immunized twice with a mixture of 10 μg of DNA and a 1/100 dose of JEVAX developed a high neutralizing antibody titer (1:190 at 90% plaque reduction assay). Even using 1 μg of DNA, 3 of 4 pigs developed neutralizing antibodies. Following challenge, all miniature pigs with detectable neutralizing antibodies were protected against viremia. Pregnant sows inoculated with 10 or 1 μg of DNA mixed with JEVAX (1/100 dose) developed antibody titers of 1:40–1:320. Following challenge, fetal death and mummification were protected against in DNA/JEVAX-immunized sows.  相似文献   

10.
Eiji Konishi  Atsuko Fujii 《Vaccine》2002,20(7-8):1058-1067
A dengue subunit vaccine candidate was developed using a mammalian cell line continuously expressing subviral extracellular particles (EPs) of the New Guinea C (NGC) strain of dengue type 2 virus. The cell line, designated D cell line, maintained envelope (E) antigen production for at least 10 passages. The EPs contained an E protein biochemically and antigenically equivalent to authentic E produced by NGC-infected Vero cells. Two immunizations of BALB/c mice with purified EPs containing 100ng or 400ng of E induced moderate levels of neutralizing antibody and anamnestic neutralizing antibody responses were produced when these animals were challenged with dengue virus. The yield of E antigen from D cells was comparable to that from NGC-infected Vero cells. When D cells were transfected with the anti-apoptotic bcl-2 gene, the E antigen release increased approximately two-fold. These results indicate that D cell EPs are a promising non-infectious vaccine antigen for dengue.  相似文献   

11.
Mota J  Acosta M  Argotte R  Figueroa R  Méndez A  Ramos C 《Vaccine》2005,23(26):3469-3476
Dengue fever is a growing public health concern around the world and despite vaccine development efforts, there are currently no effective dengue vaccines. In the present study we report the induction of protective antibodies against dengue virus by DNA immunization with domain III (DIII) region of the envelope protein (E) in a mouse model. The DIII region of all four dengue virus serotypes were cloned separately into pcDNA 3 plasmid. Protein expression was tested in COS-7 cells. Each plasmid, or a tetravalent combination, were used to immunize BALB/c mice by intramuscular route. Presence of specific antibodies was evaluated by ELISA, and neutralizing antibodies were tested using a cytopathogenic effect (CPE) inhibition assay in BHK-21 cells, as well as in newborn mice challenged intracranially with dengue 2 virus. Mice immunized with individual DIII constructs or the tetravalent formulation developed antibodies against each corresponding dengue serotype. Antibody titers by ELISA were similar for all serotypes and no significant differences were observed when boosters were administered, although antibody responses were dose-dependent. CPE inhibition assays using Den-2 virus showed neutralization titers of 1:10 in mice immunized with individual DIII plasmid or those immunized with the tetravalent formulations. 43% of newborn mice challenged with Den-2 in combination with sera from mice immunized with Den-2 DIII plasmid were protected, whereas sera from mice immunized with the tetravalent formulation conferred 87% protection. Our results suggest that DIII can be used as a tetravalent DNA formulation to induce neutralizing and protective antibodies against dengue virus.  相似文献   

12.
《Vaccine》2015,33(42):5613-5622
Recent phase IIb/III trials of a tetravalent live attenuated vaccine candidate revealed a need for improvement in the stimulation of protective immunity against diseases caused by dengue type 2 virus (DENV-2). Our attempts to develop particulate antigens for possibly supplementing live attenuated virus preparation involve generation and purification of recombinant DENV-2 virus-like particles (VLPs) derived from stably (prM+E)-expressing mosquito cells. Two VLP preparations generated with either negligible or enhanced prM cleavage exhibited different proportions of spherical particles and tubular particles of variable lengths. In BALB/c mice, VLPs were moderately immunogenic, requiring adjuvants for the induction of strong virus neutralizing antibody responses. VLPs with enhanced prM cleavage induced higher levels of neutralizing antibody than those without, but the stimulatory activity of both VLPs was similar in the presence of adjuvants. Comparison of EDIII-binding antibodies in mice following two adjuvanted doses of these VLPs revealed subtle differences in the stimulation of anti-EDIII binding antibodies. In cynomolgus macaques, VLPs with enhanced prM cleavage augmented strongly neutralizing antibody and EDIII-binding antibody responses in live attenuated virus-primed recipients, suggesting that these DENV-2 VLPs may be useful as the boosting antigen in prime-boost immunization. As the levels of neutralizing antibody induced in macaques with the prime-boost immunization were comparable to those infected with wild type virus, this virus-prime VLP-boost regimen may provide an immunization platform in which a need for robust neutralizing antibody response in the protection against DENV-2-associated illnesses could be tested.  相似文献   

13.
A DNA vaccine that expresses the premembrane/membrane (prM) and envelope (E) genes of dengue virus serotype-1 was tested for immunogenicity and protection against dengue-1 virus challenge in Aotus nancymae monkeys. The vaccine, in 1 mg doses, was administered intradermally (i.d.) to three monkeys and intramuscularly (i.m.) to three others. For controls, a 1 mg dose of vector DNA was administered i.d. to two monkeys and i.m. to one. All animals were primed and then boosted at one and five months post priming. Sera were collected monthly and analyzed for dengue-1 antibodies by enzyme linked immunosorbent assay (ELISA) and plaque reduction neutralization test (PRNT). Dengue-1 antibodies were detectable in the sera from i.d. and i.m. vaccine inoculated animals one month after the first boost and peaked one month after the second boost. The antibody levels from sera of animals that received the vaccine via the i.d. route were twice those from sera of animals that received the vaccine via the i.m. route. Six months after the second boost all inoculated and two naive monkeys were challenged with 1.25x10(4) plaque forming units (PFU) of dengue-1 virus. Two vaccine immunized animals were protected from viremia while the others showed a reduction in viremia. The mean days of viremia were 1 and 1.3 for the animals that were immunized with the vaccine via the i.d. or i.m. route, respectively vs 4 and 2 mean days of viremia in the animals inoculated with control DNA. Naive animals were viremic for an average of 4 days. All of the three control monkeys that received control DNA inoculum by either the i.d. or i.m. route had an intermittent viremia pattern with one or more negative days interspersed between the positive days. This pattern was not observed in any of the vaccine recipients or the na?ve control monkeys. These results demonstrate that DNA immunization is a promising approach for the development of dengue vaccines and that A. nancymae monkeys are suitable for dengue vaccine trials.  相似文献   

14.
A simple dengue vaccine evaluation system was established using a model of dengue type 2 virus (DENV2) infection in immunocompetent mice. Mice are usually non-permissive hosts, and artificial viremia was therefore created by intraperitoneal injection of K562 cells infected with DENV2. Plasma virus titers were approximately 4–5 log10 focus-forming units/ml at 10 h after injection of 1 × 107 K562 cells into ICR, ddY and BALB/c mice. ICR mice immunized with an experimental vaccine against DENV2 showed reduced levels of viremia, associated with neutralizing antibody titers. Similarly, ICR mice passively immunized with purified IgG fractions of monoclonal antibodies possessing neutralizing activities also had reduced levels of viremia. However, the degree of viremia reduction differed according to the antibody species. Although some mice developed neurologic symptoms and/or died within 21 days of K562 injection, viremia reduction was considered to be a reliable indicator of the protective capacities of candidate dengue vaccines.  相似文献   

15.
《Vaccine》2015,33(45):6070-6077
BackgroundMost candidate dengue vaccines currently under development induce neutralizing antibodies, which are considered important for immunoprotection. However, the concomitant induction of infection-enhancing antibodies is an unavoidable concern. In contrast, a neutralizing antibody developed for passive immunotherapy has been engineered to eliminate its enhancing activity. Therefore, a strategy for the long-term expression of enhancing-activity-free neutralizing antibodies may resolve this concern.MethodsA mouse monoclonal antibody, 7F4, of the IgG3 subclass and with no detectable enhancing activity, was selected as the model neutralizing antibody to evaluate the potential of this strategy. Equal amounts of commercial vector (pFUSE)-based plasmids containing 7F4 heavy (H)- or light (L)-chain variable region genes were mixed and used for the cotransfection of 293T cells and co-delivery into ICR and BALB/c mice. The recombinant plasmids were designed to express IgG2b or IgG3 subclass antibodies (p7F4G2b or p7F4G3, respectively).Results293T cells transfected with 2 μg of p7F4G2b or p7F4G3 produced approximately 15,000 or 800 ng/ml IgG in the culture fluids, respectively. The dose is expressed as the total amount of H- and L-chain plasmids. Neutralizing antibody was detected dose-dependently in ICR mice inoculated with 50–200 μg of p7F4G2b. A 1:2 dilution of sera from ICR and BALB/c mice inoculated with 100 μg of p7F4G3 showed average plaque reduction levels of >70% on day 3 and >90% on days 5–9. BALB/c mice maintained detectable neutralizing antibody for at least 3 months. The neutralizing antibody expressed by p7F4G3 in mice showed no enhancing activity.DiscussionAlthough the expression of neutralizing antibodies from immunoglobulin genes is a type of passive immunization, its durability can be utilized as a dengue vaccine strategy. This “proof-of-concept” study using a mouse model demonstrates that the enhancing-activity-free characteristic of this strategy augurs well for dengue vaccine development, although further improvement is required.  相似文献   

16.
A Japanese encephalitis (JE) vaccine candidate encoding JE virus premembrane (prM) and envelope (E) genes, designated pNJEME, was evaluated for safety and immunogenicity in non-human primate, cynomolgus monkeys. pNJEME was constructed using a vector (pNGVL4a) designed to address some of the safety concerns of DNA vaccine. In two different experiments, two immunizations with 300 microg of pNJEME by intramuscular (i.m.) injection, and 3 microg of pNJEME using a gene gun, and three immunizations by i.m. injection with 500 microg of pNJEME were performed. All the three protocols induced low to high levels of neutralizing antibody, indicating an ability of pNJEME to induce neutralizing antibody in monkeys with a wide individual variation in response to pNJEME. In one experiment designed to compare the DNA vaccine with a commercial inactivated JE vaccine, three immunizations by i.m. inoculation with 300 microg of pNJEME or by gene gun administration with 3 microg of pNJEME induced similar levels of neutralizing antibody to those induced by three immunizations with a human dose of the inactivated vaccine in most monkeys. After intranasal challenge with the Beijing P3 or JaTH160 strain of JE virus, pNJEME-immunized monkeys showed anamnestic neutralizing antibody responses, indicating that pNJEME induced memory B cells which were responsive to infection with JE virus. No systemic and local reactions were observed in any monkeys after i.m. or gene gun inoculations with plasmid DNAs.  相似文献   

17.
《Vaccine》2015,33(50):7112-7120
Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24–67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8+ T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.  相似文献   

18.
A dengue 2 plasmid DNA vaccine (pD2) expressing the pre-membrane and envelope proteins (preM-E) was modified by replacing the dengue transmembrane and cytoplasmic sequences with those of the mouse lysosome-associated membrane protein (pD2/LAMP). Immunofluorescence and confocal microscopy of human 293, NIH 3T3, and macrophage IC21 cell lines transfected with pD2/LAMP showed that the preM-E/LAMP protein chimera was present in vesicles containing endogenous LAMP and major histocompatability complex class II (MHC II), in contrast to the non-vesicular localization of native preM-E protein lacking the LAMP targeting sequence. Mice immunized with pD2 showed an antigen-specific immunoglobulin response but the neutralizing antibodies titers (plaque reduction neutralization test, PRNT(50)) elicited by the native protein were minimal. In contrast, vaccination with pD2/LAMP resulted in PRNT(50) of 270, 320 and 160 at approximately 1, 3 and 8 months after two immunizations with 50 microg DNA, and approached 100% neutralization at 1:20 dilution. Additional immunization with pD2/LAMP, after 8 months, increased the neutralizing antibody titers to >640. Comparable neutralizing antibody responses were induced by two vector backbones, pVR1012 and pVax-1, at 5 and 50 microg of DNA. The neutralizing responses to the pD2/LAMP chimera were greatly superior to those elicited by pD2 in all conditions. These results underscore the importance of MHC class II presentation of DNA-encoded dengue-virus envelope protein for production of neutralizing antibodies.  相似文献   

19.
Immunization of domestic pigs with a DNA vaccine expressing the complete E2 protein of classical swine fever virus (CSFV) conferred total protection against a severe viral challenge. Immunization with three doses of plasmid pcDNA3.1/E2 elicited a consistent and specific, MHC class II restricted T cell response in the three domestic pigs analyzed, in the absence of detectable anti-CSFV antibodies in serum. Upon challenge specific T cell responses were boosted in the three vaccinated pigs, and a rapid rise in the titers of CSFV neutralizing antibodies was noticed in two of them, which correlated with a total protection. In these two pigs, neither disease symptoms were observed nor was virus detected at any time after CSFV infection. Neutralizing antibody titers were lower in the third vaccine, which developed a mild and transient peak of pyrexia. As expected, similar analyses in three control pigs (injected with the empty vector or PBS) did not reveal the induction of specific T cells or viral antibodies and, upon challenge, animals developed severe symptoms of the disease, including high titers of viremia, hyperthermia and virus spread to different organs. Control pigs developed, also, a marked leucopenia, resulting in SWC3+ (myelomonocytic cells) being the major PBMC population, and a drastic decrease CD3+ T cells. This T cell depletion was prevented in animals immunized with pcDNA3.1/E2. The total protection achieved, in the absence of CSFV antibodies before challenge, supports the relevance in the antiviral response observed of specific T cell responses primed by pcDNA3.1/E2 vaccine, which, upon challenge, led to a rapid induction of neutralizing antibodies. The observation that CSFV antibodies could only be detected in protected animals after viral challenge opens the possibility of exploring the potential of the DNA vaccine approach used to develop marker vaccines against CSF.  相似文献   

20.
A prototype dengue-1 DNA vaccine was shown to be safe and immunogenic in a previous Phase 1 clinical trial. Anti-dengue-1 neutralizing antibody responses were detectable only in the group of volunteers receiving the high dose of nonadjuvanted vaccine and the antibody titers were low. Vaxfectin®, a lipid-based adjuvant, enhances the immunogenicity of DNA vaccines. We conducted a nonhuman primate study to evaluate the effect of Vaxfectin® on the immunogenicity of a tetravalent dengue DNA vaccine. Animals were immunized on days 0, 28 and 84, with each immunization consisting of 3 mg of Vaxfectin®-adjuvanted tetravalent dengue DNA vaccine. The use of Vaxfectin® resulted in a significant increase in anti-dengue neutralizing antibody responses against dengue-1, -3 and -4. There was little to no effect on T cell responses as measured by interferon gamma ELISPOT assay. Animals immunized with the Vaxfectin®-formulated tetravalent DNA vaccine showed significant protection against live dengue-2 virus challenge compared to control animals (0.75 mean days of viremia vs 3.3 days). Animals vaccinated with nonadjuvanted DNA had a mean 2.0 days of viremia. These results support further evaluation of the Vaxfectin®-adjuvanted tetravalent dengue DNA vaccine in a Phase 1 clinical trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号