首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of substance P-, Met-enkephalin- and somatostatin-like immunoreactivity was studied in the thoracic spinal cord of the frog using immunohistochemical techniques. In fibres, probably nerve terminals, immunoreactivity was greatest in the grey matter (mainly dorsal horn), but it was also present in white matter regions. While substance P- and, perhaps, somatostatin-like immunoreactivity appeared to be contained in primary afferents, the presence of all 3 peptides in neuronal cells of the grey matter indicates the existence of a propriospinal peptidergic system.  相似文献   

2.
Summary After neonatal treatment of rats with capsaicin, the spinal cord, the spinal trigeminal nucleus and spinal and trigeminal ganglia were analysed with immunohistochemistry using antisera to several peptides and 5-hydroxytryptamine. A marked decrease was observed in substance P-, cholecystokinin-, somatostatin- and VIP-like immunoreactivity present in the central branches of primary sensory neurons in the spinal cord and in substance P- and somatostatin-like immunoreactivity in sensory ganglion cells. No definite depleting effect of capsaicin could be established on 5-hydroxytryptamine and peptides, such as enkephalin and neurotensin, present in centrally originating fibres in the dorsal horn of the spinal cord. The results demonstrate that the effects of capsaicin are not confined to substance P immunoreactive primary sensory neurons. The possibility is discussed that capsaicin effects specifically functioning rather than chemically specific primary sensory neurons.  相似文献   

3.
The present study examines the distribution of several neuropeptides, as revealed by immunohistochemistry in the isolated cord. Fetal rat spinal cord was grafted to the anterior chamber of the adult Sprague-Dawley albino rats. After intraocular maturation for 2-3 months, the amount and distribution of somatostatin, neuropeptide Y, substance P, enkephalin, vasoactive intestinal peptide, peptide histidine-isoleucine, calcitonin gene-related peptide and cholecystokinin immunoreactive terminals and cell bodies were analysed using indirect fluorescence immunohistochemistry. The visualization of immunoreactive cell bodies in the grafts was enhanced using a novel intraocular colchicine treatment. In the graft a rich network of somatostatin-positive terminals was found with a high density in well-demarcated areas reminiscent of substantia gelatinosa of the dorsal horn of normal spinal cord. A large number of small- to medium-sized somatostatin neurons was found throughout the grafts without colchicine treatment. This is in contrast to normal spinal cord, where positive neurons were difficult to visualize without colchicine and were mainly confined to the dorsal horn. Neuropeptide Y had a distribution in the grafts similar to that of somatostatin and neuropeptide Y cells were found throughout the grafts without colchicine treatment. In normal spinal cord, neuropeptide Y-positive fibers were found mainly in substantia gelatinosa with a sparse network in the ventral horn. Enkephalin-positive fibers were found throughout the grafts. The distribution of fibers resembled that of somatostatin and neuropeptide Y with distinct zones of high fiber density in well-demarcated areas, whereas the density of nerve fibers in the rest of the graft neuropil was moderate to low. The distribution of substance P was similar to that of enkephalin. After colchicine treatment, both enkephalin- and substance P-positive cell bodies were visualized. In the intact spinal cord both peptides were seen in the entire gray matter with the highest concentrations in the superficial laminae of the dorsal horn. Antisera against calcitonin gene related-peptide, revealed a sparse terminal network and many large cells, which might represent motoneurons. A sparse network of varicose cholecystokinin-immunoreactive fibers was found evenly distributed in the grafts. In normal spinal cord a dense cholecystokinin-positive network of primary sensory afferent origin was found in the dorsal horn. In the grafts cholecystokinin cell bodies were seen after colchicine treatment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The distribution of peptide-containing neurons in the oesophagus, stomach and small and large intestine of the rat and the guinea-pig has been studied with the indirect immunofluorescence technique ofCoons &; Co-workers (1958) using antisera to substance P, vasoactive intestinal polypeptide (VIP), enkephalin, somatostatin, gastrin and neurotensin. (The gastrin antiserum is to the C-terminal portion and consequently reacts also with cholecystokinin (CCK)-like peptides.) For comparison, the noradrenergic innervation was visualized with antiserum to dopamine β-hydroxylase. For improved visualization of peptide-containing cell bodies, a mitotic inhibitor (colchicine or vinblastine) was applied locally on the different parts of the gastro-intestinal tract of several animals.Substance P-, VIP-, enkephalin- and somatostatin-like immunoreactivity was observed in all parts of the gastro-intestinal tract studied. Gastrin/CCK had a more limited distribution, especially in the guinea-pig and neurotensin was seen only in certain regions and layers of the rat gastro-intestinal tract.Immunoreactivity to all peptides except neurotensin was observed both in cell bodies and fibres; immunoreactivity to neurotensin has so far only been seen in nerve fibres. Substance P and enkephalin immunoreactive cells were often numerous in the myenteric plexus, whereas VIP and somatostatin immunoreactive cells were preferentially located in the submucous plexus. Some VIP immunoreactive cells were observed in the lamina propria. Large numbers of especially substance P-, VIP- and enkephalin-containing fibres were often seen in the circular muscle layer and in the two ganglionic plexuses. Substance P immunoreactive fibres formed the densest network in the ganglionic plexuses, whereas VIP immunoreactive fibres constituted the most impressive network in the lamina propria and often extended into the most superficial parts of the mucosa. Enkephalin immunoreactive structures were mainly confined to the circular and longitudinal muscle layers and the myenteric plexus. Somatostatin immunoreactive fibres were mainly found in the ganglionic plexuses.Peptide-containing fibres, particularly these containing substance P and VIP were often seen along blood vessels, but never with such a density as the noradrenergic (dopamine β-hydroxylase immunoreactive) fibres. No somatostatin or neurotensin immunoreactive fibres were observed in relation to clearly identifiable blood vessels.The possible coexistence of two peptides in one neuron was studied. For this part of the study the proximal colon and five antisera, namely substance P, VIP, enkephalin. somatostatin and gastrin/CCK antisera were selected. Evidence was obtained for the occurrence of a somatostatin-like and a gastrin/ CCK-like peptide in the same neurons. This may indicate a common precursor for the two peptides in these particular neurons. Each of the substance P-, VIP- and enkephalin-like peptides. on the other hand, seem to be present in different neuronal populations, which were themselves distinct from the somatostatin-gastrin/CCK immunoreactive neurons. In addition, somatostatin immunoreactive neurons different from the gastrin/CCK immunoreactive ones seem to exist. The gastrin/CCK immunoreactive fibres around blood vessels may represent a further, separate population of fibres, since no somatostatin immunoreactive fibres were seen at this location.The findings indicate the existence of numerous subpopulations of enteric neurons, each characterized by its content of a certain peptide (or peptides). The axons of most of these neurons probably terminate in the wall of the gastro-intestinal tract, but some seem to project to other organs. In addition, some peptide-containing fibres in the gastro-intestinal wall may have an extrinsic origin. The relationship between these peptide-containing neurons and the cholinergic enteric neurons and any of the other non-cholinergic. non-adrenergic inhibitory and excitatory neurons present in the enteric nervous system is not known. It is, however, noteworthy that a somatostatin-like peptide seems to be present in noradrenergic neurons of prevertebral ganglia that project to the intestine. The possibility must be kept in mind that one or more of the peptides in the gut could be localized in neurons that contain other potential transmitters, e.g. acetylcholine.The wide variety of pharmacological actions of these neuronal peptides on smooth muscle and neurons in the gut and on its blood vessels raises the possibility that some of them may be neurotransmitters.  相似文献   

5.
Summary Using the indirect immunofluorescence method andin situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatto) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin-or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered. Thus, in contrast to rat there was no marked upregulation of vasoactive intestinal polypeptide/peptide histidine isoleucine or neuropeptide tyrosine after axotomy in the monkey, whereas galanin was increased in both species. Both in monkey and rat, calcitonin gene-related peptide, substance P and somatostatin decreased. The decrease in neurotensin, peptide histidine isoleucine, and genuine cholecystokinin seen in monkey after axotomy has not been reported in the rat. Experimental studies on rat suggest that galanin may be an endogenous analgesic compound, active particularly after peripheral nerve lesions. We have therefore recently proposed that galanin agonists may be used in treatment of chronic pain, and the present demonstration that galanin is regulated in a similar fashion in a primate gives further support to the proposal to test galanin as an analgesic in human.  相似文献   

6.
The distribution of several neuropeptides (vasoactive intestinal polypeptide, cholecystokinin octapeptide, substance P, neurotensin, methionine-enkephalin and somatostatin) in the hippocampal formation has been studied with immunocytochemical techniques. Numerous vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin-positive cell bodies were found within the hippocampus and subiculum. Neurotensin-positive cell bodies were found within the subiculum, but no substance P or methionine-enkephalin-containing cell bodies were seen in either hippocampus proper or subiculum. Vasoactive intestinal polypeptide and cholecystokinin-octapeptide-positive cell bodies were predominantly located in the stratum moleculare and stratum radiatum of CA 1-2 regions and dentate gyrus, whilst somatostatin-containing cell bodies were found mainly in the stratum oriens. Nerve fibres containing each of the six peptides were found within the hippocampus. Large numbers of vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin fibres innervated the pyramidal and granule cell layers, with smaller numbers in the stratum radiatum and fewer still in the stratum moleculare and stratum oriens. Other than a moderately dense neurotensin-positive fibre plexus in the dorsal subiculum, fewer neurotensin, substance P and methionine-enkephalin fibres were present. However, when present, these three peptides had a distribution restricted to a region close to the pyramidal layer in the CA 2/3 region and to the stratum moleculare of the CA 1 region. Peptide-containing fibres were identified entering or leaving the hippocampus in three ways, via (i) the fornix (all six peptides), (ii) the dorsal subiculum (neurotensin-positive fibres projecting to the cingulate cortex: somatostatin, vasoactive intestinal polypeptide, and cholecystokinin-octapeptide present in fibres running between the dorsal subiculum and occipito-parietal cortex) and (iii) the ventral subiculum (vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin in fibres running between entorhinal cortex and hippocampus, and all six peptides in fibres crossing the amygdalo-hippocampal border). These findings indicate a major distinction between those peptides (vasoactive intestinal polypeptide, cholecystokinin-octapeptide, somatostatin, neurotensin) which are found in cell bodies intrinsic to the hippocampal formation and those peptides (substance P, methionine-enkephalin) which are found only in hippocampal afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
R L Nahin 《Neuroscience》1987,23(3):859-869
In the present study, we examined the peptidergic content of lumbar spinoreticular tract neurons in the colchicine-treated rat. This was accomplished by combining the retrograde transport of the fluorescent dye True Blue with the immunocytochemical labeling of neurons containing cholecystokinin-8, dynorphin A1-8, somatostatin, substance P or vasoactive intestinal polypeptide. After True Blue injections into the caudal bulbar reticular formation, separate populations of retrogradely labeled cells were identified as containing cholecystokinin-like, dynorphin-like, substance P-like or vasoactive intestinal polypeptide-like immunoreactivity. Retrogradely labeled somatostatin-like neurons were not identified in any of the animals examined. Each population of double-labeled cells showed a different distribution in the lumbar spinal cord. The highest yield of double-labeling occurred for cholecystokinin, with 16% of all intrinsic cholecystokinin-like neurons containing True Blue. These double labeled neurons were found predominantly at the border between lamina VII and the central canal region. About 11% of intrinsic vasoactive intestinal polypeptide-like neurons in the lumbar spinal cord were retrogradely labeled from the bulbar reticular formation. These neurons were found mostly in the lateral spinal nucleus, with only a few double-labeled cells located deep in the gray matter. Dynorphin-like double-labeled neurons were localized predominantly near the central canal; a smaller population was also seen in the lateral spinal nucleus. It was found that double-labeled dynorphin-like neurons made up 8% of all intrinsic dynorphin-like neurons. Retrogradely-labeled substance P-like neurons were rare; the few double-labeled neurons were found in the lateral spinal nucleus and lateral lamina V. These findings suggest a significant role for spinal cord peptides in long ascending systems beyond their involvement in local circuit physiology.  相似文献   

8.
The distribution of fluoride-resistant acid phosphatase, substance P and somatostatin were investigated in the dorsal horn of the spinal cord and in dorsal root ganglia. In the dorsal horn, the distribution of fluoride-resistant acid phosphatase closely paralleled that of somatostatin and only partly overlapped with that of substance P. In sensory ganglia, none of the fluoride-resistant acid phosphatase-containing neurones contained either substance P or somatostatin. The results suggest the existence of a population of fluoride-resistant phosphatase-positive sensory neurones which is distinct from neurones containing either of these peptides.  相似文献   

9.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I–II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I–III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I–II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

10.
The sixth lumbar and first sacral spinal cord segments in the rat contain parasympathetic preganglionic neurons which innervate the pelvic viscera. There have been few studies, however, which have specifically considered the distribution of putative peptide neurotransmitters in these cord segments. The present paper describes and compares the immunohistochemical distribution of dynorphin (1-8)-, enkephalin-, somatostatin-, cholecystokinin octapeptide-, avian pancreatic polypeptide-, FMRF-NH2-, neurotensin-, and vasoactive intestinal polypeptide-like immunoreactivities in the dorsal gray commissure and sacral parasympathetic nucleus of the sixth lumbar and first sacral spinal cord segments in colchicine-treated rats. Antisera against all of the peptides, except avian pancreatic polypeptide, stained cells in the sacral parasympathetic nucleus. Dynorphin (1-8-), enkephalin-, and substance P-like immunoreactive cells were present in significantly greater numbers than somatostatin-, neurotensin-, cholecystokinin-, FMRF-NH2-, and vasoactive intestinal polypeptide-like immunoreactive cells. All of the antisera also stained fibers in the sacral parasympathetic nucleus in varying densities, and a fiber bundle which extended between the dorsal gray commissure and the sacral parasympathetic nucleus. Antisera against substance P and cholecystokinin stained a bundle of fibers that extended between the dorsal horn and the sacral parasympathetic nucleus. Antisera against somatostatin, cholecystokinin octapeptide, substance P and FMRF-NH2 stained an additional fiber bundle which extended between the lateral edge of the dorsal horn and the dorsal gray commissure. All the remaining antisera, except neurotensin, also stained fibers that extended between the sacral parasympathetic nucleus and the dorsal gray commissure, but in a sparser distribution. Immunoreactive cells were localized to the dorsal gray commissure in sections stained with each of the antisera. Dynorphin (1-8) and enkephalin antisera stained the greatest number of cells, followed by FMRF-NH2, neurotensin, somatostatin and avian pancreatic polypeptide. The smallest number of immunoreactive cells was present in substance P, cholecystokinin and vasoactive intestinal polypeptide immunostained sections. A significant difference was noted between the number of dynorphin, enkephalin, somatostatin, cholecystokinin, avian pancreatic polypeptide, FMRF-NH2, neurotensin and vasoactive intestinal polypeptide immunoreactive cells in the sacral parasympathetic nucleus and dorsal gray commissure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Immunocytochemical double and triple staining techniques were employed on whole mounts of the submucosal plexus from normal Wistar and non-diabetic BB rat jejunum and ileum, to determine the patterns of co-localization of vasoactive intestinal polypeptide-, peptide histidine-isoleucine-, somatostatin-, neuropeptide Y-, calcitonin gene-related peptide-, substance P-, and galanin-immunoreactive nerves. Neuropeptide Y immunoreactivity was found in 38% of submucosal plexus neurons, within the same neuronal elements as vasoactive intestinal polypeptide immunoreactivity (39% of submucosal plexus neurons) and peptide histidine-isoleucine immunoreactivity. A small population (1% of submucosal plexus neurons) containing vasoactive intestinal polypeptide- and peptide histide isoleucine-like immunoreactivity without NPY-like immunoreactivity was also observed. A significant population of fibers containing vasoactive intestinal polypeptide and galanin immunoreactivity were observed in the mucosa and submucosa, although no cell bodies were detected which contained both neuropeptides. Galanin-like immunoreactivity was seen in a small (2% of submucosal plexus neurons) population, not co-localized with any of the other neuropeptides examined. All somatostatin-immunoreactive neuronal elements (18% of submucosal plexus neurons) contained calcitonin gene-related peptide immunoreactivity, just over half of which also contained substance P immunoreactivity. An additional 25% of submucosal plexus neurons contained calcitonin gene-related peptide- without somatostatin-like immunoreactivity and 28% of submucosal plexus neurons contained substance P without somatostatin-like immunoreactivity. Some degree of co-localization was seen between calcitonin gene-related peptide- and substance P-like immunoreactivity, however, this could not be directly quantified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Coexistence of corticotropin releasing factor and neurotensin and also of substance P and somatostatin was demonstrated in the lateral bed nucleus of the stria terminalis and the central amygdaloid nucleus of the rat, by means of a light microscopic mirror method or immunofluorescent double staining. Using the former technique, a major proportion of corticotropin releasing factor-like immunoreactive cells were found to display neurotensin-like immunoreactivity in the dorsal subdivision of the lateral bed nucleus of the stria terminalis and the lateral subdivision of the central amygdaloid nucleus. On the other hand, the immunofluorescent method showed that a significant number of neurons with both substance P- and somatostatin-like immunoreactivity were located in the ventral subdivision of the lateral bed nucleus of the stria terminalis and the medial subdivision of the central amygdaloid nucleus. Distribution patterns of such co-localized peptides may indicate that there are morphological and biochemical similarities between the dorsal subdivision of the lateral bed nucleus of the stria terminalis and the lateral subdivision of the central amygdaloid nucleus, as well as between the ventral subdivision of the lateral bed nucleus of the stria terminalis and the medial subdivision of the central amygdaloid nucleus. Previous studies have demonstrated that peptide-containing neurons in the lateral bed nucleus of the stria terminalis and central amygdaloid nucleus, such as corticotropin releasing factor-, neurotensin-, substance P- and somatostatin-like immunoreactive cells, project to the lower brainstem. The results of the present study suggest that corticotropin releasing factor/neurotensin and substance P/somatostatin neurons may be part of the lateral bed nucleus of the stria terminalis/central amygdaloid nucleus-lower brainstem pathways.  相似文献   

13.
Immunofluorescence histochemistry was used to determine the distribution of substance P, somatostatin and cholecystokinin-octapeptide-immunoreactive perikarya in C6, T6, T10, L2 and S1 dorsal root ganglia of rat. Five different categories of immunoreactive primary afferent neurons were distinguished on the basis of cell size, cytology and peptide immunoreactivities. The population of small cells (diameter less than 20 microns) included three groups which were identified as containing somatostatin, substance P, or substance P + cholecystokinin-octapeptide. Two groups of cells were identified in an intermediate size range (diameter 21-43 microns) as containing cholecystokinin-octapeptide or cholecystokinin-octapeptide + substance P. These categories may reflect four distinct populations of primary afferent neurons. The relative abundance of dorsal root ganglion cells containing substance P, cholecystokinin-octapeptide or somatostatin immunoreactivities was significantly different within segmental levels. More neurons were immunoreactive for cholecystokinin-octapeptide than substance P in ganglia C6, T6 and T10. Somatostatin-containing cells were fewest in number regardless of level. The number of immunoreactive cells also varied among spinal ganglia. L2 contained the greatest number of immunoreactive cells; S1 contained the fewest. These studies are relevant to our understanding of dorsal root ganglia in two ways. Firstly, the data document significant variation in the distribution of peptide-containing neurons among spinal ganglia associated with various cord levels. The variation in peptide-containing cell populations among spinal ganglia may reflect differences in populations of modality-specific primary afferent fibers as well as in populations of somatic and visceral primary afferent fibers at each level. Furthermore, the data indicate that the relative abundance of a population of peptide-containing primary afferent neurons cannot be extrapolated from the examination of spinal ganglia from a single level. Secondly, substance P and cholecystokinin-octapeptide did not co-exist in all spinal ganglion cells as previously reported. In conjunction with immunostaining characteristics and cell size, the differential distribution of the two peptides defined four cell types, raising the possibility that each cell type may mediate a different modality.  相似文献   

14.
In an earlier study we have shown that local application of capsaicin directly to one sciatic nerve induces a decrease of substance P and cholecystokinin octapeptide (CCK8)-like peptide from the dorsal spinal cord using immunocytochemical analysis.1 Here the effect of locally applied capsaicin on seven peptides known to be present in the L4 segment was assessed by radioimmunoassay and immunocytochemistry. The peptides investigated were substance P, somatostatin and CCK8-like peptide (which are present in small diameter primary afferent fibres), neurotensin, enkephalin (which are intrinsic to the spinal cord), neurophysin (of supraspinal origin) and bombesin (whose origin is unknown). Fourteen days after a single application of 49 mM solution of capsaicin a significant depletion of substance P and somatostatin was detected. These results were confirmed by parallel immunocytochemical analysis which localised the dramatic decreases of substance P and somatostatin to lamina 1 and lamina 2. In addition a depletion of CCK8-like immunoreactivity was observed by immunocytochemistry in this area, but quantitative radioimmunoassay of CCK8-like peptide did not detect this depletion. The capsaicin-induced changes were dose-dependent and reversible. Small decreases were noted with concentrations of capsaicin as low as 0.1 mM. The changes were apparent from day 9 onwards, maximal depletion seen by day 14. By 200 days post-operatively, a recovery to normal peptide levels in the ipsilateral dorsal horn was observed. In addition, a significant depletion of cutaneous substance P was noted in the area of the skin innervated by the capsaicin-treated nerve. These changes were accompanied by a significant increase in noxious thermal response (hind paw immersion test, T = 49°C, ipsilateral leg 9.11 ± 1.3 seconds, contralateral leg: 5.1 ± 1.3 seconds, P = < 0.005). The peptides neurotensin, enkephalin, neurophysin and bombesin were not affected by capsaicin treatment.These findings suggest that local application of capsaicin induces an indiscriminate depletion of peptide-containing primary sensory afferent fibres which is dose-dependent, long-lasting, but reversible.  相似文献   

15.
The superior olivary complex (SOC) of the adult rat brainstem was studied in detail with regard to its innervation by neural elements showing immunoreactivity for two neuroactive peptides, somatostatin and substance P. Nerve fibres and varicosities showing positive immuno-reactivity for both peptides were particularly dense immediately dorsal and lateral to the lateral superior olivary nucleus (LSO) and dorsal to the superior paraolivary nucleus (SPN). Penetration of this curtain-like innervation into the SPN was limited, and the LSO showed only a very minor innervation by somatostatin-positive structures in its most medial (high frequency) lobe. Dense fibre labelling and varicosities were also apparent for both peptides immediately medial to the ventral and dorsal nuclei of the lateral lemniscus, and in the external cortex and dorsomedial zones of the inferior colliculus (IC). Labelled fibres and endings were also seen in the granule cell regions of anteroventral cochlear nucleus (AVCN) and the most dorsomedial parts of the dorsal cochlear nucleus (DCN). The majority of cells in the medial nucleus of the trapezoid body (MNTB) showed a prominent innervation by nerve terminals that stained positive for somatostatin only whereas the medial superior olivary nucleus (MSO) was devoid of label for both peptides. The ventral nucleus of the trapezoid body (VNTB) showed sparse but significant innervation by both somatostatin and substance P-positive structures. Hence the VNTB was the only defined nucleus of the SOC to show a significant substance P-positive innervation. Neuronal somata immuno-reactive for somatostatin were found in anteroventral and posteroventral cochlear nuclei (AVCN and PVCN) and the A5 and A7 cell groups adjacent to the LSO and the VNLL and DNLL and in all subdivisions of the inferior colliculus (IC). Somata showing only faint immunoreactivity for substance P were found in the VNLL, AVCN and PVCN. These results suggest a potential role for both peptides in auditory signal processing in the adult rat brain.  相似文献   

16.
The extent to which the plasticity in peptide expression observed in developing spinal motoneurons occurs following proximal peripheral axotomy in the adult rat was examined using in situ hybridization and immunohistochemical techniques to visualize the changes. Transient upregulation of galanin, vasoactive intestinal polypeptide (VIP) and substance P messenger ribonucleic acids (mRNAs) was observed within subpopulations of motoneurons ipsilateral to lesion for periods lasting 2–3 weeks after injury. In contrast, the axotomy-induced heterogenous increases in somatostatin and neuropeptide tyrosine mRNA expression in ipsilateral motoneurons remained elevated, or, in the case of somatostatin, continued to increase for the time period studied (1 month). Immunohistochemical analysis agreed with the in situ hybridization results, showing some motoneurons within the injured ventral horn to contain galanin-, VIP-or somatostatin-like immunoreactivity. In some instances, galanin-immunoreactive motoneurons colocalized with calcitonin gene-related peptide immunoreactivity. Most of the neurons expressing the injury-induced peptides appeared large, presumably alpha-motoneurons, but there were also many small neurons expressing galanin in the ventral horn ipsilateral to lesion. This may represent evidence for peptide synthesis in gamma-motoneurons. The only peptide mRNA studied to be downregulated in response to axotomy was enkephalin. The results show that peptide expression in injured motoneurons is dramatically altered, the significance of which remains to be determined.  相似文献   

17.
An immunohistochemical study of spinal cord, dorsal root and sympathetic ganglia of human embryos and fetuses demonstrated that neuropeptide Y and its C-flanking peptide could be detected in seven-week-old embryos but were absent or difficult to demonstrate after the 17th week of gestation. The peptides were found in several structures of the spinal cord, e.g. fibres in the dorsal portion of the lateral funiculus, cell bodies and fibres in the dorsal horn, and motoneurons, and also in numerous primary sensory neurons of dorsal root ganglia. They were also present in sympathetic neurons and since these are the only structures expressing neuropeptide Y and its C-flanking peptide in the adult, it must be concluded that their presence in other neurons is a transient developmental feature. To assist in understanding the relationship of these transient structures with other spinal and sensory neurons, a comparison was made with other neuronal structures showing immunoreactivity for two general neuronal markers, neurofilaments and protein gene product 9.5, and two neuropeptides present in primary sensory afferents, somatostatin and substance P. In the dorsal root ganglia, numerous neuropeptide Y- and C-flanking peptide-immunoreactive neurons were observed before substance P- or somatostatin-immunoreactive cells could be detected. Therefore, neuropeptide Y and its C-flanking peptide could represent a primitive peptidergic system appearing before primary sensory neurons express their characteristic adult phenotype. The fibres of the lateral funiculus showing immunoreactivity for neuropeptide Y and its C-flanking peptide were longitudinally orientated and could be detected at all cephalocaudal levels of the spinal cord. Comparison with the other immunohistochemical markers indicated that they were not primary sensory afferents. At least some of them probably originated from neuropeptide Y- and C-flanking peptide-immunoreactive neurons of the dorsal horn, that may be considered to be a subset of early-appearing interneurons.  相似文献   

18.
Neurons containing the calcium-binding proteins, calbindin or parvalbumin, were studied by immunohistochemistry in the superficial dorsal horn of the rat spinal cord. Calbindin-containing cells were found in laminae I, II and III, being more abundant in laminae I and II. Some of the neurons in lamina I containing calbindin projected to the supraspinal area. Parvalbumin-containing neurons were mainly distributed in laminae IIi and III. Calbindin and parvalbumin were not detected in the same cells. Some 75% of the neurotensin-like immunoreactive neurons contained calbindin, which corresponded to 13% of the calbindin-containing neurons. Calbindin was sometimes found in the same cells with substance P, enkephalin or somatostatin but less frequently (44-46% of the peptide-containing neurons). Parvalbumin was not found together with these peptides. Electron microscopy showed that the immunoreactive products of calbindin or parvalbumin were mostly in the dendrites or cell bodies. Immunoreactive axon terminals were relatively few. In rhizotomized animals, neurons containing one of these proteins in laminae II and III were found to receive direct inputs of primary afferent fibers. These findings indicate that neurons containing these two proteins belong to different subpopulations of dorsal horn neurons. They may be important in primary afferent processing.  相似文献   

19.
用免疫细胞化学ABC法研究了生长抑素样免疫反应物在山羊脊髓和背根节的分布。在整个脊髓背角,出现浓密的生长抑素样纤维和终末网,在板层Ⅱ和Ⅲ形成不规则的波形带。在带的深面,大量的生长抑素阳性小细胞(直径小于15μm)形成细胞带,这些细胞呈卵圆形或梭形,大多是双极细胞。在背角最表层仅有稀疏的生长抑素阳性纤维。这种分布型式显著不同于以前报道的其它动物。在胸髓中间外侧核有为数不多的生长抑素阳性细胞,在脊髓的其它部位如中间带区和腹角有少量散在纤维和终末。还发现纤细的生长抑素阳性纤维和终末网出现于骶髓中央管的背外侧区域。此外,在所有背根节只见到极少数生长抑素阳性神经元;切断背根时,相应节段的脊髓背角的生长抑素样免疫反应物无明显变化。本研究结果表明,山羊脊髓背角的生长抑素主要来源于脊髓背角的固有神经元,而不是背根节细胞。出现于脊髓板层Ⅱ和Ⅲ的生长抑素阳性神经元可能属于岛细胞。本研究还提示,生长抑素可能在脊髓的感觉和内脏运动系统中起作用,还表明生长抑素免疫反应物的分布存在着种属差异。  相似文献   

20.
Using the indirect immunohistochemical technique with antisera to cholecystokinin and to substance P, the spinal dorsal horn and dorsal root ganglia of normal and colchicine-treated rats were studied. In the spinal cord a similar distribution of substance P- and cholecystokinin-positive networks in the superficial layers of the dorsal horn was observed. In the dorsal root ganglia several cholecystokinin and substance P immunoreactive cell bodies were seen in colchicine-treated rats. After elution and restaining for substance P, of sections previously stained for cholecystokinin, it was found that all cholecystokinin-positive cells also contained substance P-like immunoreactivity and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号