首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow‐derived stem cells, adipose‐derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro‐angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.  相似文献   

2.
Conditioned medium (CM) is a new treatment modality in regenerative medicine and has shown a successful outcome in wound healing. We recently introduced extracellular matrix/stromal vascular fraction gel (ECM/SVF‐gel), an adipose‐derived stem cell and adipose native extracellular matrix‐enriched product for cytotherapy. This study aimed to evaluate the effect of CM from ECM/SVF‐gel (Gel‐CM) on wound healing compared with the conventional CM from adipose tissue (Adi‐CM) and stem cell (SVF‐CM). In vitro wound healing effect of three CMs on keratinocytes and fibroblasts was evaluated in terms of proliferation property, migratory property, and extracellular matrix production. In vivo, two full‐thickness wounds were created on the back of each mice. The wounds were randomly divided to receive Gel‐CM, Adi‐CM, SVF‐CM, and PBS injection. Histologic observations and collagen content of wound skin were made. Growth factors concentration in three CMs was further quantified. In vitro, Gel‐CM promoted the proliferation and migration of keratinocytes and fibroblasts and enhanced collagen I synthesis in fibroblasts compared to Adi‐CM and SVF‐CM. In vivo, wound closure was faster, and dermal and epidermal regeneration was improved in the Gel‐CM‐treated mice compared to that in Adi‐CM and SVF‐CM‐treated mice. Moreover, The growth factors concentration (i.e., vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor, and transforming growth factor‐β) in Gel‐CM were significantly higher than those in Adi‐CM and SVF‐CM. Gel‐CM generated under serum free conditions significantly enhanced wound healing effect compared to Adi‐CM and SVF‐CM by accelerating cell proliferation, migration, and production of ECM. This improved trophic effect may be attributed to the higher growth factors concentration in Gel‐CM. Gel‐CM shows potential as a novel and promising alternative to skin wound healing treatment. But limitations include the safety and immunogenicity studies of Gel‐CM still remain to be clearly clarified and more data on mechanism study are needed.  相似文献   

3.
Adipose‐derived stromal vascular fraction (SVF) is a heterogeneous population of cells that yields a homogeneous population of plastic‐adherent adipose tissue‐derived stromal cells (ASC) when culture‐expanded. SVF and ASC have been used clinically to improve tendon healing, yet their mechanism of action is not fully elucidated. The objective of this study was to investigate the potential for ASC to act as trophic mediators for tendon healing. Flexor digitorum superficialis tendons and adipose tissue were harvested from adult horses to obtain SVF, ASC, and tenocytes. Growth factor gene expression was quantified in SVF and ASC in serial passages and growth factors were quantified in ASC‐conditioned medium (CM). Microchemotaxis assays were performed using ASC‐CM. Tenocytes were grown in co‐culture with autologous ASC or allogeneic SVF. Gene expression for insulin‐like growth factor 1 (IGF‐1), stromal cell‐derived factor‐1α (SDF‐1α), transforming growth factor‐β1 (TGF‐β1) and TGF‐β3 was significantly higher in SVF compared to ASC. Concentrations were significantly increased in ASC‐CM compared to controls for IGF‐1 (4‐fold) and SDF‐1α (6‐fold). Medium conditioned by ASC induced significant cell migration in a dose‐dependent manner. Gene expression for collagen types I and III, decorin, and cartilage oligomeric matrix protein was modestly, but significantly increased following co‐culture of tenocytes with autologous ASC. Our findings support the ability of SVF and ASC to act as trophic mediators in tendon healing, particularly through chemotaxis, which stands to critically impact the intrinsic healing response. In vivo studies to further delineate the potential for SVF and/or ASC to improve tendon healing are warranted. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1429–1439, 2019.  相似文献   

4.
Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF‐1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)‐labeled skin stem cells via in utero intra‐amniotic injection of lenti‐RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin.  相似文献   

5.
Aldehyde dehydrogenase (ALDH) is an enzyme that plays an important role in retinoid metabolism and highly expressed in stem cells. This study isolated ALDH‐expressing cells from subcutaneous adipose tissue and investigated their potential to enhance healing in a full‐thickness skin wound in rats by co‐implanting them with collagen‐glycosaminoglycan (c‐GAG) scaffolds. ALDH‐positive cells were isolated by a fluorescence‐activated cell sorting technique from Lewis rat's stromal‐vascular‐fraction (SVF) and transplanted with c‐GAG scaffolds in a rat full‐thickness skin wound model. At 7 days after surgery, the microscopic appearance of c‐GAG scaffolds seeded with ALDH‐positive was compared with those of uncultured‐SVF, and cultured‐SVF adipose‐derived stromal cells (ASCs). The thickness of cellular ingrowth in the ASC group (630 ± 180 μm) was significantly thicker than that in the control (390 ± 120 μm) or SVF (380 ± 140 μm) groups, but non‐significantly thicker than that in the ALDH‐positive group (570 ± 220 μm). The thickness of regenerated collagen layer was significantly thicker in the ALDH‐positive group (160 ± 110 μm) than in the ASCs (81 ± 41 μm), the control (65 ± 24 μm), or SVF (64 ± 34 μm) groups. Immunofluorescent staining with CD31 proved that transplanted ALDH‐positive cells differentiated into vascular endothelial cells in c‐GAG scaffolds. Combined transplantation with c‐GAG scaffolds and adipose‐derived ALDH‐positive cells promoted dermal regeneration, giving a possibility that ALDH‐positive cells would greatly shorten the waiting period before secondary autologous skin grafting was possible.  相似文献   

6.
Impaired wound healing leading to skin ulceration is a serious complication of diabetes and may be caused by defective angiogenesis. Endothelial progenitor cells (EPCs) can augment neovascularisation in the ischaemic tissue. Experiments were performed to test the hypothesis that locally administered EPCs can promote wound healing in diabetes. Full‐thickness skin wounds were created on the dorsum of diabetic mice. EPCs were obtained from bone marrow mononuclear cells (BMMNCs) and applied topically to the wound immediately after surgery. Vehicle and non‐selective BMMNCs were used as controls. Wound size was measured on days 5, 10 and 14 after treatment, followed by resection, histological analysis and quantification of vascularity. Topical application of EPCs significantly promoted wound healing, as assessed by closure rate and wound vascularity. Immunostaining revealed that transplanted EPCs induced increased expression of vascular endothelial growth factor and basic fibroblast growth factor. Few EPCs were observed in the neovasculature based on in vivo staining of the functional vasculature. Ex vivo expanded EPCs promote wound healing in diabetic mice via mechanisms involving increased local cytokine expression and enhanced neovascularisation of the wound. This strategy exploiting the therapeutic capacity of autologously derived EPCs may be a novel approach to skin repair in diabetes.  相似文献   

7.
C‐X‐C chemokine receptor type 4 (CXCR4) is an alpha‐chemokine receptor specific for stromal cell‐derived factor 1 (SDF‐1 also called CXCL12). The antagonist of CXCR4 can mobilize CD34+ cells and hematopoietic stem cells from bone marrow within several hours, and it has an efficacy on diabetes ulcer through acting on the SDF‐1/CXCR4 axis. In this study, we investigated for the first time whether the antagonist of CXCR4 (Plerixafor/AMD3100) delivered on acellular dermal matrix (ADM) may accelerate diabetes‐impaired wound healing. ADM scaffolds were fabricated from nondiabetic mouse skin through decellularization processing and incorporated with AMD3100 to construct ADM‐AMD3100 scaffold. Full‐thickness cutaneous wound in streptozotocin (STZ)‐induced diabetic mice were treated with ADM, AMD3100, or ADM‐AMD3100. 21 days after treatment, wound closure in ADM‐AMD3100‐treated mice was more complete than ADM group and AMD3100 group, and it was accompanied by thicker collagen formation. Correspondingly, diabetic mice treated with ADM‐AMD3100 demonstrated prominent neovascularization (higher capillary density and vascular smooth muscle actin), which were accompanied by up‐regulated mRNA levels of SDF‐1 and enhanced migration of CXCR4 in the granulation tissue. Our results demonstrate that ADM scaffold provide perfect niche for loading AMD3100 and ADM‐AMD3100 is a promising method for diabetic wound healing mainly by increasing expression of SDF‐1 and enhancing migration of CXCR4‐positive cells.  相似文献   

8.
Nonhealing wounds remain a significant challenge for plastic surgeons. More than 600,000 people suffer from venous ulcers and 1.5 to 3 million people are being treated for pressure sores every year in the United States. The use of tissue engineering techniques such as stem-cell therapy and gene therapy to improve wound healing is a promising strategy. Adipose tissue represents a source of cells that may be able to enhance wound healing. Adipose-derived stem cells (ASCs) are adult stem cells that are easily harvested and of great interest for plastic surgeons. Specifically, ASCs secrete angiogenic growth factors that can induce tissue regeneration. This review describes innovative research strategies using ASCs therapies for treatment of chronic, nonhealing wounds.  相似文献   

9.
Adipose‐derived stem cells (ASCs) have the ability to release multiple growth factors in response to hypoxia. In this study, we investigated the potential of ASCs to prevent tissue ischemia. We found conditioned media from hypoxic ASCs had increased levels of vascular endothelial growth factor (VEGF) and enhanced endothelial cell tubule formation. To investigate the effect of injecting rat ASCs into ischemic flaps, 21 Lewis rats were divided into three groups: control, normal oxygen ASCs (106 cells), and hypoxic preconditioned ASCs (106 cells). At the time of flap elevation, the distal third of the flap was injected with the treatment group. At 7 days post flap elevation, flap viability was significantly improved with injection of hypoxic preconditioned ASCs. Cluster of differentiation‐31‐positive cells were more abundant along the margins of flaps injected with ASCs. Fluorescent labeled ASCs localized aside blood vessels or throughout the tissue, dependent on oxygen preconditioning status. Next, we evaluated the effect of hypoxic preconditioning on ASC migration and chemotaxis. Hypoxia did not affect ASC migration on scratch assay or chemotaxis to collagen and laminin. Thus, hypoxic preconditioning of injected ASCs improves flap viability likely through the effects of VEGF release. These effects are modest and represent the limitations of cellular and growth factor‐induced angiogenesis in the acute setting of ischemia.  相似文献   

10.
Adipose tissue is a useful tool for management of most complex cardiothoracic problems, including the reinforcement of damaged lungs, and adipose tissue-derived stromal cells (ASCs) have been suggested to secrete hepatocyte growth factor (HGF), a multipotent regenerative factor that contributes to the repair process after lung injury. The goal of this study was to demonstrate the therapeutic impact of autologous transplantation of ASCs through HGF supplementation for the enhancement of alveolar repair in a rat model of emphysema. ASCs were isolated from inguinal subcutaneous fat pads and characterized by flow cytometry. Cultured ASC were found to secrete significantly larger amounts of HGF (15 112 +/- 1628 pg per 10(6) cells) than other angiogenic factors. Transplantation of ASCs into elastase-treated emphysema models induced a significant increase in endogenous HGF expression in lung tissues with a small amount of increase in other organs, with the high levels lasting for up to 4 weeks after transplantation. Further, alveolar and vascular regeneration were significantly enhanced via inhibition of alveolar cell apoptosis, enhancement of epithelial cell proliferation and promotion of angiogenesis in pulmonary vasculature, leading to restoration of pulmonary function affected by emphysema. These data suggest that autologous ASC cell therapy may have a therapeutic potential for pulmonary emphysema, through inducing HGF expression selectively in injured lung tissues.  相似文献   

11.
While cellular metabolism is known to regulate a number of key biological processes such as cell growth and proliferation, its role in wound healing is unknown. We hypothesized that cutaneous injury would induce significant metabolic changes and that the impaired wound healing seen in diabetes would be associated with a dysfunctional metabolic response to injury. We used a targeted metabolomics approach to characterize the metabolic profile of uninjured skin and full‐thickness wounds at day 7 postinjury in nondiabetic (db/‐) and diabetic (db/db) mice. By liquid chromatography mass spectrometry, we identified 129 metabolites among all tissue samples. Principal component analysis demonstrated that uninjured skin and wounds have distinct metabolic profiles and that diabetes alters the metabolic profile of both uninjured skin and wounds. Examining individual metabolites, we identified 62 with a significantly altered response to injury in the diabetic mice, with many of these, including glycine, kynurenate, and OH‐phenylpyruvate, implicated in wound healing for the first time. Thus, we report the first comprehensive analysis of wound metabolic profiles, and our results highlight the potential for metabolomics to identify novel biomarkers and therapeutic targets for improved wound healing outcomes.  相似文献   

12.
Adult adipose‐derived stem cells (ASCs) are a type of multipotent mesenchymal stem cells (MSCs) with easy availability and serve as a potential cell source for cell‐based therapy. Three‐dimensional MSC spheroids may be derived from the self‐assembly of individual MSCs grown on certain polymer membranes. In this study, we demonstrated that the self‐assembled ASC spheroids on chitosan‐hyaluronan membranes expressed more cytokine genes (fibroblast growth factor 1, vascular endothelial growth factor, and chemokine [C‐C motif] ligand 2) as well as migration‐associated genes (chemokine [C‐X‐C motif] receptor type 4 and matrix metalloprotease 1) compared with ASC dispersed single cells grown on culture dish. To evaluate the in vivo effects of these spheroids, we applied ASC single cells and ASC spheroids in a designed rat skin repair model. Wounds of 15 × 15 mm were created on rat dorsal skin, where ASCs were administered and covered with hyaluronan gel/chitosan sponge to maintain a moist environment. Results showed that skin wounds treated with ASC spheroids had faster wound closure and a significantly higher ratio of angiogenesis. Tracking of fluorescently labeled ASCs showed close localization of ASC spheroids to microvessels, suggesting enhanced angiogenesis through paracrine effects. Based on the in vitro and in vivo results, the self‐assembled ASC spheroids may be a promising cellular source for skin tissue engineering and wound regeneration.  相似文献   

13.
Bone marrow stem cells participate in tissue repair processes and may have a role in wound healing. Diabetes is characterised by delayed and poor wound healing. We investigated the potential of bone marrow-derived mesenchymal stromal cells (BMSCs) to promote healing of fascial wounds in diabetic rats. After manifestation of streptozotocin (STZ)-induced diabetic state for 5 weeks in male adult Sprague-Dawley rats, healing of fascial wounds was severely compromised. Compromised wound healing in diabetic rats was characterised by excessive polymorphonuclear cell infiltration, lack of granulation tissue formation, deficit of collagen and growth factor [transforming growth factor (TGF-beta), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor PDGF-BB and keratinocyte growth factor (KGF)] expression in the wound tissue and significant decrease in biomechanical strength of wounds. Treatment with BMSC systemically or locally at the wound site improved the wound-breaking strength (WBS) of fascial wounds. The improvement in WBS was associated with an immediate and significant increase in collagen levels (types I-V) in the wound bed. In addition, treatment with BMSCs increased the expression of growth factors critical to proper repair and regeneration of the damaged tissue moderately (TGF-beta, KGF) to markedly (EGF, VEGF, PDGF-BB). These data suggest that cell therapy with BMSCs has the potential to augment healing of the diabetic wounds.  相似文献   

14.
15.
The effects of embryonic stem cells (ESCs) on diabetic wound healing were investigated using an excisional skin wound model in 110 diabetes‐induced rats. We transplanted a clonal population of ESCs (5 × 106) by topical injection into full thickness skin wounds. Four study groups were used; nondiabetic rats as a control, non‐insulin controlled diabetic rats not treated with ESCs, insulin controlled diabetic rats not treated with ESCs, and insulin controlled diabetic rats treated with ESCs. Five rats in each experimental group were sacrificed on days 1, 5, 10, 15, and 20 after wounding. Wounds images were acquired daily and wound sizes were calculated. We measured the mRNA levels of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), and fibronectin levels in extracellular matrix, and assessed wound healing by assessing histological parameters of epidermal regeneration, granulation tissue thickness, and angiogenesis. In the ESC‐treated group, wound sizes were significantly smaller than in the insulin controlled diabetic group not treated with ESCs on days 5 and 10 (p < 0.05), and EGF and VEGF levels were markedly higher on days 5 and 10, fibronectin levels on day 5 after injection. All histological scores in the ESC‐treated group were significantly higher than those of the insulin controlled diabetic group on day 5 (p < 0.05). Our results shows that topical ESCs enhance diabetic wound healing during the early stage, and suggest that ESCs transplantation offers a novel therapeutic modality for the treatment of diabetic wounds. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29: 1554–1562, 2011  相似文献   

16.
17.
The precise pathoetiology and effective treatment strategies for bisphosphonate‐related osteonecrosis of the jaw (BRONJ) remain unknown. Transplantation of noncultured stromal vascular fraction (SVF) cells has been shown to be a useful method for regenerative medicine in place of stem cell therapy. This study investigated the effects of noncultured SVF transplantation on tooth extraction socket healing in mice. Both chemotherapeutic/bisphosphonate combination therapy for 7 weeks and tooth extraction of maxillary first molars at 3 weeks after drug administration were performed using female C57BL/6J mice. Osseous and soft tissue wound healing were validated at 4 weeks postextraction using gross wound healing and histomorphometry. Here, we created a new animal model of high‐prevalence ONJ‐like lesions that mimic human progression, because human ONJ mainly occurs in female patients taking both chemotherapeutic and bisphosphonate following tooth extraction. Moreover, mice with chemotherapeutic and bisphosphonate combination therapy for 5 weeks received SVF transplantation just after tooth extraction at 3 weeks post–drug administration. Euthanasia was performed at 2 weeks postextraction to assess the transplantation effects on wound healing using gross wound healing, histomorphometry, immunohistomorphometry, quantitative real‐time polymerase chain reaction, and microcomputed tomography. We showed that systemic transplantation of noncultured SVF cells ameliorates ONJ‐like lesions by improving both osseous and soft tissue healing of tooth extraction sockets. SVF therapy significantly increased blood vessels and the ratio of M2/M1 macrophages. In addition, SVF transplantation reduced the increases in tartrate‐resistant acid phosphatase–positive (TRAP+) mononuclear cells (MNCs) and nonattached osteoclasts from the bone surface, which were significantly detected in the connective tissue of tooth extraction sockets and bone marrow by chemotherapeutic/bisphosphonate combination therapy. Our findings suggest that transplantation of noncultured SVF cells is a suitable treatment for BRONJ. Abnormal TRAP+ MNCs and nonattached osteoclasts in systemic and local environments may contribute to the development of BRONJ. © 2017 American Society for Bone and Mineral Research.  相似文献   

18.
A major complication of diabetes mellitus is the disruption of normal wound repair process, characterised by insufficient production of growth factors. A molecular genetic approach wherein resident cells synthesise and deliver the growth factors to the wound site would be a powerful therapeutic strategy to treat diabetic wounds. One such molecular approach could be the application of microRNAs (miRNAs). This study reports differential expression of miRNAs related to cell development and differentiation, during wound healing in diabetic mice. Comparison of skin tissue from normal and diabetic mice showed that 14 miRNAs were differentially expressed in diabetic skin; miR-146b and miR-21 were the most noteworthy. Expression pattern of these miRNAs was also altered during healing of diabetic wounds. A subset of miRNAs (miR-20b, miR-10a, miR-10b, miR-96, miR-128, miR-452 and miR-541) exhibited similar basal levels in normal and diabetic skins, but displayed dysregulation during healing of diabetic wounds. Amongst the miRNAs studied, miR-21 showed a distinct signature with increased expression in diabetic skin but decreased expression during diabetic wound healing. We analysed the role of miR-21 in fibroblast migration, because migration of fibroblasts into the wound area is an important landmark facilitating secretion of growth factors and migration of other cell types into the wound, thus enhancing the healing process. Using gain-of and loss-of function approaches, we show that miR-21 is involved in fibroblast migration. Our preliminary studies implicate an important role for miRNAs in the pathogenesis of diabetic wounds.  相似文献   

19.
This study was aimed to enhance the healing potential of rat bone marrow mesenchymal stem cells against chronic diabetic wounds through interleukin‐7 (IL‐7) transfection. IL‐7 plays an important role in wound healing and acts as a survival factor in some cell types. This study involves isolation, propagation, and characterization of mesenchymal stem cells (MSCs) and their modification with IL‐7 gene via retroviral transfection. Transfected MSCs were assessed for their effect on angiogenic genes by qPCR. Wound healing potential of transfected MSCs was analyzed by scratch assay in vitro and by transplanting these cells in rat diabetic wound models in vivo. Wound area was measured for a period of 15 days and subsequent histological analysis was performed. qPCR results showed increased expression of IL‐7 gene (p ≤ 0.05) and also principal angiogenic genes, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), VEGF receptor 1 (FLT‐1), and VEGF receptor 2 (FLK‐1) (p ≤ 0.05). Neuropilin‐1 (NRP‐1) did not show any significant change. In vitro analysis of IL‐7 MSCs showed intense cell–cell connections and tube formation as compared to the normal MSCs. Rate of wound closure was more (p ≤ 0.001) in case of diabetic group transplanted with IL‐7 MSCs. Histological examination revealed enhanced vascular supply in skin tissues of diabetic animals transplanted with IL‐7 transfected MSCs as compared to normal MSCs. Immunohistochemical results showed significantly higher expression of IL‐7 (p ≤ 0.001) and α‐smooth muscle actin(p ≤ 0.001) in the tissue sections of IL‐7 transfected group as compared to normal MSCs and the diabetic control group; the latter indicates increase in the number of blood vessels. It is concluded from this study that IL‐7 overexpression in MSCs can enhance the healing potential of MSCs and aid in wound closure in diabetic animals through the induction of angiogenic genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号