首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies show that mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are two pivotal roles contributing to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to investigate the protective effect of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mechanisms. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated or not with Kae (100mg/kg, intragastrically) 1h prior to LPS exposure. Kae treatment attenuated pulmonary edema of mice with ALI after LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflammatory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. Histological studies demonstrated that Kae substantially inhibited LPS-induced alveolar wall thickness, alveolar hemorrhage and leukocytes infiltration in lung tissue with evidence of reduced myeloperoxidase (MPO) activity. Kae also efficiently increased superoxide dismutase (SOD) activity of lung sample when compared with LPS group, which was obviously reduced by LPS administration. In addition, Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated by LPS was significantly blocked by Kae. Taken together, our results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.  相似文献   

2.
目的探讨应用重组可溶性晚期糖基化终末产物受体(sRAGE)对脂多糖(LPS)介导的急性肺损伤(ALI)小鼠肺内细胞因子水平的影响。方法健康雄性BALB/C小鼠随机分为磷酸盐缓冲液(PBS)组、LPS组和sRAGE组。LPS组和sRAGE组通过气管内滴注LPS(3mg/kg体质量)建立ALI模型,造模后1hsRAGE组腹腔注射100μg重组小鼠sRAGE,各组于24h留取标本,采用Bio-Plex悬浮芯片技术检测支气管肺泡灌洗液(BALF)中8种细胞因子含量,并计数炎症细胞数量和蛋白(TP)含量,对肺组织进行病理学评估。观察sRAGE干预对造模后4h肺组织核因子(NF)-κB P65DNA结合活性的影响。结果 LPS滴注24h后,BALF中8种细胞因子含量均显著升高,白细胞(WBC)总数和中性粒细胞(NEU)数量显著增加,TP含量升高,肺组织出现典型的ALI病理损害。sRAGE干预显著降低了BALF中肿瘤坏死因子(TNF)-α、巨噬细胞炎症蛋白(MIP)-1β和MIP-1α水平,减少了BALF中WBC、NEU数量及TP含量,减轻了LPS引起的肺组织病理改变,并对造模后4hLPS介导的肺内NF-κB活化有抑制作用。结论应用重组sRAGE阻止RAGE信号能调控LPS介导的肺内细胞因子的表达,这构成了sRAGE抑制肺内炎症的重要机制之一。  相似文献   

3.
The present study was designed to investigate whether administration of CoPPIX, an HO-1 inducer, could significantly inhibit TNF-alpha and Hmgb1 expression and thus attenuate the acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Acute lung injury was induced successfully by intratracheal administration of LPS (0.5 mg/kg) in male BALB/c mice. CoPPIX or ZnPPIX (an HO-1 inhibitor) was administered to mice 24 h prior to LPS exposure. It was found that CoPPIX (5, 10 mg/kg, i.p.) caused a significant reduction in the total cells and neutrophils in BALF, a significant reduction in the W/D ratio and EBA leakage at 24 h after LPS challenge. Furthermore, the histopathologic findings indicated that alveolitis with leukocyte infiltration in the alveolar space was less severe in the CoPPIX-treated mice than in the mice treated with LPS alone. In addition, CoPPIX was also believed to have down-regulated the expression of LPS-induced proinflammatory cytokines, including early proinflammatory cytokine TNF-a, and late proinflammatory cytokine Hmgb1. In contrast, no obvious difference was observed between the ZnPPIX group and the LPS group. These findings demonstrate the significant protection of CoPPIX against LPS-induced ALI, and the effect mechanism of CoPPIX was associated with decreasing the expression of TNF-a and Hmgb1.  相似文献   

4.
Lactoferrin (LF) plays various anti-inflammatory roles in inflammation experimentally induced by lipopolysaccharides (LPS). But the protective effects of LF on LPS-induced acute lung injury (ALI) have not been elucidated. In this study, we aimed to study the effects of LF on ALI caused by LPS in mice. At 1h before or after LPS injection, an intraperitoneal injection of LF (5mg/body) was administered. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for histopathological examinations and biochemical analyses 12h after LPS exposure. We found that both prophylactic and therapeutic administration of LF significantly decreased the W/D ratio of the lung and protein concentration in the BALF. LF significantly reduced the pulmonary myeloperoxidase activity and the number of total cells in the BALF 12h after LPS challenge. LF treatment markedly attenuated lung edema, alveolar hemorrhage and inflammatory cells infiltration. Moreover, LF also decreased the production of TNF-α and increased interleukin-10 in the BALF. These results firstly indicate that LF may protect against LPS-induced ALI in mice.  相似文献   

5.
Acute lung injury (ALI) is a clinical syndrome characterized by respiratory failure and acute inflammatory response. Myeloid differentiation protein 2 (MD2) has been reported to play a pivotal role in the recognition of LPS and LPS-mediates inflammatory response. There have been no clinically effective therapeutic drugs for ALI. L6H9, an inhibitor of MD2, showed anti-inflammatory effects and cardiac protective activity. However, its effect on ALI has not been elucidated. In this study, intratracheal instillation of LPS was employed to induce ALI in rats. L6H9 pretreatment attenuates LPS-induced pathological variations in lung tissue and pulmonary edema. LPS instillation enhanced lung microvascular permeability, thereby causing inflammatory cells flow into bronchoalveolar lavage fluid (BALF). However, L6H9 inhibited the LPS-induced upregulation of total protein concentration and the number of inflammatory cells in BALF. In the meantime, macrophages infiltration in lung tissue induced by LPS was also mitigated by L6H9 treatment. Furthermore, L6H9 suppressed LPS-induced inflammatory cytokines expression in BALF, serum, and lung tissue. It is noteworthy that LPS-induced MD2/TLR4 complex formation was inhibited by L6H9 in lung tissue. On the whole, these results show that L6H9 can attenuate LPS-induced ALI in vivo by targeting MD2. Our study provide new candidate for the treatment of ALI.  相似文献   

6.
Acute lung injury (ALI) in critically ill patients remains the leading cause of mortality and morbidity. Lipopolysaccharide (LPS) is a key mediator of lung injury. This study investigates the protective effects and mechanisms of luteolin in intratracheal instillation of LPS (100 μg)-induced ALI in mice. Pretreatment of mice with 70 μmol/kg luteolin significantly restores LPS-induced decrease in oxygen pressure and increase in carbon dioxide in arterial blood. The histopathological study established 70 μmol/kg luteolin pretreatment markedly attenuates lung histopathological changes, such as haemorrhaging, interstitial edema, and infiltration of polymorphonuclear neutrophils (PMNs) into the lung parenchyma and alveolar spaces. Sufficient evidence for luteolin (35 and 70 μmol/kg) suppresses activation and infiltration of PMNs is obtained in expression of surface marker CD11b and Ly6G on cells in bronchoalveolar lavage fluid (BALF) cells and myeloperoxidase activity in lung tissue. Furthermore, luteolin reduces the activity of catalase and superoxide dismutase, and the level of oxidative damage, and lipid peroxidation, in lung tissue. In addition, the secretion of TNF-α, KC, and ICAM-1 in the BALF after LPS challenge are also inhibited by luteolin. Moreover, luteolin reduced LPS-induced activation of MAPK and NFκB pathways. Therefore, luteolin is a potential protective antagonists for LPS-induced ALI in mice.  相似文献   

7.
Geniposide, a main iridoid glucoside component of gardenia fruit, has been shown to possess anti-inflammatory activity. However, its potential use for acute lung injury (ALI) has not yet been studied. The aim of this study was to evaluate the anti-inflammatory properties of geniposide using a mouse ALI model. ALI was induced by intranasal injection of lipopolysaccharide (LPS). Pretreatment of mice with geniposide (20, 40, or 80 mg/kg) resulted in a marked reduction in inflammatory cells and total protein concentration in the bronchoalveolar lavage fluid (BALF) of mice. Levels of inflammatory mediators, including tumour necrosis factor- α (TNF- α), interleukin-6 (IL-6), and interleukin-10 (IL-10), were significantly altered after treatment with geniposide. Histological studies using hematoxylin and eosin (H&E) staining demonstrate that geniposide substantially inhibited LPS-induced alveolar wall changes, alveolar haemorrhage, and neutrophil infiltration in lung tissue, with evidence of reduced myeloperoxidase (MPO) activity. In addition, we investigated potential signal transduction mechanisms that could be implicated in geniposide activity. Our results suggest that geniposide may provide protective effects against LPS-induced ALI by mitigating inflammatory responses and that the compound's mechanism of action may involve blocking nuclear factor-kappaB (NF- κB) and mitogen-activated protein kinases (MAPK) signalling pathway activation.  相似文献   

8.
Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.  相似文献   

9.
The aim of the present study was to assess the effects and mechanisms of Schisandrin B (SchB) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg), and SchB (25, 50, and 75 mg/kg) was injected 1 h before LPS challenge by gavage. After 12 h, bronchoalveolar lavage fluid (BALF) samples and lung tissues were collected. Histological studies demonstrated that SchB attenuated LPS-induced interstitial edema, hemorrhage, and infiltration of neutrophils in the lung tissue. SchB pretreatment at doses of 25, 50, and 75 mg/kg was shown to reduce LPS-induced lung wet-to-dry weight ratio and lung myeloperoxidase activity. In addition, pretreatment with SchB lowered the number of inflammatory cells and pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in BALF. The mRNA and protein expression levels of nuclear factor kappa B (NF-κB) signaling-related molecules activated by P2X7 were investigated to determine the molecular mechanism of SchB. The findings presented here suggest that the protective mechanism of SchB may be attributed partly to the decreased production of pro-inflammatory cytokines through the inhibition of P2X7/NF-κB activation.  相似文献   

10.
Hesperidin (HDN), a flavanone glycoside, possesses anti-inflammatory properties and has been suggested to be able to modulate the lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1) serves as an inflammatory cytokine when released extracellularly and is involved in the pathogenesis of diverse inflammatory disorders. The current study aimed to investigate the involvement of HMGB1 in HDN-induced immunoregulation of ALI. ALI in male BALB/c mice was induced by intranasal administration of LPS (0.5 mg/kg). HDN (500 mg/kg) was administered intragastrically 10 days prior to LPS exposure. HDN significantly protected animals from LPS-induced ALI as evidenced by decreased elevation of the lung wet to dry weight ratio, total cells, neutrophils, macrophages, and myeloperoxidase (MPO) activity, associated with reduced lung histological damage. In the meantime, HDN pretreatment markedly inhibited the production of pro-inflammatory cytokines and chemokine, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). Furthermore, HDN pretreatment dramatically inhibited the infiltration of macrophages and suppressed the expression and release of HMGB1 in vivo and in vitro. In addition, intranasal application of exogenous HMGB1 could result in lung injury which was also alleviated by HDN administration. These results suggest that HDN pretreatment protects mice from LPS-induced ALI via inhibiting the production of TNF-α and IL-6. Moreover, we found that HDN could inhibit the expression and release of HMGB1 via suppressing the infiltration of macrophages and production of MCP-1.  相似文献   

11.
The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO2/NO3) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO2/NO3 levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-α, TGF-β1 and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells infiltration and hence ROS generation and regulate cytokine effects.  相似文献   

12.
采用脂多糖(lipopolysaccharide,LPS)气道滴入诱导小鼠急性肺损伤(acute lung injury,ALI)模型,研究甘草酸单铵(monoammonium glycyrrhizinate,MAG)对ALI的防治作用及其机制。雄性ICR小鼠随机分为生理盐水(NS)对照组、MAG 3、10 及30 mg·kg-1组、LPS组、地塞米松(dexamethasone,DXM) 5 mg·kg-1组。MAG各组气道滴入LPS前1 h及滴入后3 h各给药1次,DXM组气道滴入LPS前1 h给药1次。LPS气道滴入后6 h处死动物,测定各组的肺湿重/干重比、肺通透性、肺组织中性粒细胞髓过氧化物酶(myeloperoxidase,MPO)含量、ELISA法检测肺组织匀浆TNF-α、IL-10含量,常规细胞形态学检测中性粒细胞在支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中的比例和肺组织病理改变。结果表明,MAG剂量依赖性减轻气道内滴入LPS诱导的小鼠ALI程度,降低肺湿重/干重比及肺组织伊文斯蓝的渗出,降低BALF中白细胞总数和中性粒细胞数比例,抑制组织MPO的释放,降低肺组织匀浆TNF-α的含量,增加肺组织IL-10的释放。以上结果提示,MAG可能通过调节TNF-α/IL-10的平衡而有效保护脂多糖诱导的急性肺损伤。  相似文献   

13.
Airway inflammation plays important roles in the pathogenesis of acute respiratory distress syndrome (ARDS), asthma and chronic obstructive pulmonary disease (COPD), and anti-inflammatory treatment effectively improves the symptoms of these diseases. To develop the potentially therapeutic compounds for the treatment of pulmonary inflammation, we investigated the effects of licorice flavonoids (LF) extracted from the roots of Glycyrrhiza uralensis (licorice) on lipopolysaccharide (LPS)-induced acute pulmonary inflammation in mice. Acute pulmonary inflammation was induced by intracheal instillation with LPS, treatment with LF at dosages of 3, 10 and 30 mg/kg significantly reduced the LPS-induced inflammatory cells, including neutrophils, macrophages and lymphocytes accumulation in bronchoalveolar lavage fluids (BALF), among these inflammatory cells, LF predominately inhibited neutrophil infiltration, and the maximal effect (30 mg/kg) was as comparable as dexamethasone treatment at 1 mg/kg. Consistent with its effects on neutrophil infiltration, LF treatment significantly increased LPS-induced BALF superoxide dismutase activity, and significantly decreased lung myeloperoxidase activity as well. Furthermore, treatment with LF at 30 mg/kg significantly reduced LPS-induced lung TNFα and IL-1β mRNA expression at 6 h and 24 h after LPS instillation, respectively. Finally, LF at different dosages not only significantly decreased the elevation of lung water content, but also markedly attenuated LPS-induced histological alteration. Therefore, we suggest that LF effectively attenuates LPS-induced pulmonary inflammation through inhibition of inflammatory cells infiltration and inflammatory mediator release which subsequently reduces neutrophil recruitment into lung and neutrophil-mediated oxidative injury, and this study provides with the potential rationale for development of anti-inflammatory compounds from flavonoid extracts of licorice.  相似文献   

14.
15.
Imperatorin, a linear furanocoumarin, has many pharmacological effects such as antibacterial, anti-inflammatory and antiviral effects. The purpose of this study was to investigate the effect of Imperatorin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. BALB/c mice were pretreated with Imperatorin 1 h before LPS challenge. We found that the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) were decreased significantly, and the level of interleukin-10 (IL-10) was up-regulated 8 h after Imperatorin treatment. Pretreatment with Imperatorin (15 or 30 mg/kg) decreased lung wet-to-dry weight (W/D) ratio, the number of inflammatory cells and myeloperoxidase (MPO) activities. Additionally, Imperatorin attenuated lung histopathological changes and significantly inhibited the phosphorylation of IκB, JNK, ERK and p38/MAPK. These findings demonstrate that Imperatorin protects against LPS-induced ALI in mice.  相似文献   

16.
Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. In this study, the effects of apocynin, a NADPH-oxidase (NOX) inhibitor on lipopolysaccharide (LPS)-induced ALI in rats were investigated. Male Sprague–Dawley rats were treated with apocynin (10 mg/kg) intraperitoneally (i.p.) 1 h before LPS injection (10 mg/kg, i.p.). The results revealed that apocynin attenuated LPS-induced ALI as it decreased total protein content, lactate dehydrogenase (LDH) activity and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid (BALF), In addition, apocynin significantly increased superoxide dismutase (SOD) and reduced glutathione (GSH) activities with significant decrease in the lung malondialdehyde (MDA) content as compared to LPS group in lung tissue and decreased pulmonary artery contraction induced by LPS. It also upregulated mRNA expression of inhibitory protein kappaB-alpha (NFκBia) and downregulated mRNA expression of Toll-Like receptor 4 (TLR4) and decreased inflammation observed in lung tissues.Collectively, these results demonstrate the protective effects of apocynin against the LPS-induced ALI in rats through its antioxidant and antiinflammatory effect that may be attributed to the decrease in mRNA expression of TLR4 and increasing that of NFκBia.  相似文献   

17.
Naringin has been reported as an effective anti-inflammatory compound. We previously showed that naringin had antitussive effect on experimentally induced cough in guinea pigs. However, the effects and mechanism of naringin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice are not fully understood. In this study, our aim was to evaluate the anti-inflammatory activities of naringin on LPS-induced ALI in mice and clarify its underlying mechanisms of action. We found that in vivo pretreatment with naringin markedly decreased the lung wet weight to dry weight ratio, and led to significant attenuation of LPS-induced evident lung histopathological changes. Meanwhile, naringin significantly reduced bronchoalveolar lavage fluid (BALF) total cell and neutrophil (PMN) counts after LPS challenge. Furthermore, naringin inhibited myeloperoxidase (MPO: a marker enzyme of neutrophil granule) and inducible nitric oxide synthase (iNOS) activities in lung tissue and alleviated LPS-induced tumor neurosis factor-α (TNF-α) secretion in BALF in a dose-dependent manner. Additionally, Western blotting showed that naringin efficiently blunt NF-κB activation by inhibiting the degradation of I?B-α and the translocation of p65. Taken together, these results suggest that naringin shows anti-inflammatory effects through inhibiting lung edema, MPO and iNOS activities, TNF-α secretion and pulmonary neutrophil infiltration by blockade of NF-κB in LPS-induced ALI.  相似文献   

18.
Context: Standardized myrtol, an essential oil containing primarily cineole, limonene and α-pinene, has been used for treating nasosinusitis, bronchitis and chronic obstructive pulmonary disease (COPD).

Objective: To investigate the effects of standardized myrtol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS).

Materials and methods: Male BALB/c mice were treated with standardized myrtol for 1.5?h prior to exposure of atomized LPS. Six hours after LPS challenge, lung injury was determined by the neutrophil recruitment, cytokine levels and total protein concentration in the bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung tissue. Additionally, pathological changes and NF-κB activation in the lung were examined by haematoxylin and eosin staining and western blot, respectively.

Results: In LPS-challenged mice, standardized myrtol at a dose of 1200?mg/kg significantly inhibited the neutrophile counts (from 820.97?±?142.44 to 280.42?±?65.45, 103/mL), protein concentration (from 0.331?±?0.02 to 0.183?±?0.01, mg/mL) and inflammatory cytokines level (TNF-α: from 6072.70?±?748.40 to 2317.70?±?500.14, ng/mL; IL-6: from 1184.85?±?143.58 to 509.57?±?133.03, ng/mL) in BALF. Standardized myrtol also attenuated LPS-induced MPO activity (from 0.82?±?0.04 to 0.48?±?0.06, U/g) and pathological changes (lung injury score: from 11.67?±?0.33 to 7.83?±?0.79) in the lung. Further study demonstrated that standardized myrtol prevented LPS-induced NF-κB activation in lung tissues.

Discussion and conclusion: Together, these data suggest that standardized myrtol has the potential to protect against LPS-induced airway inflammation in a model of ALI.  相似文献   

19.
Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression.  相似文献   

20.
1. In the present study, we investigated the effects of the inducible nitric oxide (iNOS) inhibitors S-methylisothiourea (SMT) and l-N(6)-(1-iminoethyl)-lysine (l-Nil) on endotoxin-induced acute lung injury (ALI), as well as the associated physiological, biomedical and pathological changes, in anaesthetized Sprague-Dawley rats and in rat isolated perfused lungs. 2. Endotoxaemia was induced by an intravenous (i.v.) infusion of lipopolysaccharide (LPS; Escherichia coli 10 mg/kg). Lipopolysaccharide produced systemic hypotension and tachycardia. It also increased the lung weight/bodyweight ratio, lung weight gain, exhaled nitric oxide (NO), the protein concentration in bronchoalveolar lavage and microvascular permeability. 3. Following infusion of LPS, plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines (tumour necrosis factor-alpha and interleukin-1beta) were markedly elevated. Pathological examination revealed severe pulmonary oedema and inflammatory cell infiltration. Pretreatment with SMT (3 mg/kg, i.v.) or l-Nil (3 mg/kg, i.v.) significantly attenuated the LPS-induced changes and ALI. 4. The results suggest that the inflammatory responses and ALI following infusion of LPS are due to the production of NO, free radicals and pro-inflammatory cytokines through the iNOS system. Inhibition of iNOS is effective in mitigating the endotoxaemic changes and lung pathology. Inhibitors of iNOS may be potential therapeutic agents for clinical application in patients with acute respiratory distress syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号