首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Intracellular NOD-like receptors in host defense and disease   总被引:9,自引:0,他引:9  
  相似文献   

2.
3.
Direct and indirect role of Toll-like receptors in T cell mediated immunity   总被引:10,自引:0,他引:10  
Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that playan important role in protective immunity against infection and inflammation.They act as central integrators ofa wide variety of signals,responding to diverse agonists of microbial products.Stimulation of Toll-like receptorsby microbial products leads to signaling pathways that activate not only innate,but also adaptive immunity byAPC dependent or independent mechanisms.Recent evidence revealed that TLR signals played a determiningrole in the skewing of na(?)ve T cells towards either Th1 or Th2 responses.Activation of Toll-like receptors alsodirectly or indirectly influences regulatory T cell functions.Therefore,TLRs are required in both immuneactivation and immune regulation.Study of TLRs has significantly enhanced our understanding of innate andadaptive immune responses and provides novel therapeutic approaches against infectious and inflammatorydiseases.Cellular & Molecular Immunology.2004;1(4):239-246.  相似文献   

4.
Immunometabolism, which is the metabolic reprogramming of anaerobic glycolysis, oxidative phosphorylation, and metabolite synthesis upon immune cell activation, has gained importance as a regulator of the homeostasis, activation, proliferation, and differentiation of innate and adaptive immune cell subsets that function as key factors in immunity. Metabolic changes in epithelial and other stromal cells in response to different stimulatory signals are also crucial in infection, inflammation, cancer, autoimmune diseases, and metabolic disorders. The crosstalk between the PI3K–AKT–mTOR and LKB1–AMPK signaling pathways is critical for modulating both immune and nonimmune cell metabolism. The bidirectional interaction between immune cells and metabolism is a topic of intense study. Toll-like receptors (TLRs), cytokine receptors, and T and B cell receptors have been shown to activate multiple downstream metabolic pathways. However, how intracellular innate immune sensors/receptors intersect with metabolic pathways is less well understood. The goal of this review is to examine the link between immunometabolism and the functions of several intracellular innate immune sensors or receptors, such as nucleotide-binding and leucine-rich repeat-containing receptors (NLRs, or NOD-like receptors), absent in melanoma 2 (AIM2)-like receptors (ALRs), and the cyclic dinucleotide receptor stimulator of interferon genes (STING). We will focus on recent advances and describe the impact of these intracellular innate immune receptors on multiple metabolic pathways. Whenever appropriate, this review will provide a brief contextual connection to pathogenic infections, autoimmune diseases, cancers, metabolic disorders, and/or inflammatory bowel diseases.  相似文献   

5.
6.
Toll-like receptors in innate immunity   总被引:45,自引:0,他引:45  
Functional characterization of Toll-like receptors (TLRs) has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Recognition of microbial components by TLRs initiates signal transduction pathways, which triggers expression of genes. These gene products control innate immune responses and further instruct development of antigen-specific acquired immunity. TLR signaling pathways are finely regulated by TIR domain-containing adaptors, such as MyD88, TIRAP/Mal, TRIF and TRAM. Differential utilization of these TIR domain-containing adaptors provides specificity of individual TLR-mediated signaling pathways. Several mechanisms have been elucidated that negatively control TLR signaling pathways, and thereby prevent overactivation of innate immunity leading to fatal immune disorders. The involvement of TLR-mediated pathways in autoimmune and inflammatory diseases has been proposed. Thus, TLR-mediated activation of innate immunity controls not only host defense against pathogens but also immune disorders.  相似文献   

7.
Toll‐like receptors (TLRs) are innate immune receptors that respond to both exogenous and endogenous stimuli and are suggested to contribute to the perpetuation of chronic inflammation associated with rheumatoid arthritis (RA). In particular, the endosomal TLRs 3, 7, 8, and 9 have more recently been postulated to be of importance in RA pathogenesis. In this study, pan inhibition of the endosomal TLRs by a phosphorothioate‐modified inhibitory oligodeoxynucleotide (ODN) is demonstrated in primary human B cells, macrophages, and RA fibroblasts. Inhibition of TLR8 was of particular interest as TLR8 has been associated with RA pathogenesis in both human and murine arthritis models. ODN1411 competitively inhibited TLR8 signaling and was observed to directly bind to a purified TLR8 ectodomain, suggesting inhibition was through a direct interaction with the receptor. Addition of ODN1411 to human RA synovial membrane cultures significantly inhibited spontaneous cytokine production from these cultures, suggesting a potential role for one or more of the endosomal TLRs in inflammatory cytokine production in RA and the potential for inhibitory ODNs as novel therapies.  相似文献   

8.
The discovery of innate immune sensors (pattern recognition receptors, PRRs) has profoundly transformed the notion of innate immunity, in providing a mechanistic basis for host immune interactions with a wealth of environmental signals, leading to a variety of immune-mediated outcomes including instruction and activation of the adaptive immune arm. As part of this growing understanding of host-environmental cross talk, an intimate connection has been unveiled between innate immune sensors and signals perceived from the commensal microbiota, which may be regarded as a hub integrating a variety of environmental cues. Among cytosolic PRRs impacting on host homeostasis by interacting with the commensal microbiota are nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), together with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)–like receptors (ALRs). NLR sensors have been a particular focus of research, and some NLRs have emerged as key orchestrators of inflammatory responses and host homeostasis. Some NLRs achieve this through the formation of cytoplasmic multiprotein complexes termed inflammasomes. More recently discovered PRRs include retinoic acid-inducible gene-I (RIG-I)–like receptors (RLRs), cyclic GMP-AMP synthase (cGAS), and STING. In the present review, they summarize recent advancements in knowledge on structure and function of cytosolic PRRs and their roles in host-microbiota cross talk and immune surveillance. In addition, we discuss their relevance for human health and disease and future therapeutic applications involving modulation of their activation and signaling.  相似文献   

9.
The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) and the nucleotide-binding domain, leucine rich repeat containing family (or Nod-like receptors, NLRs) are two important families of microbial sensors that are membrane-associated and cytosolic molecules, respectively. The Nod proteins Nod1 and Nod2 are two NLR family members that trigger immune defense in response to bacterial peptidoglycan. Nod proteins fight off bacterial infections by stimulating proinflammatory signaling and cytokine networks and by inducing antimicrobial effectors, such as nitric oxide and antimicrobial peptides. Nod1 is also critically implicated in shaping adaptive immune responses towards bacterial-derived constituents. In addition, recent evidence has demonstrated that mutations in Nod1 and Nod2 are associated with a number of human inflammatory disorders, including Crohn’s disease, Blau syndrome, early-onset sarcoidosis, and atopic diseases. Together, Nod1 and Nod2 represent central players in the control of immune responses to bacterial infections and inflammation.  相似文献   

10.
Microbial challenges to the host initiate an array of defense processes through the activation of innate and adaptive immunity. Innate immunity consists of sensors or pattern-recognition receptors (PRRs) that are expressed on immune and non-immune cells and sense conserved pathogen-derived molecules or pathogen-associated molecular patterns (PAMPs) in various compartments of the host cells. Recognition of the PAMPs by PRRs triggers antimicrobial effector responses via the induction of proinflammatory cytokines and type I IFNs. Several families of PRRs, such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), and DNA sensors and their respective PAMPs have been well studied in innate immunity and host defense. Here, we review the recent findings on bacterial recognition by TLRs and NLRs and the signaling pathways activated by these sensors.  相似文献   

11.
Toll样受体在机体抗病毒免疫反应中的作用   总被引:2,自引:0,他引:2  
哺乳动物的Toll样受体(TLR)家族具有模式识别受体的功能,其可以识别微生物的保守分子成分,启动机体的固有免疫系统,从而帮助机体清除病原体.利用TLR敲除的动物或细胞模型进行的研究使人们认识到TLR在机体抗病毒免疫反应中发挥着重要作用.病毒与宿主细胞的TLR结合后,通过NF-κB或IRF-3的信号路径激活细胞因子的表达,从而激发免疫应答.研究TLR如何与病原体结合及如何激活下游基因对深入认识病原体所致相关疾病的发病机制、免疫应答及病理生理具有重要的意义,并为病毒性疾病的临床治疗或免疫预防提供新的思路.  相似文献   

12.
The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. They can recognize exogenous Pathogen-Associated Molecular Patterns and endogenous Dangers-Associated Molecular Patterns. The Toll-Like Receptor (TLR) family is well-studied, but more recently another family in the cytoplasmic compartment, called nod-like receptor (NLR), was discovered. In addition to being present in inflammatory cells, these receptors are widely distributed in various cell types, including renal tissue, where these receptors have an important role in triggering the inflammatory response during renal diseases. This review summarizes the present data regarding the role of TLRs and NLRs in the course and development of various kidney pathologies.  相似文献   

13.
Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.  相似文献   

14.
The innate immune system deploys a variety of pattern-recognition receptors (PRRs) which include Toll-like receptors (TLRs), RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors to detect the invasion of pathogens and initiate protective responses. The intercellular and intracellular orchestration of signals from different PRRs, their endogenous or microbial ligands and accessory molecules determine the stimulatory or inhibitory responses. Progressing over the last two decades, considerable research on the molecular mechanisms underlying host–pathogen interactions has led to a paradigm shift of our understanding of TLR signaling in the innate immune system. Given that a significant amount of evidence implicates TLRs in the pathogenesis of immune diseases and cancer, and their activation occurs early in the inflammatory cascade, they are attractive targets for novel therapeutic agents. In this review, we discuss the recent advances in TLR signaling cross talks and the mechanism of pathogen recognition with special emphasis on the role of TLRs in tumor immunity and TLR-targeted therapeutics.  相似文献   

15.
Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases.  相似文献   

16.
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases. It is characterized by chronic inflammation of the joint leading to its destruction. Although the initiating cause remains elusive, environmental factors and genetic background are known to contribute to the etiology of RA. The role of Toll-like receptors (TLRs) in innate immunity and their ability to recognize microbial products has been well characterized. TLRs are able to recognize endogenous molecules released upon cell damage and necrosis, and are present in RA synovial fluid. Although it appears unlikely that a pathogen underlies the pathogenesis or progression of RA, the release of endogenous TLR ligands during inflammation may activate TLRs and perpetuate the disease. An increasing body of circumstantial evidence implicates TLR signaling in RA, although, at present, their involvement is not defined comprehensively. Targeting individual TLRs or their signaling transducers may provide a more specific therapy without global suppression of the immune system.  相似文献   

17.
近来,关于先天免疫的研究有了突飞猛进的进展。特别是在关于模式识别受体的发现和功能研究方面。模式识别受体能识别病原相关的分子模式。先天免疫不但提供抗感染的第一防线而且调控后天获得性免疫的激活。如果没有先天免疫,后天获得性免疫的功能会变得很微弱。Toll样受体是先天免疫的关键感受器和研究最多的模式识别受体。激活的Toll样受体信号传导通路可以很快引起与炎性反应和免疫反应相关的各种基因的表达。所有这些关于研究Toll样受体及其信号通路的新见解已经开始改变我们对炎性反应和免疫反应相关疾病的预防和治疗。  相似文献   

18.
近来,关于先天免疫的研究有了突飞猛进的进展.特别是在关于模式识别受体的发现和功能研究方面.模式识别受体能识别病原相关的分子模式.先天免疫不但提供抗感染的第一防线而且调控后天获得性免疫的激活.如果没有先天免疫,后天获得性免疫的功能会变得很微弱.Toll样受体是先天免疫的关键感受器和研究最多的模式识别受体.激活的Toll样受体信号传导通路可以很快引起与炎性反应和免疫反应相关的各种基因的表达.所有这些关于研究Toll样受体及其信号通路的新见解已经开始改变我们对炎性反应和免疫反应相关疾病的预防和治疗.  相似文献   

19.
先天性免疫识别侵袭的微生物,引起宿主防御反应.然而,先天性免疫识别的分子机制还不清楚.最近,有人发现了Toll样受体家族(TLRs),并阐明了这些受体在微生物识别中的主要作用.TLR基因家族包括11个成员,也可能更多.每种引起TLR先天性免疫反应的微生物类型各不相同.先天性免疫的激活引起特定抗原获得性免疫的发展.因此,TLRs控制先天性免疫反应和获得性免疫反应.  相似文献   

20.
Toll-like receptors, endogenous ligands, and systemic autoimmune disease   总被引:21,自引:0,他引:21  
Summary: The critical role of Toll‐like receptors (TLRs) as mediators of pathogen recognition by the innate immune system is now firmly established. Such recognition results in the initiation of an inflammatory immune response and subsequent instruction of the adaptive immune system, both of which are designed to rid the host of the invading pathogen. More controversial is the potential role of TLRs in the recognition of endogenous ligands and what effect this might have on the consequent development of autoimmune or other chronic sterile inflammatory disorders. An increasing number of studies implicate TLRs as being involved in the immune response to self‐molecules that have in some way been altered from their native state or accumulate in non‐physiologic sites or amounts, although questions have been raised about possible contaminants in certain of these studies. In this review, we discuss the evidence for endogenous ligand–TLR interactions with particular emphasis on mammalian chromatin, systemic lupus erythematosus, and atherosclerosis. Overall, the data support the general concept of a role for TLRs in the recognition of endogenous ligands. However, the precise details of the interactions and the extent to which they may contribute to the pathogenesis of human disease remain to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号