首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PACAP-R) was examined in the rat brain, and also in the hypophysis and pineal gland, by in situ hybridization with a specific 35S-labeled riboprobe which was generated from a rat PACAP-R cDNA clone. In the brain, expression of PACAP-R mRNA was most prominent in the periglomerular and granule cells of the olfactory bulb, granule cells of the dentate gyrus, supraoptic nucleus, and area postrema. The expression was also intense in the piriform, cingulate, and retrosplenial cortices, pyramidal cells in CA2, non-pyramidal cells in CA1-CA3, neuronal cells in the hilus of the dentate gyrus, lateral septal nucleus, intercalated amygdaloid nucleus, anterodorsal thalamic nucleus, most of the midline and intralaminar thalamic nuclei, many regions of the hypothalamus, dorsal motor nucleus of the vagus nerve, hypoglossal nucleus, and lateral reticular nucleus. No significant expression was detected in the mitral and tufted cells in the olfactory bulb, pyramidal cells in CA1 and CA3, posterior nuclear group of the thalamus, dorsal lateral geniculate nucleus, and Purkinje, Golgi, and granule cells in the cerebellar cortex. Moderate-to-weak expression was further observed in many other regions of the brain. In the cerebellar cortex, presumed Bergmann glia cells showed moderate expression. In the hypophysis, the expression was moderate in the anterior lobe, and weak to moderate in the posterior lobe; no significant expression was observed in the intermediate lobe. In the pineal gland, the expression was very weak, if any. Thus, the expression of PACAP-R was detected not only on neuronal cells but also on some particular glial cells. The present study has shown, for the first time, the exact site of PACAP-R expression in the brain and hypophysis. Although the functional significance of PACAP and PACAP-R in the brain still remains to be clarified, the present results are considered to provide some direction for future functional studies. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
4.
PACAP is a member of the secretin/vasoactive intestinal peptide (VIP) family, isolated from hypothalamus. Recent studies have shown that PACAP is expressed in many parts of adult brain. We have studied the precise distribution of PACAP mRNA in developing rat brain, employing in situ hybridisation. PACAP mRNA is expressed in distinct parts of the embryonic rat brain from embryonic day 13, with a robust expression in developing cortex, hippocampus, amygdala and hypothalamus as well as in spinal cord and dorsal root ganglia. The expression in hippocampus and cortex diminishes towards adulthood, compared to new-born rat brain. In the mature brain, PACAP mRNA is located in alternating layers of cerebral cortex (layers I, III and V), in the dentate gyrus, in CA4 and CA1 regions, but not in CA2 or CA3 of the hippocampus. The presence of PACAP mRNA in different structures of developing rat brain suggests an important function for this peptide during brain development.  相似文献   

5.
Pituitary adenylate cyclase-activating polypeptide (PACAP) regulates pituitary hormone biosynthesis and secretion through its cognate receptors. PACAP also plays an important role in the regulation of ovarian steroid biosynthesis. If so, there might be a feedback regulation of hypothalamic PACAP synthesis by the pituitary and by ovarian steroids. In the present study, we used RNase protection assays to determine changes in mRNA levels of PACAP and type I PACAP receptor (PAC(1)) under the conditions of ovariectomy and replacement with ovarian steroids. Progesterone (P) alone or in combination with estradiol (E) induced significant increases in PACAP mRNA level in the medial basal hypothalamus (MBH) and PAC(1) mRNA levels in MBH and the preoptic area (POA). This finding suggests that feedback regulation takes place between the ovary and hypothalamic PACAP neurons. P is known to be a major regulatory feedback factor for hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons, but P receptor is not present in these neurons. Therefore, we examined a possible involvement of PACAP in the feedback regulatory pathway of P to LHRH neurons. After an antisense PAC(1) oligodeoxynucleotide (ODN) was i.c.v.-injected into the third ventricle of E and P-treated rats, LHRH mRNA levels were determined. The ODN markedly decreased the P-induced increase in the LHRH mRNA level. Taken together, the present data suggest that PACAP may play a role as a mediator in the regulation of LHRH synthetic machinery by stimulatory feedback of P.  相似文献   

6.
The pituitary adenylate cyclase-activating polypeptide type I-receptor (PAC1) is a G-protein-coupled receptor that is widely expressed in neurons of the central and peripheral nervous system. The strong expression of PAC1 in the second sensory neuron as well as in brainstem regions such as the locus coeruleus prompted us to elucidate the potential in vivo role of PAC1-mediated signalling in pain perception and opioid addiction using a PAC1-deficient mouse line. We observed a selective involvement of PAC1 in the mediation of visceral pain. While there was no impairment in acute somatic pain perception, PAC1-mutants exhibited a dramatically decreased response in the abdominal writhing test. These data in concert with data from the literature implicate PAC1 in the mediation of visceral and chronic pain. In addition, we observed that PAC1 did not influence the motivational aspects of opioid addictive properties, since morphine-induced rewarding effects and sensitization to locomotor responses were completely maintained in PAC1-deficient mice. However, there was a dramatic increase in physical withdrawal signs after naloxone-precipitated morphine withdrawal in PAC1 mutants. At the cellular level, electrophysiological examinations in locus coeruleus neurons from morphine-dependent wild-type and PAC1-deficient mice did not reveal any differences in firing rates. These data therefore suggested that most likely disruption of PAC1-mediated signalling in afferents towards the locus coeruleus but not within the intrinsic locus coeruleus system led to the enhancement of somatic withdrawal signs.  相似文献   

7.
As the brain develops, a homogeneous population of mitotically active progenitors generates the molecularly heterogeneous post-mitotic cells of the mature brain. The balance between cell division, growth arrest and differentiation of these progenitors undoubtedly requires the activation of a vast array of genes. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)/secretin/glucagon family. Within the nervous system, PACAP has been shown to stimulate neurite outgrowth, regulate neurotransmitter production and neuronal survival. These diverse biological actions are mediated through interaction with two types of receptors, a PACAP-selective receptor (PAC(1)-R) and receptors which interact almost equally with both VIP and PACAP. Since several lines of evidence suggest that PACAP acts as a neurotrophic factor, we sought to characterize PACAP and PAC(1)-R expression in the developing rat nervous system. The PAC(1)-R is expressed at very high levels in ventricular zones throughout the neuraxis. In addition to the embryonic enrichment in proliferative zones, PAC(1)-R expression is maintained in areas of neurogenesis in the adult central nervous system (CNS), namely, the subventricular zone of the olfactory bulb and hippocampal dentate gyrus. In contrast, PACAP is expressed primarily in the post-mitotic parenchyma. This temporal regulation and cellular distribution suggests that PACAP, through its interaction with the PAC(1)-R, may play a role in mammalian neurogenesis.  相似文献   

8.
Previous studies have demonstrated that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts trophic effects during neurodevelopment. In particular, the occurrence of PACAP and its receptors in the cerebellum during pre- and postnatal periods suggests that it could play a crucial role in ontogenesis of this structure. To test this hypothesis, we compared the histogenesis of cerebellar cortex in wild-type and PACAP-knockout (PACAP-/-) mice at postnatal days (P)4 and 7. Morphometric analysis of PACAP-/- mice revealed a significant reduction in the thickness of the external granule cell layer at P4 and of the internal granule cell layer at P7. Expression of nestin, a neural precursor marker, and synaptophysin, a mature neuronal marker, was quantified by real-time PCR and Western blot. No modification of nestin expression was noticed between wild-type and PACAP-/- mice, but a substantial decrease in synaptophysin expression was observed in PACAP-/- mice at P4 and P7. Immunohistochemistry revealed a reduction in synaptophysin labelling in the molecular and internal granule cell layers of PACAP-/- mice at P7. Caspase-3 activation was significantly increased in PACAP-/- mice at P4 and P7. Autoradiographic studies revealed no difference in PACAP binding site distributions and PACAP was effective at stimulating cAMP production in both wild-type and PACAP-/- cultured granule cells. This study demonstrates that disruption of the PACAP gene induces alteration of the immature cerebellum. Neuronal differentiation of granule cells was delayed whereas cell death that naturally occurs during ontogeny was increased in PACAP-/- mice. These data provide the first evidence of a physiological role for PACAP during cerebellar development.  相似文献   

9.
目的观察垂体腺苷酸环化酶激活肽(PACAP)对创伤性颅脑损伤(TBI)后大鼠脑组织内切冬酶-3(caspase-3)表达及活性变化的影响。方法采用TBI模型,运用免疫组织化学及免疫荧光技术,观察TBI伤后2h~3d伤侧大脑皮层、海马caspase.3表达及活性变化情况。结果在伤后各时相点(2、12、24、48、72h)PACAP治疗组caspase-3表达与TBI组相比较,皮质与海马的表达都要相对减少;caspase-3的活性明显下降(P〈0.05)。结论PACAP能降低TBI脑组织内caspase-3表达及活性,减少神经细胞凋亡。  相似文献   

10.
Central administration of an antisense oligodeoxynucleotide against type I pituitary adenylate cyclase-activating polypeptide receptor suppresses synthetic activities of LHRH-LH axis during the pubertal process In the present study, we determined the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptor type I (PAC1) genes during juvenile development and the pubertal process. Female rats were assigned--based on uterine weights, the presence and abundance of uterine fluid, and their vaginal patency--to one of the following: anestrus (AE), early proestrus (EP), late proestrus (LP) or first estrus (E). The hypothalami from 22-, 24- and 26-day-old animals and from those in the peripubertal phases of AE, EP, LP and E were collected, and the content of PACAP and PAC1 mRNA was assessed. These levels were found to decrease in EP and LP. To determine the effect of PACAP on prepubertal luteinizing hormone-releasing hormone (LHRH) and LH synthesis through PAC1, a PAC1 antisense oligodeoxynucleotide (ODN) was i.c.v.-administered, and mRNA levels of LHRH, LH beta, and LHRH receptor (LHRH-R) were determined. Prepubertal increases in LHRH, LH beta, and LHRH-R mRNA levels were markedly suppressed, and the onset of puberty was delayed by the i.c.v. injection of the antisense PAC1 ODN. These data suggest that PACAP may play a role in the regulation of hypothalamic LHRH neurons, through which it regulates synthetic machinery of pituitary LH, during the pubertal process.  相似文献   

11.
The pituitary adenylate cyclase-activating polypeptide (PACAP) is considered a pleiotropic neuropeptide in vertebrate physiology. The nucleotide sequence, the expression and the distribution of PACAP were determined in the brain of the lizard Podarcis sicula. RT-PCR showed that the brain of this reptile synthesizes an mRNA coding for PACAP. By performing in situ hybridization and immunohistochemistry techniques, a wide distribution of PACAP and its mRNA in neurons, nervous fibers and other cells was found. Phylogenetic sequence analysis indicates that lizard PACAP is highly conserved, resembling the vertebrate PACAP. Our data demonstrate that PACAP is not only highly preserved during vertebrate evolution but also suggest that PACAP could be implicated in a wide number of functions in the physiology of the reptile brain.  相似文献   

12.
We generated transgenic mice that express an enhanced green fluorescent protein (EGFP) under the control of the mouse glial fibrillary acidic protein (GFAP) promoter. In one of the transgenic lines, the green fluorescence of EGFP was undetectable in almost all of the brain regions, including the neocortex, in untreated animals. However, when reactive astrogliosis was induced by cortical stab wounding, the strong fluorescence of EGFP was observed around the needle track but was not found in the corresponding area of the contralateral hemisphere. The EGFP-expressing cells had the morphological features of reactive astrocytes such as thick processes. The EGFP-expressing cells were found to overlap with the astroglial marker GFAP, but not with the microglial marker CD11b or the neuronal marker NeuN. Furthermore, there were some EGFP-expressing cells that expressed vimentin-like immunoreactivity, the specific marker for reactive astrocytes. These results strongly suggest that the EGFP-expressing cells are reactive astrocytes, but not resting astrocytes. Using these transgenic mice, immunostaining for the PAC1 receptor (PAC1-R) was performed. PAC1-R, which is a pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor, binds PACAP, which is known to have a wide variety of functions. An immunohistochemical study revealed the localization of PAC1-R in reactive astrocytes visualized with EGFP around the needle track at 5 days postsurgery.  相似文献   

13.
To examine the distributions of VIP/PACAP receptors (VPAC1, VPAC2, and PAC1 receptors) in the brain and to identify the cell types that express these receptors, we performed immunohistochemistry and double immunofluorescence in the rat brain with specific antibodies. The immunohistochemistry revealed that the receptors had distinctive, complementary, and overlapping distribution patterns. High levels of the VPAC1 receptor were expressed in the cerebral cortex, hippocampal formation, deep cerebellar nuclei, thalamus, hypothalamus, and brainstem. The VPAC2 receptors were concentrated in the cerebral cortex, hippocampal formation, amygdalar regions, cerebellar cortex, deep cerebellar nuclei, hypothalamus, and brainstem. On the other hand, the PAC1 receptors had a more restricted distribution pattern in the brain, and high levels of the PAC1 receptors were confined to the cerebellar cortex, deep cerebellar nuclei, epithalamus, hypothalamus, brainstem, and white matter of many brain regions. Also, many fibers expressing the PAC1 receptors were observed in various areas, i.e., the thalamus, hypothalamus, and brainstem. The double immunofluorescence showed that the VIP/PACAP receptors were confined to the neuroglia as well as the neurons. All three types of the VIP/PACAP receptors were expressed in the astrocytes, and the PAC1 receptors were also expressed in the oligodendrocytes. These findings indicate that VIP and PACAP exert their functions through their receptors in specific locations in different combinations. We hope that this first demonstration of the distributions of the VIP/PACAP receptors provides data useful in the investigation of the mechanisms of the many functions of VIP and PACAP in the brain, which require further elucidation.  相似文献   

14.
The distribution and density of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites as well as PACAP-specific receptor 1 (PAC1-R), vasoactive intestinal polypeptide/PACAP receptor 1 (VPAC1-R), and VPAC2-R mRNAs have been investigated in the rat brain from embryonic day 14 (E14) to postnatal day 8 (P8). Significant numbers of binding sites for the radioiodinated, 27-amino-acid form of PACAP were detected as early as E14 in the neuroepithelia of the metencephalon and the myelencephalon. From E14 to E21, the density of binding sites in the germinative areas increased by 3- to 5-fold. From birth to P12, the density of binding sites gradually declined in all neuroepithelia except in the external granule cell layer of the cerebellum, where the level of binding sites remained high during the first postnatal weeks. Only low to moderate densities of PACAP binding sites were found in regions other than the germinative areas, with the exception of the internal granule cell layer of the cerebellum, which contained a high density of sites. The localization of PACAP receptor mRNAs was investigated by in situ hybridization using [(35)S] uridine triphosphate-specific riboprobes. The evolution of the distribution of PAC1-R and VPAC1-R mRNAs was very similar to that of PACAP binding sites, the concentration of VPAC1-R mRNA being much lower than that of PAC1-R mRNA. In contrast, intense expression of VPAC2-R mRNA was observed in brain regions other than germinative areas, such as the suprachiasmatic, ventral thalamic, and dorsolateral geniculate nuclei. The discrete localization of PACAP binding sites as well as PAC1-R and VPAC1-R mRNAs in neuroepithelia during embryonic life and postnatal development strongly suggests that PACAP, acting through PAC1-R and/or VPAC1-R, may play a crucial role in the regulation of neurogenesis in the rat brain.  相似文献   

15.
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.  相似文献   

16.
In neuronal/glial cocultures, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) prevented neuronal death induced by gp120, lipopolysaccharide (LPS), or other toxic agents, but the dose response of the neuroprotective effect is bimodal, with a peak at a subpicomolar concentration and another peak at a subnanomolar to nanomolar concentration. Although the signaling cascade involved in neuroprotection by nanomolar concentration of the peptide has been shown to be mediated by activation of cAMP-dependent protein kinase and subsequent activation of mitogen-activated protein kinase (MAPK), the mechanism for neuroprotection by a subpicomolar level of PACAP38 remains elusive. In the present study, the signaling involved in neuroprotection by subpicomolar PACAP38 was studied in rat neuronal/glial cocultures. Addition of PACAP38 stimulated expression and activation of extracellular signal-related kinase-type MAPK with a peak response at 10−13 M; greater concentrations of the peptide induced lesser response. cAMP production also increased at subpicomolar levels of PACAP38, but the level remained unchanged at a level four to five times higher than the base level at concentration below 10−11 M. cAMP then started increasing again dose-dependently in a range >10−11 MPACAP38. Lipopolysaccharide (LPS)-induced neuronal death, indicated by increased release of neuronspecific enolase, was suppressed by PACAP38 in a bimodal fashion. Neuroprotection by 10−12 M PACAP38 was completely abolished by a MAPK kinase-1 inhibitor, PD98059, and also partially suppressed by Rp-cAMP, a cAMP-dependent protein kinase inhibitor. Moreover, neuroprotection by a nanomolar level of PACAP38 was completely suppressed by Rp-cAMP but not affected by PD98059. We conclude that neuroprotection by subpicomolar PACAP38 is mainly mediated by the signaling pathway involving MAPK activation and partially regulated by cAMP-dependent protein kinase activation. Furthermore, PACAP38 stimulated expression of activity-dependent neuroprotective protein (ADNP), with a peak at 10−13 M. Greater doses of the peptide induced lesser response. However, 10−13 M PACAP38-stimulated expression of ADNP was not affected by PD98059. This suggests that neuroprotection by subpicomolar PACA38 might be mediated partially by expression of ADNP, but the major events for neuroprotection by subpicomolar PACAP38 remain to be identified.  相似文献   

17.
In neuronal/glial cocultures, pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) prevented neuronal death induced by gp120, lipopolysaccharide (LPS), or other toxic agents, but the dose response of the neuroprotective effect is bimodal, with a peak at a subpicomolar concentration and another peak at a subnanomolar to nanomolar concentration. Although the signaling cascade involved in neuroprotection by nanomolar concentration of the peptide has been shown to be mediated by activation of cAMP-dependent protein kinase and subsequent activation of mitogen-activated protein kinase (MAPK), the mechanism for neuroprotection by a subpicomolar level of PACAP38 remains elusive. In the present study, the signaling involved in neuroprotection by subpicomolar PACAP38 was studied in rat neuronal/glial cocultures. Addition of PACAP38 stimulated expression and activation of extracellular signal-related kinase-type MAPK with a peak response at 10-13 M; greater concentrations of the peptide induced lesser response. cAMP production also increased at subpicomolar levels of PACAP38, but the level remained unchanged at a level four to five times higher than the base level at concentrations below 10-11 M. cAMP then started increasing again dose-dependently in a range >10-11 M PACAP38. Lipopolysaccharide (LPS)-induced neuronal death, indicated by increased release of neuron-specific enolase, was suppressed by PACAP38 in a bimodal fashion. Neuroprotection by 10-12 M PACAP38 was completely abolished by a MAPK kinase-1 inhibitor, PD98059, and also partially suppressed by Rp-cAMP, a cAMP-dependent protein kinase inhibitor. Moreover, neuroprotection by a nanomolar level of PACAP38 was completely suppressed by Rp-cAMP but not affected by PD98059. We conclude that neuroprotection by subpicomolar PACAP38 is mainly mediated by the signaling pathway involving MAPK activation and partially regulated by cAMP-dependent protein kinase activation. Furthermore, PACAP38 stimulated expression of activity- dependent neuroprotective protein (ADNP), with a peak at 10-13 M. Greater doses of the peptide induced lesser response. However, 10-13 M PACAP38-stimulated expression of ADNP was not affected by PD98059. This suggests that neuroprotection by subpicomolar PACAP38 might be mediated partially by expression of ADNP, but the major events for neuroprotection by subpicomolar PACAP38 remain to be identified.  相似文献   

18.
The role of pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor (PAC1 receptor) in regulating hypothalamic supraoptic neurones was investigated using PAC1 receptor-deficient male mice (PAC1-/-). The effects of PACAP on [Ca2+]i were investigated in freshly dissociated supraoptic neurones and on the somatodendritic release of vasopressin and oxytocin, examined on intact supraoptic nuclei. In supraoptic neurones from wild-type mice (PAC1+/+), 100 nm PACAP induced an increase in [Ca2+]i and release of vasopressin and oxytocin, whereas in heterozygous (PAC1+/-) and null-mutant mice (PAC1-/-), PACAP was much less effective. PACAP had no effect on these two parameters when applied to isolated neurohypophysial nerve terminals of PAC1+/+ and PAC1-/- mice, and rats. In conclusion, the PAC1 receptor is solely responsible for the PACAP-induced [Ca2+]i signalling and secretion of vasopressin and oxytocin in the somatodendritic region of supraoptic neurones.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are actively expressed in the cortical layers of the cerebellum of rodents and contribute to cerebellar development. The present report provides the first anatomical localization and characterization of PACAP receptors in the developing human cerebellum. RT-PCR analysis from 15-week-old fetuses to 22-year-old subject showed that PAC1-R and VPAC1-R are expressed in the cerebellum at all stages, whereas VPAC2-R mRNA was barely detectable. In situ hybridization labeling indicated that, in human fetuses, PAC1-R mRNA is associated with the external granule cell layer (EGL), a germinative neuroepithelium, and with the internal granule cell layer (IGL). The distribution pattern of VPAC1-R mRNA was very similar to that of PAC1-R mRNA, whereas VPAC2-R mRNA was visualized only in 7-22-year-old subjects. The localization of [(125)I]PACAP27 binding sites was fully consistent with the distribution of PAC1-R and VPAC1-R mRNA. Pharmacological characterization revealed that, in the EGL and IGL from 15-24-week-old fetuses and in the granule cell layer from 7-22-year-old patients, binding sites exhibit a PAC1-R profile. In contrast, PACAP binding sites observed in the molecular layer and medulla of the adult cerebellum consisted of a heterogeneous population of PAC1-R and VPAC(1/2)-R. Altogether, these data provide the first evidence that PACAP receptors are expressed in the human cerebellar cortex. PAC1-R is the predominant PACAP receptor found in fetuses, and both PAC1-R and VPAC1-R are expressed in the mature cerebellum. These observations suggest that PACAP has neurodevelopmental functions in the human cerebellum.  相似文献   

20.
These studies examined changes in the expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in micturition reflex pathways after chronic cystitis induced by cyclophosphamide (CYP). In control Wistar rats, PACAP immunoreactivity was expressed in fibers in the superficial dorsal horn at all segmental levels examined (L1, L2, and L4-S1). Bladder afferent cells (40-45%) in the dorsal root ganglia (DRG; L1, L2, L6, and S1) from control animals also exhibited PACAP immunoreactivity. After chronic, CYP-induced cystitis, PACAP immunoreactivity increased dramatically in spinal segments and DRG (L1, L2, L6, and S1) involved in micturition reflexes. The density of PACAP immunoreactivity was increased in the superficial laminae (I-II) of the L1, L2, L6, and S1 spinal segments. No changes in PACAP immunoreactivity were observed in the L4-L5 segments. Staining also increased dramatically in a fiber bundle extending ventrally from Lissauer's tract in lamina I along the lateral edge of the dorsal horn to the sacral parasympathetic nucleus in the L6-S1 spinal segments (lateral collateral pathway of Lissauer). After chronic cystitis, PACAP immunoreactivity in cells in the L1, L2, L6, and S1 DRG increased significantly (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号