首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex is a relatively non-invasive technique with putative therapeutic effects in major depression. However, the exact neurophysiological basis of these effects needs further clarification. Therefore, we studied the impact of ten daily sessions of left, dorsolateral prefrontal rTMS on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 30 patients. As compared to the non-responders, responders (33%) showed changes in parameters pointing towards a reduced cortical excitability. These results suggest that repetitive transcranial magnetic stimulation of the dorsolateral, prefrontal cortex may have inhibitory effects on motor cortical neuronal excitability in patients with major depressive disorder. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of antidepressant stimulation techniques like rTMS.  相似文献   

2.
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can produce lasting changes in excitability and activity in cortical regions underneath the stimulation coil (local effect), but also within functionally connected cortical or subcortical regions (remote effects). Since the clinical presentation of Parkinson's disease (PD) is related to abnormal neuronal activity within the basal ganglia and cortical regions, including the primary motor cortex, the premotor cortex and the prefrontal cortex, several studies have used rTMS to improve brain function in PD. Here, we review the studies that have investigated the possible therapeutic effects of rTMS on mood and motor function in PD patients. We highlight some methodological inconsistencies and problems, including the difficulty to define the most effective protocol for rTMS or to establish an appropriate placebo condition. We finally propose future directions of research that may help to improve the therapeutic efficacy of rTMS in PD.  相似文献   

3.
Electroconvulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex are brain stimulation techniques that are used as therapeutic interventions in major depression. However, the exact therapeutic mode of action needs further clarification. In this case report, we describe the impact of these stimulation techniques on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 2 patients who received consecutively both rTMS and ECT. Both patients showed a decrease in motor cortical excitability after response to antidepressant brain stimulation, whereas parameters of motor cortical excitability remained unchanged after the first non-successful intervention. These results suggest that both ECT and rTMS may have an impact on parameters of motor cortical neuronal excitability. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of different antidepressant stimulation techniques.  相似文献   

4.
Functional neuroimaging provides insights into the pathogenesis of motor symptoms in Parkinson's disease (PD) and improves our understanding of both established neuromodulatory therapies such as deep brain stimulation (DBS) and potential ones such as repetitive transcranial magnetic stimulation (rTMS). Functional imaging studies can reveal the consequences of the dopaminergic lesion in PD among a widespread network of subcortical-cortical regions. Characteristic patterns of normal cortical brain activation for motor tasks are systematically altered in PD. Recent work has emphasized the task dependence of these changes and their gradual evolution over the course of the disease. Clinically relevant PD treatment with medications or DBS tends to normalize these patterns. In this context, rTMS is discussed as a potential noninvasive alternative for neuromodulation of cortical function. Although rTMS is not a current treatment, we review recent rTMS studies in PD that suggest its promise, illustrate how functional imaging can guide application of rTMS, and suggest that subcortical dopamine release could be an rTMS mechanism of action. The combination of rTMS and functional neuroimaging broadens our knowledge of functional cortical networks in PD, which can eventually provide physicians with pathophysiologic information about different PD treatment options and rationales for neuromodulatory interventions.  相似文献   

5.
Magnetic stimulation of the central and peripheral nervous systems   总被引:6,自引:0,他引:6  
Weber M  Eisen AA 《Muscle & nerve》2002,25(2):160-175
Since 1985, when the technique of transcranial magnetic stimulation (TMS) was first developed, a wide range of applications in healthy and diseased subjects has been described. Comprehension of the physiological basis of motor control and cortical function has been improved. Modifications of the basic technique of measuring central motor conduction time (CMCT) have included measurement of the cortical silent period, paired stimulation in a conditioning test paradigm, repetitive transcranial magnetic stimulation (rTMS), and peristimulus time histograms (PSTH). These methods allow dissection of central motor excitatory versus inhibitory interplay on the cortical motor neuron and its presynaptic connections at the spinal cord, and have proven to be powerful investigational techniques. TMS can be used to assess upper and lower motor neuron dysfunction, monitor the effects of many pharmacological agents, predict stroke outcome, document the plasticity of the motor system, and assess its maturation and the effects of aging, as well as perform intraoperative monitoring. The recent use of rTMS in the treatment of depression and movement disorders is novel, and opens the way for other potential therapeutic applications.  相似文献   

6.
We studied the effects of 0.2 Hz repetitive transcranial magnetic stimulation (rTMS) successively performed 6 times for 2 weeks in 12 patients with idiopathic Parkinson's disease (PD). Ten patients received rTMS to the bilateral frontal cortex (frontal rTMS) and six patients received rTMS to the bilateral occipital cortex (occipital rTMS). Before and after rTMS, we evaluated regional cerebral blood flow (rCBF) using 99m-Tc-ECD single photon emission computed tomography (SPECT) and clinical tests.In an analysis with statistic parametric mapping, both frontal and occipital rTMS reduced rCBF in the cortical areas around the stimulated site. The activities of daily living (ADL) and motor scores of Unified Parkinson's Disease Rating Scale (UPDRS), pronation-supination movements, and buttoning up significantly improved after frontal rTMS than before it, while occipital rTMS had no significant effects in clinical tests.The findings of the present study suggest that successive 0.2 Hz rTMS has outlasting inhibitory effects on neuronal activity around the stimulated cortical areas. Because there were no significant relations between improved clinical tests and reduced rCBF, we speculate that the indirect effects of 0.2 Hz rTMS on subcortical structures are related to improved parkinsonian symptoms. Further studies recruiting large numbers of subjects are required to confirm the efficacy of 0.2 Hz rTMS on PD.  相似文献   

7.
OBJECTIVE: To assess the effects of focal motor cortex stimulation on motor performance and cortical excitability in patients with Parkinson's disease (PD). METHODS: Repetitive transcranial magnetic stimulation (rTMS) was performed on the left motor cortical area corresponding to the right hand in 12 'off-drug' patients with PD. The effects of subthreshold rTMS applied at 0.5 Hz (600 pulses) or at 10 Hz (2000 pulses) using a 'real' or a 'sham' coil were compared to those obtained by a single dose of l-dopa. The assessment included a clinical evaluation by the Unified Parkinson's Disease Rating Scale and timed motor tasks, and a neurophysiological evaluation of cortical excitability by single- and paired-pulse TMS techniques. RESULTS: 'Real' rTMS at 10 or 0.5 Hz, but not 'sham' stimulation, improved motor performance. High-frequency rTMS decreased rigidity and bradykinesia in the upper limb contralateral to the stimulation, while low-frequency rTMS reduced upper limb rigidity bilaterally and improved walking. Concomitantly, 10 Hz rTMS increased intracortical facilitation, while 0.5 Hz rTMS restored intracortical inhibition. CONCLUSIONS: Low- and high-frequency rTMS of the primary motor cortex lead to significant but differential changes in patients with PD both on clinical and electrophysiological grounds. The effects on cortical excitability were opposite to previous observations made in healthy subjects, suggesting a reversed balance of cortical excitability in patients with PD compared to normals. However, the underlying mechanisms of these changes remain to determine, as well as the relationship with clinical presentation and response to l-dopa therapy. SIGNIFICANCE: The present study gives some clues to appraise the role of the primary motor cortex in PD. Clinical improvement induced by rTMS was too short-lasting to consider therapeutic application, but these results support the perspective of the primary motor cortex as a possible target for neuromodulation in PD.  相似文献   

8.
We studied the short-term clinical effects of 10-Hz repetitive transcranial magnetic stimulation (rTMS) of the motor hand area contralateral to the more affected limb in 12 non-fluctuating, for at least 12 hours drug free patients with Parkinson's disease (PD). We investigated the efficacy of rTMS in combination with a levodopa challenge test design under double-blind, placebo controlled conditions. Significant reductions of UPDRS III motor scores showed the treatment conditions: placebo/rTMS, levodopa/sham stimulation and levodopa/rTMS. A more detailed evaluation of arm symptoms contralateral to the stimulated brain region showed even more pronounced effects for the three conditions. There were significant differences between the mean response of the UPDRS III arm scores to the four test conditions. In conclusion our study demonstrates short-term beneficial effects of 10-Hz rTMS on motor symptoms in PD patients. A release of endogenous dopamine in subcortical structures, i.e. putamen, in response to rTMS is the most likely mechanism of action.  相似文献   

9.
Electrical stimulation of deep brain structures, such as globus pallidus and subthalamic nucleus, is widely accepted as a therapeutic tool for patients with Parkinson's disease (PD). Cortical stimulation either with epidural implanted electrodes or repetitive transcranial magnetic stimulation can be associated with motor function enhancement in PD. We aimed to study the effects of another noninvasive technique of cortical brain stimulation, transcranial direct current stimulation (tDCS), on motor function and motor-evoked potential (MEP) characteristics of PD patients. We tested tDCS using different electrode montages [anodal stimulation of primary motor cortex (M1), cathodal stimulation of M1, anodal stimulation of dorsolateral prefrontal cortex (DLPFC), and sham-stimulation] and evaluated the effects on motor function--as indexed by Unified Parkinson's Disease Rating Scale (UPDRS), simple reaction time (sRT) and Purdue Pegboard test--and on corticospinal motor excitability (MEP characteristics). All experiments were performed in a double-blinded manner. Anodal stimulation of M1 was associated with a significant improvement of motor function compared to sham-stimulation in the UPDRS (P < 0.001) and sRT (P = 0.019). This effect was not observed for cathodal stimulation of M1 or anodal stimulation of DLPFC. Furthermore, whereas anodal stimulation of M1 significantly increased MEP amplitude and area, cathodal stimulation of M1 significantly decreased them. There was a trend toward a significant correlation between motor function improvement after M1 anodal-tDCS and MEP area increase. These results confirm and extend the notion that cortical brain stimulation might improve motor function in patients with PD.  相似文献   

10.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

11.
To study the efficacy of 0.2-Hz repetitive transcranial magnetic stimulation (rTMS) on Parkinson's disease (PD), 85 patients with PD were enrolled into three groups: 1). motor cortical, 2). occipital, and 3). sham stimulation. A round coil was centered over the vertex in motor cortical stimulation, and over the inion in occipital stimulation. In one session, 100 stimuli of 0.2-Hz rTMS at an intensity of 1.1 times active motor threshold (AMT) were given. In sham stimulation, electric currents were given with electrodes fixed on the head to mimic the sensation in real stimulation. Each session was carried out once a week for the first 8 weeks. The Unified Parkinson Disease Rating Scale (UPDRS), Hamilton Rating Scale for Depression (HRSD) and subjective score (visual analogue scale) were assessed. There were no significant differences in clinical features among the three groups. Total and motor score of UPDRS were improved to the same extent by rTMS over Cz, inion, and sham stimulation. HRSD was improved by rTMS over Cz and sham stimulation in the same manner. Subjective score was not significantly improved by any methods of stimulation. 0.2-Hz rTMS at an intensity of 1.1 x AMT has only a placebo effect on PD. Our realistic sham stimulation maneuver must produce powerful placebo effects as a real stimulation.  相似文献   

12.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used and highly effective treatment for patients with advanced Parkinson's disease (PD). Repetitive TMS (rTMS) applied to motor cortical areas has also been shown to improve symptoms in PD and modulate motor cortical excitability. Here, we compared clinical and neurophysiological effects of STN stimulation with those of 1 Hz rTMS given to the dorsal premotor cortex (PMd) and those following intake of levodopa in a group of PD patients with advanced disease. Ten PD patients were studied on 2 consecutive days before and after surgery. Clinical effects were determined using the UPDRS motor score. Motor thresholds, motor‐evoked potential (MEP) amplitudes during slight voluntary contraction, and the cortical silent periods (SP) were measured using TMS. Before surgery effects of levodopa and 1 Hz PMd rTMS and after surgery those of STN stimulation with or without additional levodopa were determined. Levodopa significantly improved clinical symptoms and increased the SP duration. STN stimulation improved clinical symptoms without changing the SP duration. In contrast, 1 Hz PMd rTMS was not effective clinically but normalized the SP duration. Whereas levodopa had widespread effects at different levels of an abnormally active motor network in PD, STN stimulation and PMd rTMS led to either clinical improvement or SP normalization, i.e., only partially reversed abnormal motor network activity. © 2009 Movement Disorder Society  相似文献   

13.
Background and purpose: Neuroimaging has demonstrated that improved speech outcomes in Parkinson’s Disease (PD) subsequent to behavioural treatment approaches are associated with increased activity in the motor and pre‐motor cortex. High‐frequency repetitive transcranial magnetic stimulation (rTMS) is capable of modulating cortical activity and has been reported to have significant benefit to general motor function in PD. It is possible that high‐frequency rTMS may also have beneficial outcomes on speech production in PD. Methods: High‐frequency (5 Hz) rTMS was applied to 10 active stimulation and 10 sham placebo patients for 10 min/day (3000 pulses), for 10 days and speech outcome measures and lingual kinematic parameters recorded at baseline and 1 week, 2 and 12 months post‐stimulation. Results: The findings demonstrated positive treatment‐related changes observed in the active rTMS group when compared to the sham placebo control group at 2 and 12 months post‐stimulation in speech intelligibility, communication efficiency ratio, maximum velocity of tongue movements and distance of tongue movements. Conclusion: The results support the use of high‐frequency rTMS as a therapeutic tool for the treatment of articulatory dysfunction in PD.  相似文献   

14.
OBJECTIVES: To evaluate the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) for Parkinson's disease (PD) by delivering stimulation at higher intensity and frequency over longer time than in previous research. Promising beneficial effects on movement during or after rTMS have been reported. METHODS: Ten patients with idiopathic PD were enrolled in a randomized crossover study comparing active versus sham rTMS to the supplementary motor area (SMA). Assessments included reaction and movement times (RT/MT), quantitative spiral analysis, timed motor performance tests, United Parkinson's Disease Rating Scale (UPDRS), patient self-report and guess as to stimulation condition. RESULTS: Two of 10 patients could not tolerate the protocol. Thirty to 45 min following stimulation, active rTMS as compared with sham stimulation worsened spiral drawing (P=0.001) and prolonged RT in the most affected limb (P=0.030). No other significant differences were detected. CONCLUSIONS: We sought clinically promising improvement in PD but found subclinical worsening of complex and preparatory movement following rTMS to SMA. These results raise safety concerns regarding the persistence of dysfunction induced by rTMS while supporting the value of rTMS as a research tool. Studies aimed at understanding basic mechanisms and timing of rTMS effects are needed.  相似文献   

15.
Previous studies in patients with Parkinson's disease have reported that a single session of repetitive transcranial magnetic stimulation (rTMS) can improve some or all of the motor symptoms for 30 to 60 minutes. A recent study suggested that repeated sessions of rTMS lead to effects that can last for at least 1 month. Here we report data that both confirm and extend this work. Fifty-five unmedicated PD patients were classified into four groups: two groups (early and late PD) received 25 Hz rTMS bilaterally on the motor arm and leg areas; other groups acted as control for frequency (10 Hz) and for site of stimulation (occipital stimulation). All patients received six consecutive daily sessions (3,000 pulses for each session). The first two groups then received a further three booster sessions (3 consecutive days of rTMS) after 1, 2, and 3 months, while the third group had only one additional session after the first month. Unified Parkinson's Disease Rating Scale (UPDRS), walking time, key-tapping speed, and self-assessment scale were measured for each patient before and after each rTMS session and before and after the monthly sessions. Compared to occipital stimulation, 25 Hz rTMS over motor areas improved all measures in both early and late groups; the group that received 10 Hz rTMS improved more than the occipital group but less than the 25 Hz groups. The effect built up gradually during the sessions and was maintained for 1 month after, with a slight reduction in efficacy. Interestingly, the effect was restored and maintained for the next month by the booster sessions. We conclude that 25 Hz rTMS can lead to cumulative and long-lasting effects on motor performance.  相似文献   

16.
Modulating cortical excitability in acute stroke: a repetitive TMS study.   总被引:1,自引:0,他引:1  
OBJECTIVE: Changes in cerebral cortex excitability have been demonstrated after a stroke and are considered relevant for recovery. Repetitive transcranial magnetic stimulation (rTMS) of the brain can modulate cerebral cortex excitability and, when rTMS is given as theta burst stimulation (TBS), LTP- or LTD-like changes can be induced. The aim of present study was to evaluate the effects of TBS on cortical excitability in acute stroke. METHODS: In 12 acute stroke patients, we explored the effects of facilitatory TBS of the affected hemisphere and of inhibitory TBS of the unaffected hemisphere on cortical excitability to single-pulse transcranial magnetic stimulation (TMS) on both sides. The effects produced by TBS in patients were compared with those observed in a control group of age-matched healthy individuals. RESULTS: In patients, both the facilitatory TBS of the affected motor cortex and the inhibitory TBS of the unaffected motor cortex produced a significant increase of the amplitude of MEPs evoked by stimulation of the affected hemisphere. The effects observed in patients were comparable to those observed in controls. CONCLUSIONS: Facilitatory TBS over the stroke hemisphere and inhibitory TBS over the intact hemisphere in acute phase enhance the excitability of the lesioned motor cortex. SIGNIFICANCE: TBS might be useful to promote cortical plasticity in stroke patients.  相似文献   

17.
《Clinical neurophysiology》2010,121(4):464-473
Repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex can produce long-lasting changes in the excitability of the motor cortex to single pulse transcranial magnetic stimulation (TMS). rTMS may increase or decrease motor cortical excitability depending critically on the characteristics of the stimulation protocol. However, it is still poorly defined which mechanisms and central motor circuits contribute to these rTMS induced long-lasting excitability changes. We have had the opportunity to perform a series of direct recordings of the corticospinal volley evoked by single pulse TMS from the epidural space of conscious patients with chronically implanted spinal electrodes before and after several protocols of rTMS that increase or decrease brain excitability. These recordings provided insight into the physiological basis of the effects of rTMS and the specific motor cortical circuits involved.  相似文献   

18.
Recent years have seen the introduction of non‐invasive brain stimulation techniques (e.g. transcranial direct current stimulation and transcranial magnetic stimulation) utilized to target neural‐based pathologies, for therapeutic gain. The direct manipulation of cortical brain activity by repetitive transcranial magnetic stimulation (rTMS) could potentially serve as an efficacious complimentary rehabilitatory treatment for speech, language and swallowing disorders of a neurological origin. The high prevalence of positive reports on communication and swallowing outcomes support these premises. Nonetheless, experimental evidence to date in some areas is considered rudimentary and is deficient in providing placebo‐controlled substantiation of longitudinal neuroplastic change subsequent to stimulation. The most affirmative therapeutic responses have arisen from small placebo‐controlled trials using low‐frequency rTMS for patients with non‐fluent aphasia and high‐frequency rTMS applied to individuals with Parkinson's disease to improve motor speech performance and outcomes. Preliminary studies applying rTMS to ameliorate dysphagic symptoms post‐stroke provide positive swallowing outcomes for patients. Further research into the optimization of rTMS protocols, including dosage, stimulation targets for maximal efficacy and placebo techniques, is critically needed to provide a fundamental basis for clinical interventions using this technique. rTMS represents a highly promising and clinically relevant technique, warranting the future development of clinical trials across a spectrum of communication and swallowing pathologies, to substantiate and expand on the methods outlined in published reports.  相似文献   

19.
Several recent studies using functional magnetic resonance imaging (fMRI) have shown that repetitive transcranial magnetic stimulation (rTMS) affects not only brain activity in stimulated regions but also resting‐state functional connectivity (RSFC) between the stimulated region and other remote regions. However, these studies have only demonstrated an effect of either excitatory or inhibitory rTMS on RSFC, and have not clearly shown the bidirectional effects of both types of rTMS. Here, we addressed this issue by performing excitatory and inhibitory quadripulse TMS (QPS), which is considered to exert relatively large and long‐lasting effects on cortical excitability. We found that excitatory rTMS (QPS with interstimulus intervals of 5 ms) decreased interhemispheric RSFC between bilateral primary motor cortices, whereas inhibitory rTMS (QPS with interstimulus intervals of 50 ms) increased interhemispheric RSFC. The magnitude of these effects on RSFC was significantly correlated with that of rTMS‐induced effects on motor evoked potential from the corresponding muscle. The bidirectional effects of QPS were also observed in the stimulation over prefrontal and parietal association areas. These findings provide evidence for the robust bidirectional effects of excitatory and inhibitory rTMSs on RSFC, and raise a possibility that QPS can be a powerful tool to modulate RSFC. Hum Brain Mapp 35:1896–1905, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

20.
OBJECTIVE: To determine whether low-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate l-DOPA-induced dyskinesia (LID) in dyskinetic Parkinson's disease (PD) patients. LID is a severe motor complication in advanced PD patients. The neural mechanisms involved in LID are not clear, and it is apparent that both an excessive decrease in internal pallidus firing and a modification and overactivation of cortical motor and premotor areas are involved in its pathogenesis. METHODS: Using low frequency 1Hz repetitive rTMS we investigated whether decrease of excitability of the supplementary motor area (SMA) may result in modification of LID in PD patients. Furthermore we tested whether it was possible to enhance and/or prolong the beneficial effects of the treatment with repeated sessions of stimulation. RESULTS: We observed that 1Hz rTMS induced a transient reduction of dyskinesias. A single session of rTMS improved LID, while repeated sessions of stimulation failed to enhance and/or prolong the beneficial effects of the procedure, without causing motor deterioration or other adverse effects. CONCLUSIONS: These results suggest that LID may depend on an increased excitability of the SMA. SIGNIFICANCE: SMA rTMS is effective in reducing transiently LID, although cannot yet be considered clinically useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号