首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isolated rat aorta, 72.7 mM KCI, 10 microM prostaglandin F2 alpha, 30 nM endothelin-1 and 1 microM norepinephrine increased muscle tension, cytosolic Ca++ concentration ([Ca++]i) and 20 kDa myosin light chain (MLC) phosphorylation. The levels of contractile tension and MLC phosphorylation at a given [Ca++]i were greatest in the presence of endothelin-1 followed by prostaglandin F2 alpha greater than norepinephrine greater than high K+. Verapamil inhibited the high K(+)-induced increments to their respective resting levels. Verapamil also almost completely inhibited the receptor agonist-induced increments in [Ca++]i and MLC phosphorylation, although a part of the contraction was not inhibited. Ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid further decreased [Ca++]i and muscle tension, suggesting that a part of the contraction is regulated by [Ca++]i below a resting level. Receptor agonists induced sustained contraction in the absence of external Ca++ which was not followed by the increase in [Ca++]i or MLC phosphorylation. This contraction was followed by the increments in shortening velocity and stiffness. In the rabbit mesenteric artery permeabilized with Staphylococcus aureus, alpha-toxin, norepinephrine and endothelin-1 shifted the Ca(++)-tension curve to the left in the presence of GTP. From these results, it is suggested that high K(+)-induced sustained contraction of vascular smooth muscle is attributable to an increase in [Ca++]i followed by an increase in MLC phosphorylation. In addition to this fundamental mechanism, receptor agonists increase Ca+ sensitivity of MLC phosphorylation when [Ca++]i is higher than resting level resulting in a greater contraction than that induced by high K+ for a given increase in [Ca++]i.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previously, we have reported that activation of muscarinic cholinergic receptors in the iris smooth muscle results in a rapid breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) into 1,2-diacylglycerol and myo-inositol trisphosphate (IP3) and that the stimulated hydrolysis of this phospholipid correlates well with contraction. To determine whether or not there is a causal relationship between PIP2 breakdown and contraction, we have conducted correlative studies on the effects of carbachol (CCh) on PIP2 breakdown, measured as IP3 accumulation, myosin light chain (MLC) phosphorylation and contraction in the rabbit iris sphincter. We have also investigated the effects of time, temperature, atropine antagonism, Ca++ and C-kinase activators on the three measured responses. The data obtained can be summarized as follows: dose-response studies for IP3 accumulation, MLC phosphorylation and contraction revealed a close correlation between these responses; kinetic data on atropine antagonism showed that the three measured responses are competitively inhibited by the muscarinic antagonist; time course studies conducted at low temperature showed that the CCh-induced IP3 accumulation and MLC phosphorylation may precede contraction; time course studies on the effect of Ca++ on the three measured responses showed that IP3 release may account for the rapid phase of CCh-induced contraction and that extracellular Ca++ is essential for sustained MLC phosphorylation and the slow phase of contraction; the activity of phospholipase C, the enzyme involved in PIP2 hydrolysis, in membrane fragments from 32P-labeled sphincter muscle was found to be highly sensitive to Ca++, with half-maximal stimulation at about 1.1 microM Ca++; and phorbol 12,13-dibutyrate, but not phorbol 12-myristate 13-acetate, induced MLC phosphorylation and muscle contraction in a dose- and time-dependent manner. Phorbol 12,13-dibutyrate and ionomycin acted in a synergistic manner to elicit contraction. In conclusion, contractions by CCh in the iris sphincter may be explained on the basis of enhanced PIP2 turnover and its derived second messenger molecule(s); that there are consistent correlations, using different concentrations of CCh, atropine antagonism, time, temperature and Ca++, between the stimulated hydrolysis of PIP2, MLC phosphorylation and contraction. Finally, whereas the data presented favor the involvement of IP3 in the phasic component of the contractile response, the studies with phorbol 12,13-dibutyrate suggest that contractile regulation by 1,2-diacylglycerol, through activation of C-kinase, may be important during the tonic component of smooth muscle contraction.  相似文献   

3.
Effects of norepinephrine (NE), carbachol (CCh) and histamine (HIS) on vascular tone and the endothelial and smooth muscle cytosolic C++ levels ([Ca++]i) were examined in rat aorta. The fura-2-Ca++ fluorescence emitted from endothelial and smooth muscle cells was detected at the endothelial surface. In the aorta with endothelium, NE increased both [Ca++]i and muscle tension whereas CCh slightly relaxed the muscle and increased [Ca++]i. The CCh-stimulated [Ca++]i was partially inhibited by verapamil. Addition of CCh to the NE-stimulated aorta relaxed the muscle with additional increase in [Ca++]i and positive correlation was obtained between the increase in [Ca++]i and relaxation. In the aorta without endothelium, NE increased both [Ca++]i and tension although CCh was ineffective. When endothelium was removed only from a small area from where the fura-2-Ca++ fluorescence was detected, CCh relaxed the muscle without changing [Ca++]i. In this preparation, NE increased both [Ca++]i and muscle tension and sequential addition of CCh relaxed the muscle with a small decrease in [Ca++]i, suggesting that Ca++ sensitivity of contractile elements is decreased. In Ca+(+)-free solution, CCh induced a transient increase in [Ca++]i and a decrease in muscle tension only in the presence of endothelium. HIS showed similar effects as CCh. By contrast, sodium nitroprusside decreased [Ca++]i and relaxed the muscle in NE-stimulated aorta with or without endothelium. These results suggest that CCh and HIS increase [Ca++]i in the endothelial cells which regulates the synthesis and/or release of endothelium-derived relaxing factor. Endothelium-derived relaxing factor may decrease [Ca++]i in the smooth muscle cells and also decrease Ca++ sensitivity of contractile elements resulting in vasodilatation.  相似文献   

4.
Calyculin-A (CL-A), a novel marine toxin isolated from Discodermia calyx, caused contraction in the smooth muscle of guinea pig taenia ceci and rat aorta in the presence or absence (with 1 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid) of external Ca++ at concentrations ranging from 1 X 10(-8) to 1 X 10(-6) M. In the presence of external Ca++, the contraction induced by CL-A was accompanied by an increase in the cytosolic free Ca++ concentration [( Ca++]cyt) as measured by the fluorescence indicator fura-2. Verapamil (3 X 10(-6) M) inhibited the increase in [Ca++]cyt, but not tension development caused by CL-A. In the absence of external Ca++, CL-A still caused contraction without changing [Ca++]cyt. Thus, from studies with intact smooth muscle it was demonstrated that, in the absence of external Ca++, CL-A can induce a contraction that was not accompanied by an increase in [Ca++]cyt. In permeabilized taenia, CL-A caused contraction in the absence of Ca++ (with 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid) at concentrations similar to those required to contract intact tissue. This contraction was inhibited by the nonselective kinase inhibitors such as amiloride (1 X 10(-3) M) and K-252a (2 X 10(-5) M). Low concentrations of Ca++ (approximately 1 X 10(-6) M) augmented the CL-A-induced contraction in the permeabilized taenia. In native actomyosin prepared from chicken gizzard CL-A induced phosphorylation of the 20 kDa myosin light chain (MLC) in the absence of Ca++.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Thrombin increases intracellular calcium ([Ca++]i) in several cell types and causes a positive inotropic effect in the heart. We examined the mechanism of the thrombin-induced [Ca++]i increase in chick embryonic heart cells loaded with the fluorescent calcium indicator, indo-1. Thrombin (1 U/ml) increased both systolic and diastolic [Ca++]i from 617 +/- 62 and 324 +/- 46 to 1041 +/- 93 and 587 +/- 38 nM, respectively. An initial rapid [Ca++]i increase was followed by a more sustained increase. There were associated increases in contraction strength, beat frequency, and action potential duration. The [Ca++]i increase was not blocked by tetrodotoxin or verapamil, but was blocked by pretreatment with pertussis toxin (100 ng/ml). The thrombin-induced [Ca++]i increase was partly due to intracellular calcium release, since it persisted after removal of external calcium. The [Ca++]i increase in zero calcium was more transitory than in normal calcium and was potentiated by 10 mM Li+. Thrombin also induced influx of calcium across the surface membrane, which could be monitored using Mn++ ions, which quench indo-1 fluorescence when they enter the cell. Thrombin-induced Mn++ entry was insensitive to verapamil, but was blocked by 2 mM Ni++. Thrombin increased inositol trisphosphates by 180% at 90 s and this effect was also blocked by pretreatment with pertussis toxin. Conclusion: thrombin promotes calcium entry and release in embryonic heart cells even when action potentials are inhibited. Both modes of [Ca++]i increase may be coupled to the receptor by pertussis toxin-sensitive G proteins.  相似文献   

6.
The effects of forskolin, an activator of adenylate cyclase, on cytoplasmic Ca++ level ([Ca++]cyt) measured simultaneously with muscle tension using fura-2-Ca++ fluorescence were examined in isolated smooth muscle of rat aorta. Forskolin decreased muscle tension and [Ca++]cyt in resting aorta whereas both norepinephrine and high K+ solution produced sustained increase in muscle tension and [Ca++]cyt. Addition of forskolin during the sustained contractions decreased muscle tension more strongly than [Ca++]cyt. Norepinephrine-induced contraction was more sensitive to forskolin than high K+-induced contraction. The inhibitory effect of forskolin was attenuated when the concentration of norepinephrine or K+ was increased. Cumulative addition of norepinephrine or K+ induced a concentration-dependent increase in both [Ca++]cyt and muscle tension and a positive [Ca++]cyt-tension correlation was observed. In the presence of 0.1 microM forskolin, the norepinephrine-induced increments in [Ca++]cyt and muscle tension were inhibited without changing the [Ca++]cyt-tension relationship. In the presence of a higher concentration (1 microM) of forskolin, muscle tension was inhibited more strongly with only a small additional decrease in [Ca++]cyt resulting in a shift of the [Ca++]cyt-tension relationship. Norepinephrine induced transient increments in [Ca++]cyt and muscle tension in Ca++-free solution and forskolin inhibited these changes. These results suggest that forskolin has concentration-dependent inhibitory effects on vascular contractility to decrease [Ca++]cyt at lower concentrations and to decrease the sensitivity of contractile elements to Ca++ at higher concentrations.  相似文献   

7.
The mechanisms by which activators of protein kinase C (PKC) stimulate contractile responses in arterial smooth muscle is not known. In this study, we assessed the relative contribution of CA(++)-dependent and independent pathways in mediating phorbol ester-induced 20 kdalton myosin light chain (MLC)-phosphorylation and force in medial smooth muscle strips from swine carotid artery. Phorbol 12,13-dibutyrate (PDB; 10(-7)M)-stimulated stress development was associated with a significant increase in the fraction of phosphorylated MLC, from 0.08 +/- 0.02 to 0.24 +/- 0.02 after 30 min of stimulation. Under conditions of Ca++ depletion, which normally do not support Ca++/calmodulin-dependent activation of myosin light chain kinase (MLCK) by physiological stimuli, PDB-induced contractile responses were reduced significantly. However, after Ca2++ depletion, PDB (10(-6) M; 30 min) still caused an increase in MLC-phosphorylation from 0.10 +/- 0.02 at rest to 0.19 +/- 0.03. Preincubation with nifedipine (10(-7) M) had no significant effect on contractile responses to PDB, indicating that Ca++ influx through nifedipine-sensitive voltage channels did not contribute significantly to the observed Ca++ dependency of the PDB responses. Staurosporine (0.1-0.3 microM), a putative PKC inhibitor, significantly inhibited PDB-induced contractile and MLC phosphorylation responses. Tonic histamine (3 microM)- and KCl-induced contractile and MLC-phosphorylation responses were inhibited by the same concentrations of staurosporine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The Ca dependence of contraction and myosin phosphorylation was investigated in canine tracheal smooth muscle stimulated with carbachol, K or serotonin. Previous studies of tracheal muscle showed carbachol concentration-response curves for contraction and myosin phosphorylation were superposable. In contrast, there was a striking difference in the Ca++ sensitivities of tension and myosin phosphorylation when Ca++ concentration-response curves were constructed in the presence of 10(-7) M carbachol. Significant phosphorylation (greater than 0.3 moles phosphate/mole 20,000 dalton myosin light chain) was observed in the absence of active tension. In the present study, carbachol (10(-7) and 10(-6) M) and serotonin (10(-5) M) also induced significant myosin phosphorylation in low Ca++ solutions (0-0.025 mM CaCl2) without proportional increases in tension. K+ depolarization in Ca++-free physiological salt solution (60 mM KCl, 10(-6) M atropine) yielded phosphorylation not significantly different from basal levels. All stimulants induced active stress after readmission of Ca. The Ca++ dependence curve for myosin phosphorylation in muscles stimulated with carbachol was shifted up and to the left of the force curve. Atropine (10(-6) M) significantly reduced phosphorylation induced by carbachol in Ca++-free solutions, as did 3 X 10(-6) M nifedipine and 10 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Phorbol 12-myristate, 13-acetate or phorbol 12,13-dibutyrate did not increase basal phosphorylation or phosphorylation in low Ca++ solutions, suggesting that protein kinase C did not phosphorylate myosin in this case. Myosin phosphorylation under these conditions is not sufficient to support contraction, and is reduced by treatments that decrease Ca++ entry.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We tested the hypothesis that intracellular Ca++ [( Ca++]i) overload underlies the diastolic dysfunction of patients with hypertrophic cardiomyopathy. Myocardial tissue was obtained at the time of surgery or transplantation from patients with hypertrophic cardiomyopathy and was compared with control myocardium obtained from patients without heart disease. The isometric contractions and electrophysiologic properties of all myocardial specimens were recorded by standard techniques and [Ca++]i was measured with the bioluminescent calcium indicator aequorin. In contrast to the controls, action potentials, Ca++ transients, and isometric contraction and relaxation were markedly prolonged in the hypertrophic myocardium, and the Ca++ transients consisted of two distinct components. At 38 degrees C and 1 Hz pacing frequency, a state of relative Ca++ overload appeared develop, which produced a rise in end-diastolic [Ca++]i, incomplete relaxation, and fusion of twitches with a resultant decrease in active tension development. We also found that drugs with increase [Ca++]i, such as digitalis, exacerbated these abnormalities, whereas drugs that lower [Ca++]i, such as verapamil, or agents that increase cyclic AMP, such as forskolin, prevented them. These results may explain why patients with hypertrophic cardiomyopathy tolerate tachycardia poorly, and may have important implications with regard to the pharmacologic treatment of patients with hypertrophic cardiomyopathy.  相似文献   

10.
The source of Ca++ responsible for contraction was examined in muscle cells isolated separately from the circular and longitudinal muscle layers of guinea pig and human intestine. Contraction was measured by scanning micrometry and cytosolic-free Ca++ ([Ca++]i) with the fluorescent indicator, quin2. In both species, contraction induced in circular muscle cells by cholecystokinin-8 (CCK-8) and acetylcholine was not affected by withdrawal of Ca++ from the medium or addition of the Ca++ channel blocker, methoxyverapamil, whereas contraction induced by both agonists in longitudinal muscle cells and by depolarizing concentrations of K+ in both cell types was abolished. Depletion of intracellular Ca++ stores with caffeine in Ca++-free medium abolished the response in circular muscle cells. Readdition of Ca++ to the medium for 30 sec restored the response in longitudinal but not circular muscle cells. [Ca++]i, measured in guinea pig muscle cells, increased 3- to 4-fold above resting levels (circular, 70.8 +/- 8.1 nM; longitudinal, 77.4 +/- 9.7 nM) in response to all three contractile agents. The increase in [Ca++]i induced by CCK-8 and acetylcholine in circular muscle cells was not affected by withdrawal of Ca++ from the medium or addition of methoxyverapamil, whereas the response to both agonists in longitudinal muscle cells and to 20 mM K+ in both cell types was abolished. It was concluded that cells from adjacent muscle layers of the intestine mobilize Ca++ differently during agonist-induced contraction, i.e., by Ca++ release in circular and Ca++ influx in longitudinal muscle cells.  相似文献   

11.
The sensitivity of rabbit isolated superior mesenteric artery to Ca++ antagonists was examined under various conditions. Relaxation dose-response curves for D600 or nifedipine were generated, and IC50 values were calculated. In the first series of experiments, D600 or nifedipine IC50 was found to be 20-25-fold greater for norepinephrine (NE, 5 microM) contraction than for 80 nM K+ contraction. Even when the tissues were depolarized with 80 mM K+ before NE contraction, D600 or nifedipine IC50 still remained significantly greater compared with 80 mM K+ alone and remained closer to that during NE alone. Also a protocol was designed to study NE-induced phasic contraction in EGTA-physiological salt solution (a functional indicator of intracellular Ca++ release) as well as NE-induced sustained contraction after readdition of Ca++. The effects of varying [K+]ex (0-80 nM range) on NE-induced [Ca++]i release as well as on the D600 IC50 for NE contraction was studied. Increasing [K+]ex was found to enhance NE-sensitive [Ca++]i release and lower the D600 IC50 for NE contraction. Thus, conditions causing an increase in the ability of NE to cause [Ca++]i release were associated with an increase in the sensitivity of NE contraction to D600. These data provide functional evidence that the receptor-agonist sensitive Ca++ influx process in vascular smooth muscle is not solely regulated by changes in membrane potential. Additional mechanisms, such as a modulatory role of [Ca++]i release, in this process are implicated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Phorbol dibutyrate (PDB) is an activator of protein kinase C and has been observed to cause a slow developing contraction in vascular smooth muscle. The mechanism of phorbol ester-induced contraction is unknown. We studied the Ca++-dependence of, and the degree of myosin light chain phosphorylation (MLC-P), during PDB-induced contractions in rabbit aortic rings. PDB elicited concentration-dependent contractions (3 X 10(-8) to 10(-6) M) in rabbit aortic rings incubated in normal (1.6 mM Ca++) physiologic salt solution (PSS). Addition of the Ca++-channel blocker nifedipine (0.1 microM) to PSS or removal or Ca++ from PSS significantly reduced the contractile responses to PDB. Depletion of Ca++ by repeated washes in O Ca++-PSS containing 10(-3) M ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid reduced, but did not eliminate, the responses to PDB. In PSS, PDB significantly increased the fraction of phosphorylated MLC/total MLC to 0.33 from a resting value of 0.20. Ca++ depletion reduced the resting fraction (MLC-P/MLC) to 0.14. PDB-stimulated contractions in Ca++-depleted tissues occurred in the absence of significant increases in MLC-P. Sodium nitroprusside partially relaxed PDB-induced contractions by approximately 50% whether elicited in the presence of 1.6 mM Ca++ or after Ca++ depletion. In both cases relaxation occurred in the absence of statistically significant decreases in MLC phosphorylation. Ca++-dependent MLC phosphorylation may account for a component of the PDB contractile response in rabbit aorta. Studies in the absence of Ca++ suggest that PDB may activate contraction without concomitant MLC-P.  相似文献   

13.
We made use of quin2 microfluorometry to observe the effects of nicorandil (2-nicotinamidoethyl nitrate) on cytosolic Ca++ concentrations [( Ca++]i) in rat aortic vascular smooth muscle cells in primary culture. Regardless of whether cells were at rest, in a state of Ca++-depletion or at K+-depolarization, nicorandil rapidly and dose-dependently decreased [Ca++]i to the lower steady-state level. Nicorandil dose-dependently inhibited norepinephrine-induced Ca++ transients in physiological salt solution containing 1 mM Ca++. Nicorandil accelerated the reduction of [Ca++]i observed when the cells were exposed to Ca++-free solution. When the cells were treated with nicorandil in Ca++-free solution, Ca++ transients induced by the first application of caffeine were little affected, but those induced by subsequent repetitive caffeine applications were reduced strongly and progressively. In contrast, pretreatment with nicorandil markedly inhibited Ca++ transients induced by the first application of norepinephrine, in Ca++-free solution. These effects of nicorandil on [Ca++]i and Ca++ transients were similar to those seen with nitroglycerin. The denitrated compound of nicorandil, N-(2-hydroxyethyl)nicotinamide, had no such effect. Thus, it is apparently the nitrate moiety of the chemical structure by which nicorandil actively and strongly reduces [Ca++]i in vascular smooth muscle cells. The reduction of [Ca++]i by nicorandil may result in a decrease in Ca++ in the norepinephrine-sensitive store; hence, the reduction of [Ca++]i elevation by norepinephrine.  相似文献   

14.
Extracellular application of ATP transiently increases the cytosolic-free Ca++ concentration ([Ca++]i) in cultured smooth muscle cells of porcine coronary artery, and this activates large conductance Ca(++)-activated K (Kca) channels. In the present study effects of nitroglycerin (NG) and 4-aminopyridine (4-AP) on [Ca++]; and contraction were studied. 4-AP blocked Kca channels and enhanced the rise of [Ca++]i with oscillation, which led to contraction of the cells. NG activated the Kca channels of 300 picosiemens and inhibited 4-AP-induced contraction and oscillation of [Ca++]i. These results suggest that the vasorelaxant effect of NG involves hyperpolarization of the cell membrane by activating the Kca channels. NG also cause rapid decrease of [Ca++]i during the Ca(++)-mobilization by ATP in Ca-free solution. Similar effects were observed with cyclic GMP, suggesting that the effects of NG on the Kca channels and [Ca++]i were mediated by cyclic GMP.  相似文献   

15.
Phorbol diesters alter the contractile responses of porcine coronary artery   总被引:5,自引:0,他引:5  
We have studied the effects of activators of the Ca++- and phospholipid-dependent enzyme protein kinase C on isometric tension development by both intact and skinned coronary artery strips. The intact strips contracted upon incubation with 12-O-tetradecanoylphorbol-13-acetate. 12-O-tetradecanoylphorbol-13-acetate produced a leftward shift in the concentration-response relationship for contraction of the tissues by K+, histamine and norepinephrine. Phorbol-12,13-dibutyrate elicited contraction of detergent-skinned artery strips when the free Ca++ concentration in the bathing media was 0.1 microM or greater. This effect was diminished greatly in the presence of polymyxin B, a putative inhibitor of protein kinase C. Phorbol-12,13-dibutyrate shifted the Ca++ concentration-tension response relationship for the skinned tissue to the left. These results are consistent with a role for protein kinase C in regulating the contractile responses of coronary arterial smooth muscle to a variety of stimuli, at least in part by increasing the sensitivity of the contractile apparatus to Ca++.  相似文献   

16.
Apparent intracellular free Ca++ concentration [(Ca++]i) was measured in differentiated N1E-115 neuroblastoma by microinjecting cells with aequorin (estimated intracellular concentration, 4 microM) and measuring light emission. Histamine produced a transient, dose-dependent increase in [Ca++]i. Pyrilamine blocked completely the response to histamine whereas cimetidine had no effect. Omitting Ca++ from the external medium reversibly blocked the response. As well as a rise in [Ca++]i, histamine caused a concomitant cell hyperpolarization that was not blocked by ouabain, low Cl-, tetraethylammonium chloride/tetradotoxin or metiamide but was blocked by apamin and pyrilamine. A secondary small depolarization caused by histamine was also blocked by apamin but not by ouabain, low Cl- or tetraethylammonium chloride/tetrodotoxin. Direct iontophoretic injection of Ca++ into cells caused only hyperpolarization. Injection of inositol 1,4,5-trisphosphate [IP3(1,4,5)] caused an increase in [Ca++]i and rapid hyperpolarization. Inositol 1,3,4-trisphosphate [IP3(1,3,4)] caused an increase in [Ca++]i, rapid hyperpolarization and a slower depolarization. Repeated injections of IP3(1,3,4) led to a diminished [Ca++]i response and decreased hyperpolarization but had no effect on depolarization. Inositol 1,3,4,5-tetrakisphosphate was without effect on [Ca++]i or on cellular membrane potential. The results suggest that histamine causes an H1 receptor-dependent increase in [Ca++]i, probably by the increased entry of extracellular Ca++, although there may be a contribution from intracellular Ca++ released by IP3(1,4,5). The increase in [Ca++]i activates K+ channels leading to cell hyperpolarization. IP3(1,3,4) formed from inositol 1,3,4,5-tetrakisphosphate, which is itself a product of IP3(1,4,5), causes a slower depolarization by a mechanism that does not involve Na+ channels or an increase in [Ca++]i.  相似文献   

17.
The involvement of intrasynaptosomal-free Ca++ concentration [( Ca++]i) in Na(+)-dependent release of endogenous dopamine and noradrenaline from rat brain synaptosomes was studied. The release of endogenous dopamine and noradrenaline from rat whole brain synaptosomes were measured using high-performance liquid chromatography with electrochemical detector. The change of [Ca++]i was measured fluorometrically using a Ca++ indicator, Quin-2. Whether extracellular Ca++ was present or not, 30 microM veratridine, a Na(+)-ionophore, increased the release of endogenous dopamine and noradrenaline. In the presence of 1.25 mM Ca++, 30 microM veratridine increased [Ca++]i. In contrast, in the absence of extracellular Ca++, veratridine did not affect [Ca++]i. Ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) increased the release of dopamine and noradrenaline in Ca-Mg-free medium. This stimulatory effect of EGTA seemed to be the result of an increase in the influx of Na+ through Ca++ channels in the absence of divalent cation. In Ca-Mg-free medium, EGTA caused a slight decrease in [Ca++]i. The EGTA-stimulated release of dopamine and noradrenaline was blocked by La which also significantly blocked the decrease in [Ca++]i observed after the addition of EGTA. These results suggest that the Na(+)-dependent release of dopamine and noradrenaline may not depend on a change in [Ca++]i. Veratridine (30 microM)-induced release of dopamine and noradrenaline were detected simultaneously. However, the time needed to induce the maximal stimulatory effect of veratridine on the release of dopamine was apparently shorter than that of noradrenaline. This delay might suggest that the Na(+)-dependent release process of dopamine is not similar to that of noradrenaline.  相似文献   

18.
Arginine vasopressin (AVP) transiently stimulates Na+ transport in the rabbit cortical collecting duct (CCD). However, the sustained effect of both AVP and its putative second messenger, cyclic adenosine monophosphate (cAMP), on Na+ transport in the rabbit CCD is inhibitory. Because maneuvers that increase [Ca++]i inhibit Na+ transport, the effects of AVP and cell-permeable cAMP analogues, on [Ca++]i were investigated in fura-2-loaded in vitro microperfused rabbit CCDs. Low-dose AVP (23-230 pM) selectively stimulated Ca++ influx, whereas 23 nM AVP additionally released calcium from intracellular stores. 8-chlorophenylthio-cAMP (8CPTcAMP) and 8-bromo-cAMP (8-Br-cAMP) also increased CCD [Ca++]i. The 8CPTcAMP-stimulated [Ca++]i increase was totally dependent on basolateral [Ca++]. In the absence of cAMP, peritubular Na+ removal produced a marked increase in [Ca++]i, which was also dependent on bath [Ca++], suggesting the existence of basolateral Na+/Ca++ exchange. Luminal Na+ removal in the absence of cAMP did not alter CCD [Ca++]i, but it completely blocked the cAMP-stimulated [Ca++]i increase. Thus the cAMP-dependent Ca++ increase is totally dependent on both luminal Na+ and basolateral Ca++, suggesting the [Ca++]i increase is secondary to cAMP effects on luminal Na+ entry and its coupling to basolateral Na+/Ca++ exchange. 8CPTcAMP inhibits lumen-to-bath 22Na flux [JNa(l-b)] in CCDs bathed in a normal Ca++ bath (2.4 mM). However, when bath Ca++ was lowered to 100 nM, a maneuver that also blocks the 8CPTcAMP [Ca++]i increase, 8CPTcAMP stimulated, rather than inhibited JNa(l-b). These results suggest that cAMP formation initially stimulates CCD Na+ transport, and that increased apical Na+ entry secondarily activates basolateral Ca++ entry. The cAMP-dependent [Ca++]i increase leads to inhibition Na+ transport in the rabbit CCD.  相似文献   

19.
The effects of cromakalim, an ATP-sensitive K+ channel activator, on changes in cytosolic calcium concentration [( Ca++]i) and tension induced by acetylcholine (ACh; 0.1-10 microM) were examined in swine tracheal smooth muscle. Cromakalim (10 microM) hyperpolarized muscle cells by approximately 18 mV from -58 mV (resting membrane potential) to -76 mV. Cromakalim relaxed muscle contractions evoked by ACh at a concentration of 0.1 microM, but not at higher concentrations. Measurement of [Ca++]i using Fura-2 demonstrated that except at 0.1 microM ACh, cromakalim did not alter peak increases in [Ca++]i. At 0.1 microM ACh, the peak transient was decreased, but not eliminated. Cromakalim reduced steady-state increases in [Ca++]i at ACh less than or equal to 1 microM, but not 10 microM ACh. Tension was similarly affected. These data suggest that ACh-induced increases in steady-state [Ca++]i and tension are inhibited by cromakalim-induced hyperpolarization. The initial ACh-induced transient increase in [Ca++]i is not greatly altered. Cromakalim did not alter the transient peak tension and [Ca++]i relationship. The relationship between steady-state [Ca++]i/tension (EC50 = 321 nM) obtained for control, cromakalim inhibition and after glibenclamide reversal of cromakalim inhibition falls to the left of the peak transient [Ca++]i/tension relationship (EC50 = 587 nM). Thus, the Ca++ sensitivity of the contractile proteins during steady-state stimulation by ACh was increased from that at rest. We conclude that electromechanical coupling is important in ACh-induced contraction at concentrations less than 1 microM. Pharmacomechanical coupling with little or no sensitivity to changes in potential is important at higher ACh concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Effects of ouabain on [Ca++]i and on contractility was measured in quin2 and fura2 loaded cultured neonatal rat cardiac myocytes. Addition of ouabain (5 x 10(-8) to 5 x 10(-6) M) to cultured myocytes exposed to balanced buffered salt solution (BSS) caused a transient increase in [Ca++]i, followed by slow oscillations for about 10 min, and by an elevated steady state level of [Ca++]i thereafter. Concentrations of ouabain between 10(-7) and 5 x 10(-7) M caused an increase in the amplitude of systolic motion (ASM) whereas concentrations above 10(-6) caused a decrease in the ASM, an increase in the beating frequency and an upward shift of the base line, indicating impaired relaxation. When ouabain was added to cardiac myocytes exposed to Ca++-free BSS the increase in [Ca++]i was not observed, but only a transient decrease. To investigate the effect of [K+]o on the ouabain-induced changes in [Ca++]i, ouabain was added to cells exposed to BSS containing low K+ concentration (1 mM instead of 5 mM in balanced BSS). In this medium the increase in ASM by ouabain was similar to that in balanced BSS. Addition of ouabain caused a transient decrease in [Ca++]i. There was no initial increase in [Ca++]i and the steady state level of [Ca++]i was not elevated as compared with the same cells before the addition of ouabain. Similar results were observed in cells loaded with quin2 or with fura2. In view of these results the mechanism of action of ouabain on cardiac myocytes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号