首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:To determine the influence of two adhesion boosters on shear bond strength and on the bond failure location of indirectly bonded brackets.Materials and Methods:Sixty bovine incisors were randomly divided into three groups (n  =  20), and their buccal faces were etched using 37% phosphoric acid. In group 1 (control), brackets were indirectly bonded using only Sondhi adhesive. In groups 2 and 3, the adhesion boosters Enhance Adhesion Booster and Assure Universal Bonding Resin, respectively, were applied before bonding with Sondhi. Maximum bond strength was measured with a universal testing machine, and the location of bond failure was evaluated using the Adhesive Remnant Index (ARI). One-way analysis of variance followed by the Tukey test (P < .05) was used to compare the shear bond strength among groups, and the differences in ARI scores were evaluated using the Kruskal-Wallis test (P < .05). The Pearson correlation coefficient was calculated to determine whether there was any correlation between bond strength and ARI scores.Results:The mean shear bond strength in group 3 was significantly higher (P < .01) than in the other groups. Evaluation of the locations of bond failure revealed differences (P < .05) among the three groups. There was a moderate correlation between bond strength and ARI scores within group 3 (r  =  0.5860, P < .01).Conclusion:In vitro shear bond strength was acceptable in all groups. The use of the Assure adhesion booster significantly increased both the shear bond strength of indirectly bonded brackets and the amount of adhesive that remained on the enamel after bracket debonding.  相似文献   

2.
Objective:To evaluate the bonding time, shear bond strength (SBS), and adhesive residue index (ARI) of APC(TM) Flash-Free bonding system.Materials and Methods:Thirty-six extracted human maxillary premolars were randomly divided into three groups (12 per group) and used for this in vitro study: group 1, APC Flash-Free Adhesive Coated Appliance System; group 2, Clarity ADVANCED Ceramic Bracket pasted manually; group 3 (control group), 3M APC PLUS Adhesive prepasted brackets bonded with the extruded flash removed. Bonding time was measured using a stopwatch. Bond strength was measured using an Instron at a cross-head speed of 1 mm/min. The ARI was graded on a scale from 1 to 5. Repeated-measures analysis of variance and post hoc Tukey tests were used for statistical analysis.Results:It took significantly (P < .001) less time to bond in the APC Flash-Free Adhesive group (30.7 ± 3.3 seconds) compared with the control group (41.8 ± 4.0 seconds) and the manual group (39.2 ± 2.8 seconds). The APC Flash-Free Adhesive coated bracket had significantly (P < .001) greater SBS (13.7 ± 2.2 MPa) compared with the control group (10.8 ± 2.0 MPa) and the manual group (10.4 ± 1.4 MPa). The ARI was significantly (P < .001) greater with the APC Flash-Free Adhesive coated bracket compared with that of the other two groups.Conclusions:Compared with other methods of bonding, the APC Flash-Free Adhesive Coated System can potentially reduce bonding time while increasing SBS.  相似文献   

3.
Objective:To evaluate in vitro the shear bond strength of brackets recycled by sandblasting with aluminum oxide particles of different sizes or reconditioned industrially after successive rebonding.Materials and Methods:Eighty brackets were bonded and debonded sequentially three times. After the first debonding, brackets were divided into four groups: (group 1) sandblasting with aluminum oxide particles of 25 μ, (group 2) 50 μ, and (group 3) 110 μ, and (group 4) industrial recycling. Bond strength and adhesive material remaining on debonded bracket bases were evaluated for each successive debond.Results:No significant differences were detected between the four groups following the first recycle (P > .05). After the second recycle, bond strength was significantly greater for the industrially recycled group than the other groups (P < .016). When shear bond strength was compared within each recycling method, the bond strength of sandblasted brackets decreased with the increase of particle size and with each recycle; for the industrially recycled group, no significant differences were detected between the three sequences (P > .016). In the evaluation of bond material remnant, the industrially recycled group left significantly less bond material after successive recycling than the other groups did (P < .016). Within each recycling method, the adhesive remnant decreased significantly after successive debond (P < .016).Conclusions:Industrial recycling obtained better results than sandblasting after three successive debondings. The brackets'' shear bond strength decreased as the size of the aluminum oxide particle used for sandblasting increased and as recycling was repeated.  相似文献   

4.

Background

The purpose of this study was to determine the bond strength of different orthodontic bracket materials (ceramic, stainless steel, and titanium) as well as stresses developed in bracket-cement-enamel systems using finite element (FE) analysis.

Methods

One hundred and thirty-five extracted human caries-free upper central incisors were divided into three groups (n = 45/group) according to the type of orthodontic bracket materials (stainless steel, ceramic, and titanium). Each group was further subdivided into three subgroups (n = 15/group) according to the bond strength test loading mode (shear short side, shear long side, and tensile). After debonding, the fractured specimen was examined, and the adhesive remnant index (ARI) was determined. FE analysis models analyzed the stress distribution within the cement and enamel. Bond strengths were analyzed using ANOVA and Tukey''s test, and the ARI scores were analyzed using chi-square (χ2) test.

Results

Shear loading at the short side of the bracket resulted in the highest bond strength and lowest maximum principal stress both on cement and enamel compared with the other loading modes (P < 0.05). Ceramic brackets presented with higher bond strength and lower maximum principal stress than metallic brackets (P < 0.05). There was a significant difference for ARI scores between the type of brackets (χ2 = 64.852, P < 0.001).

Conclusion

The findings suggest that the manner of loading orthodontic brackets and the selection of orthodontic bracket materials affect the bond strength and stresses developed both on cement and enamel.  相似文献   

5.
Objective:To investigate the influence of caries infiltrant preconditioning on the shear bond strength of orthodontic resin cements on sound and demineralized enamel.Materials and Methods:Stainless-steel brackets were bonded to sound or artificially demineralized (14 d, acidic buffer, pH 5.0) bovine enamel specimens using a resin cement or a combination of caries infiltrant preconditioning (Icon, DMG) and the respective resin cement (light-curing composite: Heliosit Orthodontic, Transbond XT, using either Transbond XT Primer or Transbond Plus Self Etching Primer; light-curing resin-modified glass ionomer cement: Fuji Ortho; or self-curing composite: Concise Orthodontic Bonding System). Each group consisted of 15 specimens. Shear bond strength was evaluated after thermo-cycling (10,000×, 5°C to 55°C) at a crosshead speed of 1 mm/min, and data were statistically analyzed by analysis of variance, Mann-Whitney test, and Weibull statistics. Adhesive Remnant Index (ARI) scores and enamel fractures were determined at 25× magnification and were statistically analyzed by regression analyses (P < .05).Results:The caries infiltrant system significantly increased the shear bond strength of Transbond XT Primer, Transbond Plus Self Etching Primer, and Fuji Ortho in sound specimens, and of all resin cements except for the Concise Orthodontic Bonding System in demineralized enamel. Overall, caries infiltrant preconditioning decreased significantly the number of enamel fractures, but it did not affect ARI scores.Conclusion:Preconditioning of sound and demineralized enamel with the caries infiltrant system did not impair but rather increased the shear bond strength of most orthodontic resin cements while decreasing the risk of enamel fracture at debonding.  相似文献   

6.
Objective:To evaluate the effects of different bleaching methods on the shear bond strength (SBS) of orthodontic brackets.Materials and Methods:Forty-five freshly extracted premolars were randomly divided into three groups (n  =  15 per group). In group I, bleaching was performed with the office bleaching method. In group II, bleaching was performed with the home bleaching method. Group III served as the control. Orthodontic brackets were bonded with a light cure composite resin and cured with an LED light. After bonding, the SBS of the brackets were tested with a Universal testing machine.Results:Analysis of variance indicated a significant difference between groups (P < .001). The highest values for SBS were measured in group III (20.99 ± 2.32 MPa). The SBS was significantly lower in groups I and II than in group III (P < .001). The lowest values for SBS were measured in group II (6.42 ± 0.81 MPa). SBS was significantly higher in group I than in group II (P < .001).Conclusions:Both of the bleaching methods significantly affected the SBS of orthodontic brackets on human enamel. Bleaching with the home bleaching method affected SBS more adversely than did bleaching with the office bleaching method.  相似文献   

7.
Objective:To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion.Materials and Methods:Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC).Results:The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°.Conclusion:Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.  相似文献   

8.
Objective:To evaluate the bond strength of a self-etch bonding system using static loading and cyclic fatigue with shear testing. This is a two-part evaluation; the first part will evaluate shear testing, the second part tensile testing.Materials and Methods:Bovine teeth (n  =  82) were randomly distributed to either a self-etch (Transbond Plus) or total-etch (37% phosphoric-acid + Transbond XT) group. The static shear (SSBS) and cyclic shear (CSBS) bond strengths were measured 24 hours after the bonding of mesh-based brackets. The adhesive remnant index (ARI) and failure sites were evaluated.Results:The mean SSBS was 34.25 ± 9.21 and 24.64 ± 9.42 MPa for the total- and self-etch groups, respectively. CSBS was 24.07 ± 0.65 MPa and 18.92 ± 1.08 MPa for the total- and self-etch groups, respectively. Cyclic loading produced lower bond strengths compared to static testing for both adhesives; the difference was only statistically significant for the total-etch system. Comparison of the two materials showed a statistically significant difference between the two techniques. The total-etch had higher bond strengths than the self-etch bonding system. The samples showed a predominance of ARI scored of 2 and 1, and their bonding failure sites were cohesive within the composite.Conclusion:Cyclic loading, simulating occlusal forces, reduces the bond strength of both bonding systems. Even though the self-etch bonding system had lower shear bond strength than the total-etch system, both were still clinically acceptable.  相似文献   

9.
Objective:To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents.Materials and Methods:Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests.Results:The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa).Conclusions:CAD/CAM material types and bonding procedures affected bond strength (P < .05), but the etching procedure did not (P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.  相似文献   

10.

Background

This paper aimed to study the effect of two enamel protective agents on the shear bond strength (SBS) of orthodontic brackets bonded with conventional and self-etching primer (SEP) adhesive systems.

Methods

The two protective agents used were resin infiltrate (ICON) and Clinpro; the two adhesive systems used were self-etching primer system (Transbond Plus Self Etching Primer + Transbond XT adhesive) and a conventional adhesive system (37% phosphoric acid etch + Transbond XT primer + Transbond XT adhesive ). Sixty premolars divided into three major groups and six subgroups were included. The shear bond strength was tested 72 h after bracket bonding. Adhesive remnant index scores (ARI) were assessed. Statistical analysis consisted of a one-way ANOVA for the SBS and Kruskal-Wallis test followed by Mann-Whitney test for the ARI scores.

Results

In the control group, the mean SBS when using the conventional adhesive was 21.1 ± 7.5 MPa while when using SEP was 20.2 ± 4.0 MPa. When ICON was used with the conventional adhesive system, the SBS was 20.2 ± 5.6 MPa while with SEP was 17.6 ± 4.1 MPa. When Clinpro was used with the conventional adhesive system, the SBS was 24.3 ± 7.6 MPa while with SEP was 11.2 ± 3.5 MPa. Significant differences in the shear bond strength of the different groups (P = .000) was found as well as in the ARI scores distribution (P = .000).

Conclusion

The type of the adhesive system used to bond the orthodontic brackets, either conventional or self-etching primer, influenced the SBS, while the enamel protective material influenced the adhesive remnant on the enamel surface after debonding.  相似文献   

11.
Objective:To compare bond strength and bond failure location of lingual brackets indirectly bonded after lingual enamel sandblasting with 27-, 50-, and 90-µm aluminum oxide particles followed by 37% phosphoric acid etching.Material and Methods:Eighty maxillary premolars were randomly divided into four equal groups according to the method of lingual enamel surface conditioning: Group 1 (control) was etched with 37% phosphoric acid, and group 2, group 3, and group 4 were sandblasted with 27-, 50-, and 90-µm aluminum oxide particles, respectively, prior to acid etching. Lingual brackets were indirectly bonded using the same protocol and adhesive (Sondhi) in all groups. The maximum shear bond strength required to debond the brackets was measured using a testing machine, and the bond failure location was classified according to the adhesive remnant index (ARI). Analysis of variance was used to compare the mean bond strength between groups. The differences between ARI scores were evaluated using the Kruskal-Wallis test.Results:There were no statistically significant differences in mean shear bond strength or ARI scores between the four enamel-conditioning procedures.Conclusion:Lingual enamel sandblasting using different particle sizes of aluminum oxide prior to phosphoric acid etching did not increase the shear bond strength of indirectly bonded brackets and did not affect the amount of adhesive remnant on the enamel.  相似文献   

12.

Statement of problem

In clinical practice, loss of adhesion between the silicone-based denture liner and the denture base resin is always an undesirable event that might cause loss of material softness, water sorption, bacterial colonization and functional failure of the prosthesis.

Purpose

This study evaluated the effect of thermocycling on tensile and shear bond strengths of three soft liner materials to a denture base acrylic resin.

Material and methods

Three resilient liners (Mucopren-Soft, Mollosil-Plus and Dentusil) and a heat-polymerized acrylic resin (QC-20) were processed according to manufacturers’ directions. Sixty specimens (14 x 14 mm cross-sectional area) per bond strength test (20 for each liner) were fabricated and either stored in water at 37°C for 24 hours (control groups; n=10) or thermocycled 3,000 times in water between 5°C and 55°C (test groups; n=10). The specimens were tested in tensile and shear strength in a universal testing machine until fracture. Bond strength means were compared between water-stored and thermocycled groups for each material, as well as among materials for each treatment (water storage or thermocycling). Failure mode (adhesive, cohesive and mixed) after debonding was assessed. Data were analyzed statistically by paired Student’s t-test and ANOVA at 5% significance level.

Results

The water-stored groups had statistically significant higher bond strengths than the thermocycled groups (p<0.05). Without thermocycling, Mucopren-Soft (2.83 ± 0.48 MPa) had higher bond strength than Mollosil-Plus (1.04 ± 0.26 MPa) and Dentusil (1.14 ± 0.51 MPa). After thermocycling, Mucopren-Soft (1.63 ± 0.48 MPa) had the highest bond strength (p<0.05).

Conclusion

The bond strength of the three soft denture liners tested in this study changed with their chemical composition and all of them exhibited higher bond strengths than those usually reported as clinically acceptable.

Clinical Implications

All soft lining materials tested in this study showed a significant decrease in the bond strength to an acrylic denture base resin after thermocycling. In spite of thermocycling, though, the silicone-based liners had satisfactory bond strengths for clinical application.  相似文献   

13.
PURPOSEThis study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs).MATERIALS AND METHODSGC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope.RESULTSRMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05).CONCLUSIONMSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.  相似文献   

14.
15.
Objective:To measure enamel surface changes after ceramic bracket debonding and after cleanup.Materials and Methods:Forty extracted teeth were scanned in three dimensions using an optical scanner (baseline). Two ceramic bracket systems were placed (19 metal-reinforced polycrystalline ceramic brackets; 21 monocrystalline ceramic brackets). Seven days later, brackets were debonded and teeth scanned (post-debond). Adhesive remnants and bracket fragments were recorded. Tooth surfaces were cleaned using a finishing carbide bur and scanned again (post-cleanup). Post-debond and post-cleanup scans were aligned with the baseline, and surface changes were quantified. Results were statistically compared using t-tests and Mann-Whitney tests (α  =  .05).Results:The depth of enamel loss (mean ± standard deviation) post-debond was 21 ± 8 µm and 33 µm and post-cleanup was 28 ± 14 µm and 18 ± 8 µm (P  =  .0191); the post-debond remnant thickness was 188 ± 113 µm and 120 ± 37 µm (P  =  .2381) and post-cleanup was 16 ± 5 µm and 15 µm for polycrystalline and monocrystalline ceramic brackets, respectively. The monocrystalline ceramic brackets predominantly left all adhesive on the tooth; the polycrystalline ceramic brackets were more likely to leave bracket fragments attached.Conclusion:Both systems allowed successful removal of the brackets with minimal enamel loss. However, the polycrystalline ceramic brackets left more fragments on the tooth, which complicated cleanup efforts.  相似文献   

16.
Objective:To determine and compare the longitudinal and transverse roughness parameters of the enamel surface of bovine teeth and evaluate the influence of these parameters on bond strength.Materials and Methods:Ninety bovine incisors were used. The surface roughness of enamel was measured with a profilometer. For each tooth, five readings were taken in the longitudinal plane and five were taken in the transverse plane of the long axis of the tooth in an area equal to the size of the bracket base. The metal brackets were bonded with Transbond XT, and bond strength was evaluated in a universal test machine.Results:There was a statistical correlation (P < .01) between the longitudinal and transverse roughness measurements. There was no correlation between roughness measurements (longitudinal and transverse) and bond strength (P > .05), nor was there a correlation between total roughness (longitudinal Ra and transverse Ra) and bond strength. The Student''s t-test showed that there was a statistically significant difference (P < .05) between longitudinal and transverse roughness.Conclusion:The transverse roughness is greater than the longitudinal roughness, there is a strong correlation between longitudinal and transverse roughness, and there is no correlation between enamel roughness and bond strength.  相似文献   

17.
Objective:To investigate the shear bond strength (SBS) of orthodontic brackets bonded to eroded enamel treated with preventive approaches and to examine the enamel/bracket interfaces.Materials and Methods:Ninety-one brackets were bonded to seven groups of enamel samples: sound; eroded; eroded+treated with calcium silicate–sodium phosphate salts (CSP); eroded+infiltrated by ICON®; eroded+infiltrated by ICON® and brackets bonded with 1-month delay; eroded+infiltrated by an experimental resin; and eroded+infiltrated by an experimental resin and brackets bonded with 1-month delay. For each group, 12 samples were tested in SBS and bond failure was assessed with the adhesive remnant index (ARI); one sample was examined using scanning electron microscopy (SEM).Results:Samples treated with CSP or infiltration showed no significant differences in SBS values with sound samples. Infiltrated samples followed by a delayed bonding showed lower SBS values. All of the values remained acceptable. The ARI scores were significantly higher for sound enamel, eroded, and treated with CSP groups than for all infiltrated samples. SEM examinations corroborated the findings.Conclusions:Using CSP or resin infiltration before orthodontic bonding does not jeopardize the bonding quality. The orthodontic bonding should be performed shortly after the resin infiltration.  相似文献   

18.
ObjectivesTo examine the effect of micro-osteoperforation (MOP) on the space closure rate using passive self-ligating or conventional brackets.Materials and MethodsThis was a two-arm parallel randomized controlled trial undertaken at the outpatient department of a dental college. There were 60 participants (30 women and 30 men) who fulfilled the inclusion criteria. Both the study and control groups were subjected to MOPs throughout the period of space closure. MOPs were repeated every 28 days. The experimental group (mean age 19.5 ± 1.66 years) was bonded with passive self-ligating brackets while the control group (mean age 19.9 ± 1.13 years) was bonded with conventional brackets. Both groups were examined and compared for rate of space closure. An evaluation was conducted for both groups until the entire extraction space was closed and confirmed by evaluation of a tight contact between the canine and the second premolar using a piece of dental floss.ResultsBefore the initiation of retraction, all initial criteria were similar between the two groups (P > .05). No difference was observed between the two groups in the rate of space closure (P > .05).ConclusionsMOP in conjunction with passive self-ligation does not increase the rate of orthodontic space closure when compared with MOP used with conventional brackets.  相似文献   

19.

PURPOSE

This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment.

MATERIALS AND METHODS

Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey''s test.

RESULTS

In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05).

CONCLUSION

In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.  相似文献   

20.
Objective:To evaluate in vitro the influence of topical fluoride application on the mechanical properties of orthodontic cements containing fluoride under pH cycling conditions.Materials and Methods:Edgewise brackets for maxillary central incisors were bonded to 192 bovine incisors using Transbond XT (G1), Transbond Plus Color Change (G2), and Fuji Ortho LC (G3) (n  =  64 for each group). The specimens of each group were subdivided (n  =  16) into different subgroups. Subgroup A received no topical fluoride application during pH cycling, while the experimental subgroups received topical fluoride treatments as follows: B, application three times per day of fluoride dentifrice (1450 ppm F); C, application one time per day of fluoride mouth rinse (250 ppm F); and D, combination of fluoride dentifrice and fluoride mouth rinse. After 14 days of pH cycling, the shear bond strength and Adhesive Remnant Index were evaluated statistically.Results:Polarized light microscopy showed that pH cycling induced mineral loss in all specimens. The topical application of fluoride did not have an influence on shear bond strength, although the association of fluoride dentifrice and mouth rinse increased the shear bond strength of the resinous cement without fluoride (P < .01). Regarding the Adhesive Remnant Index, no statistical differences were found within the groups G1 (P  =  .23), G2 (P  =  .47), and G3 (P  =  .74).Conclusion:Topical fluoride treatments improved the shear bond strength of resinous cement, regardless of the material''s fluoride-releasing capacity, and reached the adhesive fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号