首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PI3K/Akt/mTOR pathway is overactivated and heat shock protein (HSP) 90 is overexpressed in common cancers. We hypothesized that targeting both pathways can kill intrahepatic cholangiocarcinoma (CCA) cells. HSP90 and PTEN protein expression was evaluated by immunohistochemical staining of samples from 78 patients with intrahepatic CCA. CCA cell lines and a thioacetamide (TAA)-induced CCA animal model were treated with NVP-AUY922 (an HSP90 inhibitor) and NVP-BEZ235 (a PI3K/mTOR inhibitor) alone or in combination.Both HSP90 overexpression and loss of PTEN were poor prognostic factors in patients with intrahepatic CCA. The combination of the HSP90 inhibitor NVP-AUY922 and the PI3K/mTOR inhibitor NVP-BEZ235 was synergistic in inducing cell death in CCA cells. A combination of NVP-AUY922 and NVP-BEZ235 caused tumor regression in CCA rat animal model. This combination not only inhibited the PI3K/Akt/mTOR pathway but also induced ROS, which may exacerbate the vicious cycle of ER stress. Our data suggest simultaneous targeting of the PI3K/mTOR and HSP pathways for CCA treatment.  相似文献   

2.
Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL.  相似文献   

3.
Phosphatidylinositol 3-kinase (PI3K) signaling plays a critical role in cholangiocarcinoma (CCA), as well as anti-cancer drug resistance and autophagy, the type II program cell death regulation. In this work, we aimed to: (1) determine the expression levels of several key components of PI3K signaling and (2) evaluate whether NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, could inhibit CCA cell growth. Immunohistochemistry for p85α, p110α, AKT, p-AKT (T308), mTOR, p-mTOR (S2448), GSK-3β, p-GSK-3β (S9), PTEN, and p-PTEN (S380, T382/383) was performed in 30 CCA patients. Western blotting was used to analyze PTEN and p-PTEN expression in the cell lines (KKU-OCA17, KKU-100, KKU-M055, KKU-M139, KKU-M156, KKU-M213, and KKU-M214). The effects of NVP-BEZ235 on CCA cells were evaluated using a growth inhibition assay, flow cytometer and migration assay. Increased activation of PI3K/AKT signaling was reproducibly observed in the CCA tissues. The expression of p85α, mTOR, and GSK-3β was significantly correlated with metastasis. Interestingly, PTEN suppression by loss of expression or inactivation by phosphorylation was observed in the majority of patients. Furthermore, NVP-BEZ235 effectively inhibited CCA cell growth and migration through reduced AKT and mTOR phosphorylation and significantly induced G1 arrest without apoptosis induction, although increase autophagy response was observed. In conclusion, the constitutive activation of PI3K/AKT pathway in CCA is mainly due to PTEN inactivation by either loss of expression or phosphorylation along with an increased expression in its pathway components heralding a poor prognosis for CCA patients. This work also indicates that inhibition of PI3K and mTOR activity by the inhibitor NVP-BEZ235 has anti-cancer activity against CCA cells which might be further tested for CCA treatment.  相似文献   

4.
Dysregulation of the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway frequently occurs in human tumors, and is therefore considered to be a good molecular target for treatment. In hepatocellular carcinoma (HCC), overexpression of p-Akt and decrease of PTEN expression have been reported. NVP-BEZ235 is a novel dual inhibitor of PI3K and mTOR; however, its effect on HCC has not been documented. Consequently, we investigated the effects of NVP-BEZ235 on the PLC/PRF/5, HLE, JHH7 and HepG2 HCC cell lines in vitro and in vivo. NVP-BEZ235 decreased the levels of p-Akt and p-p70S6K and inhibited cell proliferation in all HCC cell lines in a dose-dependent manner. Flow cytometric analysis revealed that inhibition of cell proliferation by NVP-BEZ235 was accompanied by G1 arrest in all cell lines, and that NVP-BEZ235 induced apoptosis in PLC/PRF/5 and HLE cells. Tumor growth was suppressed without body weight loss when NVP-BEZ235 was orally administered to JHH-7 tumor-bearing mice for 11 days. These results suggest that NVP-BEZ235 is a potential new candidate for targeted HCC therapy.  相似文献   

5.
Recent studies have identified that constitutively active phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is an important feature of osteosarcoma, where it promotes cell proliferation, survival, and chemo-resistance. Here, we studied the therapeutic potential of NVP-BEZ235, a novel dual PI3K/mTOR dual inhibitor, on osteosarcoma cells in vivo and in vitro. NVP-BEZ235 was cytotoxic and cytostatic to a panel of osteosarcoma lines (MG-63, U2OS and SaOs-2), where it induce apoptosis and cell-cycle arrest. At the molecular level, NVP-BEZ235 inhibited PI3K-AKT-mTORC1 activation and downregulated cyclin D1/cyclin B1 expressions, while increasing MEK/Erk phosphorylation in osteosarcoma cells. MEK/Erk inhibitors PD98059 and MEK-162 increased NVP-BEZ235 activity on osteosarcoma cells. In vivo, oral NVP-BEZ235 inhibited U2OS xenograft in SCID mice, and its anti-tumor efficiency was further enhanced by MEK-162 co-administration. Taken together, our findings indicate that dual inhibition of PI3K and mTOR with NVP-BEZ235, either alone or in combination with MEK/Erk inhibitors, may be an efficient treatment for osteosarcoma.  相似文献   

6.
Tumorigenesis occurs due to synergistic interactions from a complex of signal transduction processes, including multiple onco-proteins and tumor suppressors such as Ras, Myc, PI3K/Akt/mTOR, Her-2/Neu, p53 and PTEN. Specifically, the PI3K/Akt and mTOR pathways have been shown to play a pivotal role on the initiation and progression of malignancies, enhancing cell survival by stimulating cell proliferation, and inhibiting apoptosis. Therefore, it is critical to examine therapeutic agents that explicitly target both the PI3K/Akt and mTOR signaling cascades in diseases, such as Waldenstrom Macroglobulinemia (WM), that harbor activation of the PI3K/Akt pathway. We demonstrated that dual targeting of the PI3K and mTOR pathways by the novel inhibitor NVP-BEZ235, exhibited toxicity on WM cells by directly targeting the tumor clone and indirectly through an effect on the bone marrow milieu. These findings suggest that dual targeting of the PI3K and mTOR pathways is a better modality of targeted therapy for tumors that harbor activation of the PI3K/mTOR pathways, such as in WM.  相似文献   

7.
郭双双  张治业  王颖 《癌症进展》2017,15(12):1412-1416
目的 探讨PI3K/AKT/MTOR信号通路对肾癌A498细胞增殖、迁移及侵袭的影响.方法 选用PI3K/MTOR双重阻断剂NVP-BEZ235体外处理肾癌A498细胞,浓度分别为0、100、250、500 nmol/L.48 h后采用蛋白质印迹法(Western blot)检测肾癌A498细胞中AKT和MTOR蛋白磷酸化情况;MTT法检测细胞增殖情况;细胞划痕实验检测细胞迁移能力;Transwell小室检测细胞侵袭能力;Western blot法检测细胞中E-Cadherin和PTEN蛋白表达变化.结果 肾癌A498细胞中p-AKT、MTOR、p-MTOR、E-Cadherin、PTEN的表达及细胞增殖率、迁移率、穿膜细胞数量各自在不同NVP-BEZ235浓度下比较,差异均有统计学意义(P﹤0.01).与0 nmol/L组比较,100、250、500 nmol/L的NVP-BEZ235处理肾癌A498细胞后,细胞中磷酸化蛋白p-AKT和p-MTOR的表达均下调,细胞增殖率下降,细胞迁移率下降,穿膜细胞数量减少,细胞中E-Cadherin和PTEN蛋白表达均上调,差异均有统计学意义(P﹤0.05).结论 通过阻断PI3K/AKT/MTOR信号通路可以抑制肾癌A498细胞的增殖、迁移和侵袭,可能与上调细胞中E-Cadherin和PTEN蛋白表达有关.  相似文献   

8.
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha.  相似文献   

9.
Salivary gland tumor (SGT) is one of the least studied cancers due to its rarity and heterogeneous histological types. Here, we reported that loss of PTEN expression was most frequently found in the poorly differentiated, high grade solid adenoid cystic carcinomas. Loss of PTEN expression correlated with activation of mTOR by increased phosphorylated S6 ribosome protein. We further functionally studied the role of PTEN in a pair of human SACC cell lines, SACC-83 and SACC-LM. Reduced PTEN level was correlated with the metastasis potential. When we knocked down PTEN in the SACC-83 cell line, we observed increased proliferation and enhanced migration/invasion in vitro, and increased tumor size in vivo. We further tested the therapeutical effect by applying a PI3K/mTOR inhibitor NVP-BEZ235 to both SACC cell lines. Decreased cell proliferation, increased apoptosis, as well as reduced cell migration/invasion were observed in both cell lines upon the NVP-BEZ235 treatment. Moreover, the NVP-BEZ235 treatment in a SGT xenograft mouse model significantly reduced primary tumor size and lung metastasis. Taken together, our results demonstrated that PTEN is a potent tumor suppressor in human SGTs, and targeting PI3K/mTOR pathway may be effective in the targeted therapy for human SGT patients with loss of PTEN expression.  相似文献   

10.
目的 探讨PI3K/Akt/mTOR信号通路在表阿霉素抑制人T细胞淋巴瘤细胞株Jurkat细胞增殖和诱导凋亡中的作用。方法 用0、1.25、2.5、5、10μmol/L表阿霉素和0、0.25、0.5、1、2μmol/L PI3K/mTOR双重抑制剂(NVP-BEZ235)对Jurkat细胞作用48h后,CCK-8试剂盒检测Jurkat细胞株增殖抑制情况;采用AnnexinⅤ/PE双染法流式细胞术检测上述药物作用Jurkat细胞48h的凋亡率以及5μmol/L表阿霉素和2μmol/L NVP BEZ235单独及联合作用Jurkat细胞0、12、24、36、48h的凋亡率;Western blotting法检测5、10μmol/L的表阿霉素作用Jurkat细胞0、6、12、24、48h,以及5μmol/L表阿霉素与2μmol/L NVP BEZ235单独及联合作用Jurkat细胞24、48h的PI3K/Akt/mTOR信号通路中Akt、mTOR、p70s6k等表达变化。结果 表阿霉素能够抑制Jurkat细胞增殖并诱导其凋亡,且凋亡作用呈浓度依赖性,5μmol/L表阿霉素作用Jurkat细胞48h的凋亡率为57.72%。在表阿霉素诱导Jurkat细胞凋亡过程中伴随Akt、mTOR、p70s6k的表达变化, NVP-BEZ235能够降低Jurkat细胞Akt、p70s6k的磷酸化水平,显著提高表阿霉素诱导Jurkat细胞凋亡的作用,5μmol/L表阿霉素和2μmol/L NVP-BEZ235联合作用Jurkat细胞48h的凋亡率达78.31%,明显高于5μmol/L表阿霉素的57.72%。结论 表阿霉素抑制Jurkat细胞增殖和诱导凋亡与PI3K/Akt/mTOR信号通路有关,当该通路抑制剂与表阿霉素联用时,Jurkat细胞对于表阿霉素敏感性有一定程度的提高。  相似文献   

11.

Background

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is activated in tumor cells and promotes tumor cell survival after radiation-induced DNA damage. Because the pathway may not be completely inhibited after blockade of PI3K itself, due to feedback through mammalian target of rapamycin (mTOR), more effective inhibition might be expected by targeting both PI3K and mTOR inhibition.

Materials and methods

We investigated the effect of two dual PI3K/mTOR (both mTORC1 and mTORC2) inhibitors, NVP-BEZ235 and NVP-BGT226, on SQ20B laryngeal and FaDu hypopharyngeal cancer cells characterised by EGFR overexpression, on T24 bladder tumor cell lines with H-Ras mutation and on endothelial cells. Analysis of target protein phosphorylation, clonogenic survival, number of residual ??H2AX foci, cell cycle and apoptosis after radiation was performed in both tumor and endothelial cells. In vitro angiogenesis assays were conducted as well.

Results

Both compounds effectively inhibited phosphorylation of Akt, mTOR and S6 target proteins and reduced clonogenic survival in irradiated tumor cells. Persistence of DNA damage, as evidenced by increased number of ??H2AX foci, was detected after irradiation in the presence of PI3K/mTOR inhibition, together with enhanced G2 cell cycle delay. Treatment with one of the inhibitors, NVP-BEZ235, also resulted in decreased clonogenicity after irradiation of tumor cells under hypoxic conditions. In addition, NVP-BEZ235 blocked VEGF- and IR-induced Akt phosphorylation and increased radiation killing in human umbilical venous endothelial cells (HUVEC) and human dermal microvascular dermal cells (HDMVC). NVP-BEZ235 inhibited VEGF-induced cell migration and capillary tube formation in vitro and enhanced the antivascular effect of irradiation. Treatment with NVP-BEZ235 moderately increased apoptosis in SQ20B and HUVEC cells but not in FaDu cells, and increased necrosis in both tumor and endothelial all cells tumor.

Conclusions

The results of this study demonstrate that PI3K/mTOR inhibitors can enhance radiation-induced killing in tumor and endothelial cells and may be of benefit when combined with radiotherapy.  相似文献   

12.
Breast cancer is the second most common cause of cancer-associated mortality among women worldwide, and triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Berbamine (BBM) is a traditional Chinese medicine used for the treatment of leukopenia without any obvious side effects. Recent reports found that BBM has anti-cancer effects. The present study aimed to investigate the effects of BBM on TNBC cell lines and the underlying molecular mechanism. MDA-MB-231 cells and MCF-7 cells, two TNBC cell lines, were treated with various concentrations of BBM. A series of bioassays including MTT, colony formation, EdU staining, apoptosis, trypan blue dye, wound healing, transwell, ELISA and western blotting assays were performed. The results showed that BBM significantly inhibited cell proliferation of MDA-MB-231 cells (P<0.05; IC50=22.72 µM) and MCF-7 cells (P<0.05; IC50=20.92 µM). BBM (20 µM) decreased the apoptosis ratio (percentage of absorbance compared with the control group) by 28.4±3.3% (P<0.05) in MDA-MB-231 cells, and 62.4±24.6% (P<0.05) in MCF-7 cells. In addition, BBM inhibited cell migration and invasion of TNBC cells. Furthermore, the expression levels of PI3K, phosphorylated-Akt/Akt, COX-2, LOX, MDM2 and mTOR were downregulated by BBM, and the expression of p53 was upregulated by BBM. These results indicated that BBM may suppress the development of TNBC via regulation of the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signal pathways. Therefore, BBM might be used as a drug candidate for the treatment of TNBC in the future.  相似文献   

13.
Several studies have established a link between aberrant PI(3)K–Akt–mTOR- and Ras–Raf–MEK–Erk1/2 signaling and neuroendocrine tumor disease. In this study, we comparatively investigate the antitumor potential of novel small-molecule inhibitors targeting mTOR (RAD001), mTOR/PI(3)K (NVP-BEZ235) and Raf (Raf265) on human NET cell lines of heterogeneous origin. All inhibitors induced potent antitumor effects which involved the induction of apoptosis and G0/G1 arrest. However, the dual mTOR/PI(3)K inhibitor NVP-BEZ235 was more efficient compared to the single mTOR inhibitor RAD001. Consistently, NVP-BEZ235 prevented the negative feedback activation of Akt as observed after treatment with RAD001. Raf265 inhibited Erk1/2 phosphorylation but strongly induced Akt phosphorylation and VEGF secretion, suggesting the existence of a compensatory feedback loop on PI3K-Akt signaling. Finally, combined treatment with RAD001 or NVP-BEZ235 and Raf265 was more efficient than single treatment with either kinase inhibitor. Together, our data provide a rationale for dual targeting of PI(3)K–Akt–mTOR- and Ras–Raf–MEK–Erk1/2 signaling in NET disease.  相似文献   

14.
Women with type 2 diabetes mellitus (T2DM) are at a greater risk of developing and dying from breast cancer than women without T2DM. Insulin resistance and hyperinsulinemia underlie the pathogenesis of T2DM. In the MKR mouse model of insulin resistance, we have previously shown increased activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway in association with accelerated mammary tumor growth. In this study, we demonstrate that inhibiting PI3K with the oral pan-class I PI3K inhibitor, NVP-BKM120 reduced the growth of Met-1 and MCNeuA mammary tumor orthografts in the MKR mouse. NVP-BKM120 treatment decreased phosphorylation of Akt and S6 ribosomal protein (S6rp); no change in Erk1/2 phosphorylation was seen. Hyperglycemia, hypertriglyceridemia and greater hyperinsulinemia developed in the MKR mice treated with NVP-BKM120. We previously reported reduced tumor growth using intraperitoneal rapamycin in the MKR mouse, with the development of hyperglycemia and hypertriglyceridemia. Therefore, we examined whether the oral PI3K/mTOR inhibitor NVP-BEZ235 augmented the tumor suppressing effects of PI3K inhibition. We also investigated the effect of targeted PI3K/mTOR inhibition on PI3K/Akt/mTOR and Erk1/2 signaling, and the potential effects on glycemia. NVP-BEZ235 suppressed the growth of Met-1 and MCNeuA tumor orthografts, and decreased Akt and S6rp phosphorylation, despite increased Erk1/2 phosphorylation in Met-1 orthografts of MKR mice. Less marked hyperglycemia and hyperinsulinemia developed with NVP-BEZ235 than NVP-BKM120. Overall, the results of this study demonstrated that inhibiting PI3K/Akt/mTOR signaling with the oral agents NVP-BKM120 and NVP-BEZ235 decreased mammary tumor growth in the hyperinsulinemic MKR mouse. Inhibiting PI3K alone led to more severe metabolic derangement than inhibiting both PI3K and mTOR. Therefore, PI3K may be an important target for the treatment of breast cancer in women with insulin resistance. Monitoring for hyperglycemia and dyslipidemia should be considered when using these agents in humans, given the metabolic changes detected in this study.  相似文献   

15.
南振华  潘灵辉 《肿瘤防治研究》2016,43(12):1035-1038
目的 探讨布洛芬通过PI3K/Akt/mTOR信号通路对肝癌QGY-7703细胞迁移和侵袭的调控机制。方法 取对数生长期人肝癌细胞QGY-7703,采用随机法分为两组,对照组(C组):加入等容量的RPMI l640培养液;实验组(B组):按照不同布洛芬浓度分为三个亚组:B1组250 μmol/L,B2组500 μmol/L、B3组1 000 μmol/L。各组分别作用24、48和72 h后,利用Transwell小室检测各组细胞的侵袭和迁移能力。各组分别作用48 h后,采用Real-time PCR检测各组细胞中PI3K、PTEN和MMP-9基因表达的变化;用Western blot检测各组细胞中PTEN、Akt、磷酸化Akt(p-Akt)、mTOR、磷酸化mTOR(p-mTOR)和MMP-9蛋白表达情况。结果 与C组比较,B1、B2、B3三组细胞迁移和侵袭能力均降低,具有浓度和时间的依赖性,差异有统计学意义(P<0.01);与C组比较,B1、B2、B3三组细胞PTEN mRNA和PTEN蛋白表达明显升高,且随着布洛芬作用浓度的增加而升高,具有浓度依赖性,差异有统计学意义(P<0.05);与C组比较,B1、B2、B3三组细胞PI3K mRNA、Akt和mTOR蛋白的表达量差异均无统计学意义(P>0.05);与C组比较,B1、B2、B3三组细胞MMP-9 mRNA和蛋白的表达以及p-Akt、p-mTOR蛋白的表达均显著下降,且随着布洛芬作用浓度的增加而降低,具有良好的浓度依赖性,差异有统计学意义(P<0.05)。结论 布洛芬可以抑制QGY-7703细胞的迁移和侵袭能力,与布洛芬对细胞PI3K/Akt/mTOR信号通路的调控有关。  相似文献   

16.
In this study, we have characterized a panel of NSCLC cell lines with differential sensitivity to gefitinib for activating mutations in egfr, pik3ca, and k-ras, and basal protein expression levels of PTEN. The egfr mutant NSCLC cell line H1650 as well as the egfr wild type cell lines H292 and A431 were highly sensitive to gefitinib treatment, indicating that other factors determine gefitinib-sensitivity in egfr wild type cells. Activating k-ras mutations were specifically detected in gefitinib-resistant cells, suggesting that the occurrence of k-ras mutations is correlated with resistance to EGFR antagonists. No pik3ca mutations were detected within the panel of cell lines, and PTEN protein expression levels did not correlate with gefitinib sensitivity. Gefitinib effectively blocked Akt and Erk phosphorylation in two gefitinib-sensitive NSCLC cell lines, further supporting our previous findings that persistent activity of the PI3K/Akt and/or Ras/Erk pathways is associated with gefitinib-resistance of NSCLC cell lines. Gefitinib-resistant NSCLC cell lines, showing EGFR-independent activity of the PI3K/Akt or Ras/Erk pathways, were treated with gefitinib in combination with specific inhibitors of mTOR, P13K, Ras, and MEK. Additive cytotoxicity was observed in A549 cells co-treated with gefitinib and the MEK inhibitor U0126 or the farnesyl transferase inhibitor SCH66336 and in H460 cells treated with gefitinib and the PI3K inhibitor LY294002, but not in H460 cells treated with gefitinib and rapamycin. These data suggest that combination treatment of NSCLC cells with gefitinib and specific inhibitors of the PI3K/Akt and Ras/Erk pathways may provide a successful strategy.  相似文献   

17.
Inhibitors of PI3K/Akt signaling are being actively developed for tumor therapy owing to the frequent mutational activation of the PI3K-Akt-mTORC1 pathway in many cancers, including glioblastomas (GBMs). NVP-BEZ235 is a novel and potent dual PI3K/mTOR inhibitor that is currently in phase 1/2 clinical trials for advanced solid tumors. Here, we show that NVP-BEZ235 also potently inhibits ATM and DNA-PKcs, the two major kinases responding to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs). Consequently, NVP-BEZ235 blocks both nonhomologous end joining and homologous recombination DNA repair pathways resulting in significant attenuation of DSB repair. In addition, phosphorylation of ATMtargets and implementation of the G2/M cell cycle checkpoint are also attenuated by this drug. As a result, NVP-BEZ235 confers an extreme degree of radiosensitization and impairs DSB repair in a panel of GBM cell lines irrespective of their Akt activation status. NVP-BEZ235 also significantly impairs DSB repair in a mouse tumor model thereby validating the efficacy of this drug as a DNA repair inhibitor in vivo. Our results, showing that NVP-BEZ235 is a potent and novel inhibitor of ATM and DNA-PKcs, have important implications for the informed and rational design of clinical trials involving this drug and also reveal the potential utility of NVP-BEZ235 as an effective radiosensitizer for GBMs in the clinic.  相似文献   

18.
The PI3K/Akt pathway is activated in many cancers; therefore, we investigated NVP-BEZ235, a dual PI3K/mTOR inhibitor. BEZ235 was more potent than either the mTOR inhibitor rapamycin or the PI3K inhibitor LY294002 in blocking HIF-1α induction. BEZ235 decreases protein translation, and 7-methyl GTP chromatography showed that the drug induced robust recruitment of 4E-BP1 to eIF4E and a near absence of binding of eIF4G. BEZ235 also decreased expression of other proteins known to be regulated by eIF4E including cyclin B1 and D1 and vascular endothelial growth factor (VEGF). BEZ235 also decreased the level of eIF4G but not eIF4E. As HIF-1α has been associated with adaptation to hypoxic stress, we examined the effect of the drug on cell survival in low pO 2. BEZ235 increased killing of cells under hypoxia, measured by short-term (MTT) and long-term (clonogenic) assays. To understand the underlying mechanism, we examined BEZ235's effect on the expression of factors associated with cell survival. Under normoxia, Akt Ser473 phosphorylation decreased within an hour of BEZ235 treatment, but then increased by 24 h. In contrast, under hypoxia, BEZ235 caused prolonged suppression of Akt Ser473 phosphorylation. Furthermore, there was greater PARP cleavage in hypoxic cells than in normoxic cells, consistent with increased apoptosis. BEZ235 increased autophagy as measured by LC3-I to LC3-II conversion under both normoxic and hypoxic conditions, but our data indicate that this is actually a pro-survival mechanism. In conclusion, we have found that BEZ235 blocks HIF-1α induction by decreasing protein translation and increases cell killing under hypoxia, likely by increasing apoptosis.  相似文献   

19.
Kim A  Park S  Lee JE  Jang WS  Lee SJ  Kang HJ  Lee SS 《Leukemia research》2012,36(7):912-920
Mantle cell lymphoma (MCL) is one of the most difficult B-cell lymphomas to be treated. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is constitutively activated in MCL and plays a critical role in tumor growth and survival. However, single targeted agent mTOR has limited efficacy in treating MCL. Here, we investigate for the first time potential efficacy of NVP-BEZ235 (BEZ235) in treating MCL by simultaneously targeting Akt and mTOR. In this study, phosphorylated Akt and mTOR level were elevated in tissue samples from MCL patients and in MCL cell lines. We also generated bortezomib-resistant MCL cell lines and found increased phosphorylation of Akt and mTOR. Individual inhibition of PI3K or mTOR had limited anti-proliferative effects, whereas dual inhibition with BEZ235 effectively inhibited cell growth. The effect of BEZ235 was synergistic and sensitized the cells to the cytotoxic effects of conventional agents. Furthermore, BEZ235 could overcome acquired resistance to bortezomib in MCL cells and suppress the activated Akt/mTOR pathway. Therefore, these data suggest that the Akt/mTOR pathway plays a key role in the growth and survival of MCL cells and that these proteins may need to be simultaneously targeted for effective treatment of the disease. Our findings suggest that BEZ235 may be an effective agent for the treatment of MCL.  相似文献   

20.
Despite recent improvements in chemotherapy and surgery, the problem of non-response osteosarcoma to chemotherapy remains, and is a parameter that is critical for prognosis. The present work investigated the therapeutic value of NVP-BEZ235, a dual class I PI3K/mTOR inhibitor. NVP-BEZ235 inhibited osteosarcoma cell proliferation by inducing G0/G1 cell cycle arrest with no caspase activation. In murine pre-clinical models, NVP-BEZ235 significantly slowed down tumor progression and ectopic tumor bone formation with decreased numbers of Ki67+ cells and reduced tumor vasculature. Finally, NVP-BEZ235 considerably improved the survival rate of mice with osteosarcoma. Taken together, the results of the present work show that NVP-BEZ235 exhibits therapeutic interest in osteosarcoma and may be a promising adjuvant drug for bone sarcomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号