首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The H5N1 avian influenza virus (AIV) causes widespread infections in bird and human respiratory tracts, and vaccines and drug therapy are limited in their effectiveness. Recent studies of AIV structures have been published and provide new targets for designing antiviral drugs such as antisense oligonucleotides (AS ODNs), which effectively inhibit gene replication. In this study, we designed and synthesized three AS ODNs (NP267, NP628, NP749) that were specific for the RNA binding region of nucleoprotein (NP) based on AIV structure. Results showed that all three AS ODNs could inhibit viral replication in MDCK cells. The NP628 showed the best antiviral effect of all through viral titers, quantitative RT-PCR and indirect immunofluorescence (IFA) assays. In addition, the liposome mediated NP628 could partially protect the mice from a lethal H5N1 influenza virus challenge. Moreover, the NP628 group had a lower viral titer and lung index in the infected mice when compared with the viral control. Our results showed that AS ODN targeting of the AIV NP gene could potently inhibit AIV H5N1 reproduction, thus, formulating a candidate for an emergent therapeutic drug for the pathogenic H5N1 influenza virus infection.  相似文献   

2.
Zhou H  Jin M  Yu Z  Xu X  Peng Y  Wu H  Liu J  Liu H  Cao S  Chen H 《Antiviral research》2007,76(2):186-193
RNA interference (RNAi) is a powerful tool to silence gene expression. Small interfering RNA (siRNA)-induced RNA degradation has been recently used as an antivirus agent to inhibit specific virus replication. Here, we showed that several siRNAs specific for conserved regions of influenza virus matrix (M2) and nucleocapsid protein (NP) genes could effectively inhibit expression of the corresponding viral protein. We also evaluated the antiviral potential of these siRNAs targeting M2 and NP of H5N1 avian influenza virus (AIV), which are essential to viral replication. We investigated the inhibitory effect of M2-specific siRNAs and NP-specific siRNAs on influenza A virus (H5N1, H1N1 and H9N2) replication in Madin-Darby canine kidney (MDCK) cells and BALB/c mice. The results showed that treatment with these siRNAs could specifically inhibit influenza A virus replication in MDCK cells (0.51-1.63 TCID(50) reduction in virus titers), and delivery of pS-M48 and pS-NP1383 significantly reduced lung virus titers in the infected mice (16-50-fold reduction in lung virus titers) and partially protected the mice from lethal influenza virus challenge (a survival rate of 4/8 for H1N1 virus-infected mice and 2/8 for H5N1 virus infected mice). Moreover, the treatment of pS-M48 and pS-NP1383 could suppress replication of different subtypes of influenza A viruses, including a H5N1 highly pathogenic avian isolate strain. The results provided a basis for further development of siRNA for prophylaxis and therapy of influenza virus infection in humans and animals.  相似文献   

3.
The influenza virus nucleoprotein (NP) is an emerging target for anti-influenza drug development. Nucleozin (1) and its closely related derivatives had been identified as NP inhibitors displaying anti-influenza activity. Utilizing 1 as a lead molecule, we successfully designed and synthesized a series of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza A agents. One of the most potent compounds, 3b, inhibited the replication of various H3N2 and H1N1 influenza A virus strains with IC(50) values ranging from 0.5 to 4.6 μM. Compound 3b also strongly inhibited the replication of H5N1 (RG14), amantidine-resistant A/WSN/33 (H1N1), and oseltamivir-resistant A/WSN/1933 (H1N1, 274Y) virus strains with IC(50) values in sub-μM ranges. Further computational studies and mechanism investigation suggested that 3b might directly target influenza virus A nucleoprotein to inhibit its nuclear accumulation.  相似文献   

4.
Jiang T  Zhao H  Li XF  Deng YQ  Liu J  Xu LJ  Han JF  Cao RY  Qin ED  Qin CF 《Antiviral research》2011,89(1):124-126
The 2009 H1N1 influenza virus pandemic poses a global public health threat, and there is a critical need for antiviral drugs for pandemic control. CpG oligodeoxynucleotides have strong immunostimulatory properties and are expected to be used as prophylactic agents to protect against microbial infections. The present study evaluated the efficacy of synthetic CpG oligodeoxynucleotide (ODN) 1826 against pandemic H1N1 virus infection in a murine model. A single injection of 15 μg ODN 1826 intraperitoneally prior to virus challenge inhibits virus replication in lungs, reduces lung lesions and prevents mortality in mice, indicating CpG ODNs as a possible strategy for future influenza pandemics control.  相似文献   

5.
6.
The 1918 pandemic H1N1 influenza virus and the recently emerged Southeast Asian H5N1 avian influenza virus are unique among influenza A virus isolates in their high virulence for humans and their lethality for a variety of animal species without prior adaptation. Reverse genetic studies have implicated several viral genes as virulence determinants. For both the 1918 and H5N1 viruses, the hemagglutinin and the polymerase complex contribute to high virulence. Non-structural proteins NS1 and PB1-F2, which block host antiviral responses, also influence pathogenesis. Additionally, recent studies correlate high levels of viral replication and induction of strong proinflammatory responses with the high virulence of these viruses. Defining how individual viral proteins promote enhanced replication, inflammation and severe disease will provide insight into the pathogenesis of severe influenza virus infections and suggest novel therapeutic approaches.  相似文献   

7.
Highly pathogenic influenza viruses pose a serious public health threat to humans. Although vaccines are available, antivirals are needed to efficiently control disease progression and virus transmission due to the emergence of drug-resistant viral strains. In this study, germacrone, which is a major component of the essential oils extracted from Rhizoma Curcuma, was found to inhibit influenza virus replication. Germacrone showed antiviral activity against the H1N1 and H3N2 influenza A viruses and the influenza B virus in a dose-dependent manner. The viral protein expression, RNA synthesis and the production of infectious progeny viruses were decreased both in MDCK and A549 cells treated with germacrone. In a time-of-addition study, germacrone was found to exhibit an inhibitory effect on both the attachment/entry step and the early stages of the viral replication cycle. Germacrone also exhibited an effective protection of mice from lethal infection and reduced the virus titres in the lung. Furthermore, the combination of germacrone and oseltamivir exhibited an additive effect on the inhibition of influenza virus infection, both in vitro and in vivo. Our results suggest that germacrone may have the potential to be developed as a therapeutic agent alone or in combination with other agents for the treatment of influenza virus infection.  相似文献   

8.
Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) is an antiviral drug that selectively inhibits the RNA-dependent RNA polymerase of influenza virus. It is phosphoribosylated by cellular enzymes to its active form, favipiravir-ribofuranosyl-5′-triphosphate (RTP). Its antiviral effect is attenuated by the addition of purine nucleic acids, indicating the viral RNA polymerase mistakenly recognizes favipiravir-RTP as a purine nucleotide. Favipiravir is active against a broad range of influenza viruses, including A(H1N1)pdm09, A(H5N1) and the recently emerged A(H7N9) avian virus. It also inhibits influenza strains resistant to current antiviral drugs, and shows a synergistic effect in combination with oseltamivir, thereby expanding influenza treatment options. A Phase III clinical evaluation of favipiravir for influenza therapy has been completed in Japan and two Phase II studies have been completed in the United States. In addition to its anti-influenza activity, favipiravir blocks the replication of many other RNA viruses, including arenaviruses (Junin, Machupo and Pichinde); phleboviruses (Rift Valley fever, sandfly fever and Punta Toro); hantaviruses (Maporal, Dobrava, and Prospect Hill); flaviviruses (yellow fever and West Nile); enteroviruses (polio- and rhinoviruses); an alphavirus, Western equine encephalitis virus; a paramyxovirus, respiratory syncytial virus; and noroviruses. With its unique mechanism of action and broad range of antiviral activity, favipiravir is a promising drug candidate for influenza and many other RNA viral diseases for which there are no approved therapies.  相似文献   

9.
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.  相似文献   

10.
The appearance of highly pathogenic avian influenza A viruses of the H5N1 subtype being able to infect humans and the 2009 H1N1 pandemic reveals the urgent need for new and efficient countermeasures against these viruses. The long-term efficacy of current antivirals is often limited, because of the emergence of drug-resistant virus mutants. A growing understanding of the virus-host interaction raises the possibility to explore alternative targets involved in the viral replication. In the present study we show that the proteasome inhibitor VL-01 leads to reduction of influenza virus replication in human lung adenocarcinoma epithelial cells (A549) as demonstrated with three different influenza virus strains, A/Puerto Rico/8/34 (H1N1) (EC50 value of 1.7 μM), A/Regensburg/D6/09 (H1N1v) (EC50 value of 2.4 μM) and A/Mallard/Bavaria/1/2006 (H5N1) (EC50 value of 0.8 μM). In in vivo experiments we could demonstrate that VL-01-aerosol-treatment of BALB/c mice with 14.1 mg/kg results in no toxic side effects, reduced progeny virus titers in the lung (1.1 ± 0.3 log10 pfu) and enhanced survival of mice after infection with a 5-fold MLD50 of the human influenza A virus strain A/Puerto Rico/8/34 (H1N1) up to 50%. Furthermore, treatment of mice with VL-01 reduced the cytokine release of IL-α/β, IL-6, MIP-1β, RANTES and TNF-α induced by LPS or highly pathogen avian H5N1 influenza A virus. The present data demonstrates an antiviral effect of VL-01 in vitro and in vivo and the ability to reduce influenza virus induced cytokines and chemokines.  相似文献   

11.
目的 对海洋来源的吲哚生物碱类化合物HDYL-GQQ-1932进行体外抗流感病毒活性研究。方法 CPE抑制实验测定HDYL-GQQ-1932对多种病毒株的增殖抑制作用。CPE实验结合血凝抑制和神经氨酸酶活性实验探究HDYL-GQQ-1932 作用病毒入侵细胞的方式以及细胞毒性,并且初步探究HDYL-GQQ-1932的作用靶点。 结果 HDYL-GQQ-1932体外对多种流感病毒株均有增殖抑制作用,其中对H1N1的抑制作用最强,IC50为26.1μM ,且无明显的细胞毒性,CC50为3313.2μM。通过不同作用方式以及不同作用时间的实验显示,感染后加入 HDYL-GQQ-1932能够很好的抑制病毒增值,且用HDYL-GQQ-1932预处理细胞后可明显降低病毒增殖。此外结果显示HDYL-GQQ-1932在病毒吸附后6-9 h有很好的抑制作用,且剂量依赖性地抑制神经氨酸酶(NA)的活力。故 HDYL-GQQ-1932可能是通过结合病毒神经氨酸酶并抑制其活性来阻断IAV的释放过程。结论 HDYL-GQQ-1932体外对甲型流感具有较好的抑制效果。本研究为海洋来源的该类小分子化合物的药物开发与理性改造提供了思路与方向。  相似文献   

12.
Antiviral effect of catechins in green tea on influenza virus   总被引:6,自引:0,他引:6  
Polyphenolic compound catechins ((-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG) and (-)-epigallocatechin (EGC)) from green tea were evaluated for their ability to inhibit influenza virus replication in cell culture and for potentially direct virucidal effect. Among the test compounds, the EGCG and ECG were found to be potent inhibitors of influenza virus replication in MDCK cell culture and this effect was observed in all influenza virus subtypes tested, including A/H1N1, A/H3N2 and B virus. The 50% effective inhibition concentration (EC50) of EGCG, ECG, and EGC for influenza A virus were 22-28, 22-40 and 309-318 microM, respectively. EGCG and ECG exhibited hemagglutination inhibition activity, EGCG being more effective. However, the sensitivity in hemagglutination inhibition was widely different among three different subtypes of influenza viruses tested. Quantitative RT-PCR analysis revealed that, at high concentration, EGCG and ECG also suppressed viral RNA synthesis in MDCK cells whereas EGC failed to show similar effect. Similarly, EGCG and ECG inhibited the neuraminidase activity more effectively than the EGC. The results show that the 3-galloyl group of catechin skeleton plays an important role on the observed antiviral activity, whereas the 5'-OH at the trihydroxy benzyl moiety at 2-position plays a minor role. The results, along with the HA type-specific effect, suggest that the antiviral effect of catechins on influenza virus is mediated not only by specific interaction with HA, but altering the physical properties of viral membrane.  相似文献   

13.
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase(NA)inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration(FDA)for the prevention and treatment of influenza. Here, we show that vitisin B(VB)inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species(ROS), which frequently occur during viral infection,increase vi...  相似文献   

14.
Kim A  Lee JY  Byun SJ  Kwon MH  Kim YS 《Antiviral research》2012,94(2):157-167
Influenza A virus infection is a great threat to avian species and humans. Targeting viral proteins by antibody has a limited success due to the antigen drift and shift. Here we present a novel antibody-based antiviral strategy of targeting viral genomic RNA (vRNA) for degradation rather than neutralizing viral proteins. Based on the template of a sequence-nonspecific nucleic acid-hydrolyzing, single domain antibody of the light chain variable domain, 3D8 VL, we generated a synthetic library on the yeast surface by randomizing putative nucleic acid interacting residues. To target nucleocapsid protein (NP)-encoding viral genomic RNA (NP-vRNA) of H9N2 influenza virus, the library was screened against a 18-nucleotide single stranded nucleic acid substrate, dubbed asNP(18), the sequence of which is unique to the NP-vRNA. We isolated a 3D8 VL variant, NP25, that had ~15-fold higher affinity (~54nM) and ~3-fold greater selective hydrolyzing activity for the target substrate than for off targets. In contrast to 3D8 VL WT, asNP(18)-selective NP25 constitutively expressed in the cytosol of human lung carcinoma A549 cells does not exhibit any significant cytotoxicity and selectively degrades a reporter mRNA carrying the target asNP(18) sequence in the stable cell lines. NP25 more potently inhibits the replication of H9N2 influenza virus than 3D8 VL WT in the stable cell lines. NP25 more selectively reduces the amount of the targeted NP-vRNA than 3D8 VL WT from the early stage of virus infection in the stable cell lines, without noticeable harmful effects on the endogenous mRNA, suggesting that NP25 indeed more specifically recognizes to hydrolyze the target NP-vRNA of H9N2 virus than off-targets. Our results provide a new strategy of targeting viral genomic RNA for degradation by antibody for the prevention of influenza virus infection in humans and animals.  相似文献   

15.
Our previous study demonstrated that Melaleuca alternifolia (tea tree) oil (TTO) had an interesting antiviral activity against Influenza A in MDCK cells. In fact, when we tested TTO and some of its components, we found that TTO had an inhibitory effect on influenza virus replication at doses below the cytotoxic dose; terpinen-4-ol, terpinolene, and alfa-terpineol were the main active components. The aim of this study was to investigate the mechanism of action of TTO and its active components against Influenza A/PR/8 virus subtype H1N1 in MDCK cells. None of the test compounds showed virucidal activity nor any protective action for the MDCK cells. Thus, the effect of TTO and its active components on different steps of the replicative cycle of influenza virus was studied by adding the test compounds at various times after infection. These experiments revealed that viral replication was significantly inhibited if TTO was added within 2h of infection, indicating an interference with an early step of the viral replicative cycle of influenza virus. The influence of the compound on the virus adsorption step, studied by the infective center assay, indicated that TTO did not interfere with cellular attachment of the virus. TTO did not inhibit influenza virus neuraminidase activity, as shown by the experiment measuring the amount of 4-methylumbelliferone, cleaved by the influenza virus neuraminidase from the fluorogenic substrate 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid. The effect of TTO on acidification of cellular lysosomes was studied by vital staining with acridine orange using bafilomycin A1 as positive control. The treatment of cells with 0.01% (v/v) of TTO at 37°C for 4h before staining inhibited the acridine orange accumulation in acid cytoplasmic vesicles, indicating that TTO could inhibit viral uncoating by an interference with acidification of intralysosomal compartment.  相似文献   

16.
In an avian flu pandemic, which drugs could be used to treat or prevent infection with influenza A (H5N1) virus? Foremost are the viral neuraminidase inhibitors oseltamivir and zanamivir, which have already been used to treat human influenza A (H1N1 and H3N2) and B virus infections. The use of the M2 ion channel blockers amantadine and rimantadine is compounded by the rapid development of drug resistance. Although formally approved for other indications (i.e. treatment of hepatitis C), ribavirin and pegylated interferon might also be useful for controlling avian flu. Combined use of the currently available drugs should be taken into account and attempts should be made to develop new strategies directed at unexplored targets such as the viral proteins hemagglutinin, the viral polymerase (and endonuclease) and the non-structural protein NS1. As has been shown for other viral infections, RNA interference could be a powerful means with which to suppress the replication of avian H5N1.  相似文献   

17.
Carrageenan polysaccharide has been reported to be able to inhibit the infection and replication of many different kinds of viruses. Here, we demonstrated that a 2 kDa κ-carrageenan oligosaccharide (CO-1) derived from the carrageenan polysaccharide, effectively inhibited influenza A (H1N1) virus replication in MDCK cells (selectivity index >25.0). Moreover, the 2 kDa CO-1 inhibited influenza A virus (IAV) replication better than that of 3 kDa and 5 kDa κ-carrageenan oligosaccharides (CO-2 and CO-3). IAV multiplication was suppressed by carrageenan oligosaccharide treatment in a dose-dependent manner. Carrageenan oligosaccharide CO-1 did not bind to the cell surface of MDCK cells but inactivated virus particles after pretreatment. Different to the actions of carrageenan polysaccharide, CO-1 could enter into MDCK cells and did not interfere with IAV adsorption. CO-1 also inhibited IAV mRNA and protein expression after its internalization into cells. Moreover, carrageenan oligosaccharide CO-1 had an antiviral effect on IAV replication subsequent to viral internalization but prior to virus release in one replication cycle. Therefore, inhibition of IAV intracellular replication by carrageenan oligosaccharide might be an alternative approach for anti-influenza A virus therapy.  相似文献   

18.
Influenza virosome is one of the commercially available vaccines that have been used for a number of years. Like other influenza vaccines, the efficacy of the virosomal vaccine is significantly compromised when circulating viruses do not have a good match with vaccine strains due to antigenic drift or less frequent emergence of a pandemic virus. A major advantage of virosome over other influenza vaccine platforms is its intrinsic adjuvant activity and potential carrier capability which have been exploited in this study to broaden vaccine protectivity by incorporating a conserved component of influenza virus in seasonal vaccine formulation. Influenza nucleoprotein (NP)-encoding plasmid was adsorbed onto surface of influenza virosomes as a virosome/DNA vaccine complex. Mice were immunized with a single dose of the influenza virosome attached with the NP plasmid or NP plasmid alone where both influenza virosomes and NP gene were derived from influenza A virus H1N1 New/Caledonia strain. Analysis of the cellular immune responses showed that 5μg (10-fold reduced dose) of the NP plasmid attached to the virosomes induced T cell responses equivalent to those elicited by 50μg of NP plasmid alone as assessed by IFN-γ and granzyme B ELISPOT. Furthermore, the influenza virosome/NP plasmid complex protected mice against intra-subtypic challenge with the mouse adapted H1N1 PR8 virus, while mice immunized with the virosome alone did not survive. Results of hemagglutination inhibition test showed that the observed intra-subtypic cross-protection could not be attributed to neutralizing antibodies. These findings suggest that influenza virosomes could be equipped with an NP-encoding plasmid in a dose-sparing fashion to elicit anti-influenza cytotoxic immune responses and broaden the vaccine coverage against antigenic drift.  相似文献   

19.
Zhang J  Liu T  Tong X  Li G  Yan J  Ye X 《Antiviral research》2012,93(1):48-54
As influenza viruses have developed resistance towards current drugs, it is urgent to find potential novel antiviral inhibitors. Here we generated an influenza virus reporter cell line in which the luciferase gene was driven by the influenza virus promoter and screened a small compound library (NCI Diversity Set II). Ten compounds were identified to have inhibitory activity against influenza A virus H1N1. Among them, four compounds blocked influenza virus replication through inhibiting the activity of vRNP. The compound NSC 335506 inhibited HA-mediated membrane fusion. It showed the inhibitory activity against H1N1, H9N2 and H5N1 subtype but not H3N2. Our results demonstrated that influenza virus reporter cell is a very useful tool to identify novel inhibitors against influenza A virus.  相似文献   

20.
Oseltamivir and zanamivir are highly potent inhibitors of influenza A and B neuraminidase and operate by inhibiting viral replication, and more specifically, the release and the movement of the virus through mucus. Neuraminidase inhibitors reduce the severity and duration of symptoms, and prevent clinical influenza as post-exposure and seasonal prophylaxis. Both have similar efficacy; oseltamivir has a more convenient route of administration, and zanamivir a more favourable resistance profile. Pending availability of effective vaccines, neuraminidase inhibitors are the only specific antiviral drugs which might be opposed to a possible pandemic that could emerge from the current highly pathogenic H5N1 virus. Although the effectiveness of oseltamivir and zanamivir for the therapy of clinical H5N1 influenza is questionable, simulation models suggest that a combination of targeted antiviral prophylaxis and quarantine might be able to contain an emerging influenza strain at the source. As a consequence, after an initial lack of commercial success probably related to the mild intensity of seasonal influenza during the last winters, neuraminidase inhibitors are now stockpiled by many countries to prepare for an outbreak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号