首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Mucosal immunology》2016,9(3):659-668
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce cytokines, including tumor necrosis factor-α and interleukins (ILs), in the small intestine via a Toll-like receptor 4 (TLR4)-dependent pathway, leading to intestinal ulceration. Activation of the inflammasome promotes pro-caspase-1 cleavage, leading to pro-IL-1β maturation. We examined the role of NLRP3 inflammasome in NSAID-induced enteropathy. Small intestinal damage developed 3 h after indomethacin administration, accompanied by increases in IL-1β and NLRP3 mRNA expression and mature caspase-1 and IL-1β levels. In vivo blocking of IL-1β using neutralizing antibodies attenuated indomethacin-induced damage, whereas exogenous IL-1β aggravated it. NLRP3−/− and caspase-1−/− mice exhibited resistance to the damage with reduction of mature IL-1β production. This resistance was abolished by exogenous IL-1β. TLR4 deficiency prevented intestinal damage and inhibited upregulation of NLRP3 and IL-1β mRNAs and maturation of pro-caspase-1 and pro-IL-1β, whereas TLR4 activation by its agonists exerted opposite effects. Apyrase, an adenosine triphosphate (ATP) scavenger, or Brilliant Blue G, a purinergic P2X7 receptor antagonist, inhibited the damage as well as caspase-1 activation and IL-1β processing, despite there being sufficient amounts of pro-IL-1β and NLRP3. These results suggest that NLRP3 inflammasome-derived IL-1β plays a crucial role in NSAID-induced enteropathy and that both TLR4- and P2X7-dependent pathways are required for NLRP3 inflammasome activation.  相似文献   

2.
Currently, only about 30-50% of chronic hepatitis C virus (HCV) and hepatitis B virus (HBV) patients respond to IFN-based therapy. It has been suggested that IL-10 is involved in suppressing the activity of type I IFNs on antigen-presenting cells (APCs). However, the interaction between type I IFNs and IL-10 is still not clear. Here we report that IFN-α priming upregulated the expression of IL-10R1 on monocytes, and subsequently IL-10 induced a higher level of STAT3 phosphorylation in IFN-primed cells. This indicates that IFN-α increased the sensitivity of monocytes to IL-10, and as a result, TLR-induced IL-12p70 by IFN-pretreated cells was suppressed. Interestingly, both IFN-β and IL-29, a member of the type III IFN family, comparably sensitized monocytes and macrophages to IL-10 stimulation, indicating a general effect of IFN on the activity of IL-10 in APCs. In summary, we demonstrate that one of the consequences of priming human APCs with IFN is to promote the cells' sensitivity to IL-10, which leads to the inhibition of TLR-induced IL-12p70 production. Therefore, type I and III IFNs induce a suboptimal activation of immune cells. These findings are relevant for the development of strategies to further improve IFN-based therapy for patients with multiple sclerosis or viral hepatitis.  相似文献   

3.
Neutrophils play a pivotal role in the defense against bacterial, viral and fungal infections and are important mediators in the acute inflammatory response. At the same time, neutrophils are also in volved in sterile inflammatory responses that are triggered by endogenous ligands. A series of immediate effector functions and the expression of proinflammatory genes enable neutrophils to initiate the immune response against the injurious agent. Among these, interleukin-1β (IL-1β) plays a key role in the orchestration of the inflammatory response. Induction of IL-1β expression leads to production of cytosolic pro-IL-1β, which requires further processing by a proteolytic cleavage event. Caspase-1 was initially identified as the main IL-1β-converting enzyme, and the upstream events leading to caspase-1 activation were identified as so-called inflammasome complexes. Up to now, the inflammasome system has mainly been studied in macrophages, whereas the inflammasome was thought to play a redundant or no role in the cell intrinsic processing of pro-IL-1β in neutrophils. Here, we identify the expression of the components of the NLRP3 inflammasome complex in neutrophils and show that the NLRP3 inflammasome pathway is indeed operational in neutrophils. Our findings establish the NLRP3 inflammasome as a key step in the secretion of matured IL-1β by neutrophils.  相似文献   

4.
5.
6.
The proinflammatory cytokine IL-1β mediates high levels of immune activation observed during acute and chronic human immunodeficiency virus 1 (HIV-1) infection. Little is known about the mechanisms that drive IL-1β activation during HIV-1 infection. Here, we have identified a crucial role for abortive HIV-1 RNAs in inducing IL-1β in humans. Abortive HIV-1 RNAs were sensed by protein kinase RNA-activated (PKR), which triggered activation of the canonical NLRP3 inflammasome and caspase-1, leading to pro-IL-1β processing and secretion. PKR activated the inflammasome via ROS generation and MAP kinases ERK1/2, JNK, and p38. Inhibition of PKR during HIV-1 infection blocked IL-1β production. As abortive HIV-1 RNAs are produced during productive infection and latency, our data strongly suggest that targeting PKR signaling might attenuate immune activation during acute and chronic HIV-1 infection.  相似文献   

7.
《Mucosal immunology》2017,10(2):434-445
NLRP6 is a member of the Nod-like receptor family, whose members are involved in the recognition of microbes and/or tissue injury. NLRP6 was previously demonstrated to regulate the production of interleukin (IL)-18 and is important for protecting mice against chemically induced intestinal injury and colitis-associated colon cancer. However, the cellular mechanisms by which NLRP6 reduces susceptibility to colonic inflammation remain unclear. Here, we determined that NLRP6 expression is specifically upregulated in Ly6Chi inflammatory monocytes that infiltrate into the colon during dextran sulfate sodium (DSS)-induced inflammation. Adoptive transfer of wild-type (WT) Ly6Chi inflammatory monocytes into Nlrp6−/− mice was sufficient to protect them from mortality, significantly reducing intestinal permeability and damage. NLRP6-deficient inflammatory monocytes were defective in tumor necrosis factor α (TNFα) production, which was important for reducing DSS-induced mortality and was dependent on autocrine IL-18 signaling by inflammatory monocytes. Our data reveal a previously unappreciated role for NLRP6 in inflammatory monocytes, which are recruited after DSS-induced intestinal injury to promote barrier function and limit bacteria-driven inflammation. This study highlights the importance of early cytokine responses, particularly NLRP6-dependent and IL-18-dependent TNFα production, in preventing chronic dysregulated inflammation.  相似文献   

8.

Objective

Porphyromonas gingivalis is involved in the pathogenesis of chronic inflammatory periodontal disease. Recent studies have suggested that the NLRP3 inflammasome plays an important role in the development of chronic inflammation. We investigated a possible association between the inflammasome in gingival inflammation and bone loss induced by P. gingivalis infection using NLRP3-deficient mice.

Methods

Wild-type and NLRP3-deficient mice were injected orally with P. gingivalis. We assessed alveolar bone loss, expression of pro-interleukin (IL)-1β, pro-IL-18, receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) in gingival tissue, as well as IL-1β, IL-18, and IL-6 production and caspase-1 activity in peritoneal macrophages.

Results

Porphyromonas gingivalis challenge significantly increased alveolar bone loss; gingival gene expression of pro-IL-1β, pro-IL-18, and RANKL; production of IL-1β, IL-18, and IL-6; and caspase-1 activity in peritoneal macrophages of wild-type mice, but did not affect NLRP3-deficient mice. Meanwhile, OPG mRNA expression in gingival tissue and peritoneal IL-6 production were significantly higher in NLRP3-knockout mice.

Conclusions

Porphyromonas gingivalis activated innate immune cells via the NLRP3 inflammasome. These results suggest that the NLRP3 inflammasome, followed by a response from the IL-1 family, is critical in periodontal disease induced by wild-type P. gingivalis challenge via sustained inflammation.
  相似文献   

9.
10.
11.
The NLRP3 inflammasome is a molecular complex that translates signals from pathogens and tissue damage into inflammatory responses, and plays crucial roles in numerous neurological diseases. Activation of the NLRP3 inflammasome leads to caspase-1 dependent cleavage of pro-IL-1β to form mature IL-1β. By acting on the P2X7 purinergic receptor, extracellular ATP is one of the major stimuli that activates the NLRP3 inflammasome. Although microglia express multiple purinergic receptors, their roles in inflammasome-mediated inflammation are largely unknown. We studied the role of the P2Y12 receptor, a metabotropic P2Y receptor enriched in microglia, on inflammation in vitro. Inhibition of the microglial P2Y12 receptor by PSB0739 or siRNA knockdown suppressed IL-1β release. P2Y12 receptor-deficient microglia displayed markedly attenuated IL-1β mRNA expression and release. P2Y12 receptor blockade also suppressed IL-6 production. Both IL-1β and IL-6 responses were augmented by extracellular ADP or ADP-βS and were abrogated by PSB0739. Mechanistically, ADP-βS potentiated NF-κB activation. In addition, ADP altered mitochondrial membrane potential in combination with ATP and increased the number of caspase-1 positive cells through the P2Y12 receptor. These results elucidate a novel inflammatory mechanism by which extracellular ADP acts on the P2Y12 receptor to activate NF-κB and the NLRP3 inflammasome to enhance microglial inflammation.  相似文献   

12.
NOD-like receptor pyrin 7 (NLRP7) has been identified as the major gene responsible for the recurrent hydatidiform mole (RHM). The immunological role of NLRP7 mutation in HM patients has not been conclusively demonstrated. Hence, we aim to demonstrate this role in our study. We followed 12 new patients with NLRP7 non-synonymous variations (NSVs) from date to date. Peripheral blood mononuclear cells (PBMCs) were collected separately from patients with and without NLRP7 mutation. Supernatant interleukin (IL)-1β secretion, intracellular pro-IL-1β and mature IL-1β expressions were measured after 24 h lipopolysaccharide (LPS) stimulation. Plasmids with corresponding NSVs were generated to evaluate the ability of processing pro-IL-1β into mature IL-1β in vitro. Homozygous or compound heterozygous NLRP7 mutations secreted less IL-1β in roots of abnormal intracellular pro-IL-1β or mature IL-1β, according to different domains. Plasmids with NSVs could also affect processing or/and trafficking together with caspase-1 and apoptosis-associated speck-like protein (ASC). Inflammasome-related NLRP7 mutation is a potential mechanism of RHM.  相似文献   

13.
As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.  相似文献   

14.
Resident peritoneal macrophages (M?) from untreated mice and inflammatory M? induced by a sterile irritant were able to exert significant suppressive activity on lymphocyte functions. M?-mediated suppression was evident in lymphocyte proliferation and in a proliferation-independent lymphocyte response (i.e. lymphokine production). The lymphokine macrophage-activating factor (MAF), which enhances tumoricidal capacity of inflammatory but not of resident M? in vitro, was ineffective in modulating suppressive activity of both resident and inflammatory M?. In contrast, a significant effect on M?-mediated suppression was observed upon treatment with IFN-β. In fact, suppression of lymphoproliferation and of lymphokine production by either resident or inflammatory M? was significantly decreased or abolished by IFN-β. Like MAF, IFN-β was able to increase M? cytotoxicity against tumor cells. Such an effect, however, was evident in both resident and inflammatory M?, thus confirming different M? activation mechanisms for MAF and IFN-β. These data indicate that IFN-β acts mainly on mature M?, which thus appear as the major M? type involved in suppression. The contrasting effects of IFN-β on M? suppression and on M?-mediated cytotoxicity strongly suggest a dissociation between the 2 induction mechanisms of suppression and cytotoxicity. The in vivo relevance of these two IFN activities was demonstrated by treating mice with the potent IFN inducer polyinosinic polycytidylic acid (poly(I) poly(C)). M? from poly(I) poly(C)-primed mice simultaneously showed enhanced tumoricidal activity and complete abolishment of suppressive capacity.  相似文献   

15.
A better understanding about the mechanisms involved in the pathogenesis of type 2 diabetes mellitus (T2D) showed that inflammatory cytokines such as tumour necrosis factor (TNF) and interleukin (IL)-1β play a pivotal role, mirroring data largely reported in rheumatoid arthritis (RA). IL-1β is produced mainly by monocytes (MO), and hyperglycaemia may be able to modulate, in the cytoplasm of these cells, the assembly of a nucleotide-binding domain and leucine-rich repeat containing family pyrin (NLRP3)-inflammosome, a cytosolic multi-protein platform where the inactive pro-IL-1β is cleaved into active form, via caspase-1 activity. In this paper, we evaluated the production of IL-1 β and TNF, in peripheral blood MO of patients affected by RA or T2D or both diseases, in order to understand if an alteration of the glucose metabolism may influence their proinflammatory status. Our data showed, after 24 h of incubation with different glucose concentrations, a significantly increased production of IL-1β and TNF in all evaluated groups when compared with healthy controls. However, a significant increase of IL-1β secretion by T2D/RA was observed when compared with other groups. The analysis of relative mRNA expression confirmed these data. After 24 h of incubation with different concentrations of glucose, our results showed a significant increase in NLRP3 expression. In this work, an increased production of IL-1β by MO obtained from patients affected by both RA and T2D via NLRP3-inflammasome activation may suggest a potential IL-1β targeted therapy in these patients.  相似文献   

16.
17.
Upon sensing microbial and self-derived DNA, DNA sensors initiate innate immune responses. These sensors include the interferon (IFN)-inducible Toll-like receptor 9 (TLR9) and PYHIN proteins. Upon sensing DNA, cytosolic (murine Aim2 and human AIM2) and nuclear (IFI16) PYHIN proteins recruit an adaptor protein (ASC) and pro-caspase-1 to form an inflammasome, which activates caspase-1. The activated caspase-1 cleaves pro-IL-1β and pro-IL-18 to generate active forms. However, upon sensing cytosolic DNA, the IFI16 protein recruits STING to induce the expression of type I IFN. Recognition of self DNA by innate immune cells contributes to the production of increased levels of type I IFN. Given that the type I IFNs modulate the expression of inflammasome proteins and that the IFN-inducible proteins inhibit the activity of DNA-responsive inflammasomes, an improved understanding of the molecular mechanisms that regulate the activity of DNA-responsive inflammasomes is likely to identify new therapeutic targets to treat autoimmune diseases.  相似文献   

18.
19.
Streptococcus pneumoniae, a Gram-positive bacterial pathogen, causes pneumonia, meningitis, and septicemia. Innate immune responses are critical for the control and pathology of pneumococcal infections. It has been demonstrated that S. pneumoniae induces the production of type I interferons (IFNs) by host cells and that type I IFNs regulate resistance and chemokine responses to S. pneumoniae infection in an autocrine/paracrine manner. In this study, we examined the effects of type I IFNs on macrophage proinflammatory cytokine production in response to S. pneumoniae. The production of interleukin-18 (IL-18), but not other cytokines tested, was significantly decreased by the absence or blockade of the IFN-α/β receptor, suggesting that type I IFN signaling is necessary for IL-18 production. Type I IFN signaling was also required for S. pneumoniae-induced activation of caspase-1, a cysteine protease that plays a central role in maturation and secretion of IL-18. Earlier studies proposed that the AIM2 and NLRP3 inflammasomes mediate caspase-1 activation in response to S. pneumoniae. From our results, the AIM2 inflammasome rather than the NLRP3 inflammasome seemed to require type I IFN signaling for its optimal activation. Consistently, AIM2, but not NLRP3, was upregulated in S. pneumoniae-infected macrophages in a manner dependent on the IFN-α/β receptor. Furthermore, type I IFN signaling was found to contribute to IL-18 production in pneumococcal pneumonia in vivo. Taken together, these results suggest that type I IFNs regulate S. pneumoniae-induced activation of the AIM2 inflammasome by upregulating AIM2 expression. This study revealed a novel role for type I IFNs in innate responses to S. pneumoniae.  相似文献   

20.
Interleukin-1β (IL-1β) is a potent inflammatory cytokine that is usually cleaved and activated by inflammasome-associated caspase-1. To determine whether IL-1β activation is regulated by inhibitor of apoptosis (IAP) proteins, we treated macrophages with an IAP-antagonist "Smac mimetic" compound or genetically deleted the genes that encode the three IAP family members cIAP1, cIAP2, and XIAP. After Toll-like receptor priming, IAP inhibition triggered cleavage of IL-1β that was mediated not only by the NLRP3-caspase-1 inflammasome, but also by caspase-8 in a caspase-1-independent manner. In the absence of IAPs, rapid and full generation of active IL-1β by the NLRP3-caspase-1 inflammasome, or by caspase-8, required the kinase RIP3 and reactive oxygen species production. These results demonstrate that activation of the cell death-inducing ripoptosome platform and RIP3 can generate bioactive IL-1β and implicate them as additional targets for the treatment of pathological IL-1-driven inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号