首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Parkinson's disease (PD) is a major neurodegenerative condition with several rare Mendelian forms. Oxidative stress and mitochondrial function have been implicated in the pathogenesis of PD but the molecular mechanisms involved in the degeneration of neurons remain unclear. DJ-1 mutations are one cause of recessive parkinsonism, but this gene is also reported to be involved in cancer by promoting Ras signaling and suppressing PTEN-induced apoptosis. The specific function of DJ-1 is unknown, although it is responsive to oxidative stress and may play a role in the maintenance of mitochondria. Here, we show, using four independent methods, that DJ-1 associates with RNA targets in cells and the brain, including mitochondrial genes, genes involved in glutathione metabolism, and members of the PTEN/PI3K cascade. Pathogenic recessive mutants are deficient in this activity. We show that DJ-1 is sufficient for RNA binding at nanomolar concentrations. Further, we show that DJ-1 binds RNA but dissociates after oxidative stress. These data implicate a single mechanism for the pleiotropic effects of DJ-1 in different model systems, namely that the protein binds multiple RNA targets in an oxidation-dependent manner.  相似文献   

2.
Increasing evidence suggests that apoptosis may be the underlying cell death mechanism in the selective loss of dopaminergic neurons in Parkinson's disease. Because the inhibition of caspases provides only partial protection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP(+)) model of Parkinson's disease, we investigated the role of the proapoptotic c-Jun N-terminal kinase (JNK) signaling cascade in SH-SY5Y human neuroblastoma cells in vitro and in mice in vivo. MPTP/MPP(+) led to the sequential phosphorylation and activation of JNK kinase (MKK4), JNK, and c-Jun, the activation of caspases, and apoptosis. In mice, adenoviral gene transfer of the JNK binding domain of JNK-interacting protein-1 (a scaffold protein and inhibitor of JNK) inhibited this cascade downstream of MKK4 phosphorylation, blocked JNK, c-Jun, and caspase activation, the death of dopaminergic neurons, and the loss of catecholamines in the striatum. Furthermore, the gene transfer resulted in behavioral benefit. Therefore, inhibition of the JNK pathway offers a new treatment strategy for Parkinson's disease that blocks the death signaling pathway upstream of the execution of apoptosis in dopaminergic neurons, providing a therapeutic advantage over the direct inhibition of caspases.  相似文献   

3.
Mutations of the DJ-1 (PARK7) gene are linked to familial Parkinson's disease. We used gene targeting to generate DJ-1-deficient mice that were viable, fertile, and showed no gross anatomical or neuronal abnormalities. Dopaminergic neuron numbers in the substantia nigra and fiber densities and dopamine levels in the striatum were normal. However, DJ-1-/- mice showed hypolocomotion when subjected to amphetamine challenge and increased striatal denervation and dopaminergic neuron loss induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. DJ-1-/-embryonic cortical neurons showed increased sensitivity to oxidative, but not nonoxidative, insults. Restoration of DJ-1 expression to DJ-1-/- mice or cells via adenoviral vector delivery mitigated all phenotypes. WT mice that received adenoviral delivery of DJ-1 resisted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine-induced striatal damage, and neurons overexpressing DJ-1 were protected from oxidative stress in vitro. Thus, DJ-1 protects against neuronal oxidative stress, and loss of DJ-1 may lead to Parkinson's disease by conferring hypersensitivity to dopaminergic insults.  相似文献   

4.
5.
Loss-of-function DJ-1 mutations can cause early-onset Parkinson's disease. The function of DJ-1 is unknown, but an acidic isoform accumulates after oxidative stress, leading to the suggestion that DJ-1 is protective under these conditions. We addressed whether this represents a posttranslational modification at cysteine residues by systematically mutating cysteine residues in human DJ-1. WT or C53A DJ-1 was readily oxidized in cultured cells, generating a pI 5.8 isoform, but an artificial C106A mutant was not. We observed a cysteine-sulfinic acid at C106 in crystalline DJ-1 but no modification of C53 or C46. Oxidation of DJ-1 was promoted by the crystallization procedure. In addition, oxidation-induced mitochondrial relocalization of DJ-1 and protection against cell death were abrogated in C106A but not C53A or C46A. We suggest that DJ-1 protects against neuronal death, and that this is signaled by acidification of the key cysteine residue, C106.  相似文献   

6.
Recent evidence has indicated that common mechanisms play roles among multiple neurological diseases. However, the specifics of these pathways are not completely understood. Stroke is caused by the interruption of blood flow to the brain, and cumulative evidence supports the critical role of oxidative stress in the ensuing neuronal death process. DJ-1 (PARK7) has been identified as the gene linked to early-onset familial Parkinson's disease. Currently, our work also shows that DJ-1 is central to death in both in Vitro and in Vivo models of stroke. Loss of DJ-1 increases the sensitivity to excitotoxicity and ischemia, whereas expression of DJ-1 can reverse this sensitivity and indeed provide further protection. Importantly, DJ-1 expression decreases markers of oxidative stress after stroke insult in Vivo, suggesting that DJ-1 protects through alleviation of oxidative stress. Consistent with this finding, we demonstrate the essential role of the oxidation-sensitive cysteine-106 residue in the neuroprotective activity of DJ-1 after stroke. Our work provides an important example of how a gene seemingly specific for one disease, in this case Parkinson's disease, also appears to be central in other neuropathological conditions such as stroke. It also highlights the important commonalities among differing neuropathologies.  相似文献   

7.
DJ-1, a cancer-associated protein protects cells from multiple toxic stresses. The expression of DJ-1 and its influence on thyroid cancer cell death has not been investigated so far. We analyzed DJ-1 expression in human thyroid carcinoma cell lines and the effect of DJ-1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. DJ-1 was expressed in human thyroid carcinoma cell lines; small interfering RNA-mediated downregulation of its levels significantly sensitized thyroid carcinoma cells to TRAIL-induced apoptosis, whereas the forced exogenous expression of DJ-1 significantly suppressed cell death induced by TRAIL. We also report here that TRAIL-induced thyroid cancer cell apoptosis is mediated by oxidative stress and that DJ-1, a potent nutritional antioxidant, protects cancer cells from apoptosis at least in part by impeding the elevation of reactive oxygen species levels induced by TRAIL and impairing caspase-8 activation. Subsequently, we investigated DJ-1 expression in 52 normal and 74 primary thyroid carcinomas from patients of China Medical University. The protein was not detectable in the 52 specimens of normal thyroid, while 70 out of 74 analyzed carcinomas (33 out of 33 follicular, 17 out of 19 papillary, 12 out of 13 medullar, and 8 out of 9 anaplastic) were clearly positive for DJ-1 expression. Our data demonstrated that DJ-1 is specifically expressed in thyroid carcinomas and not in the normal thyroid tissue. In addition, the protein modulates the response to TRAIL-mediated apoptosis in human neoplastic thyroid cells, at least partially through its antioxidant property.  相似文献   

8.
Mutations in Pink1, a gene encoding a Ser/Thr kinase with a mitochondrial-targeting signal, are associated with Parkinson's disease (PD), the most common movement disorder characterized by selective loss of dopaminergic neurons. The mechanism by which loss of Pink1 leads to neurodegeneration is not understood. Here we show that inhibition of Drosophila Pink1 (dPink1) function results in energy depletion, shortened lifespan, and degeneration of select indirect flight muscles and dopaminergic neurons. The muscle pathology was preceded by mitochondrial enlargement and disintegration. These phenotypes could be rescued by the wild type but not the pathogenic C-terminal deleted form of human Pink1 (hPink1). The muscle and dopaminergic phenotypes associated with dPink1 inactivation show similarity to that seen in parkin mutant flies and could be suppressed by the overexpression of Parkin but not DJ-1. Consistent with the genetic rescue results, we find that, in dPink1 RNA interference (RNAi) animals, the level of Parkin protein is significantly reduced. Together, these results implicate Pink1 and Parkin in a common pathway that regulates mitochondrial physiology and cell survival in Drosophila.  相似文献   

9.
PTEN-induced putative kinase 1 (Pink1) is a recently identified gene linked to a recessive form of familial Parkinson's disease (PD). The kinase contains a mitochondrial localization sequence and is reported to reside, at least in part, in mitochondria. However, neither the manner by which the loss of Pink1 contributes to dopamine neuron loss nor its impact on mitochondrial function and relevance to death is clear. Here, we report that depletion of Pink1 by RNAi increased neuronal toxicity induced by MPP(+). Moreover, wild-type Pink1, but not the G309D mutant linked to familial PD or an engineered kinase-dead mutant K219M, protects neurons against MPTP both in vitro and in vivo. Intriguingly, a mutant that contains a deletion of the putative mitochondrial-targeting motif was targeted to the cytoplasm but still provided protection against 1-methyl-4-phenylpyridine (MPP(+))/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity. In addition, we also show that endogenous Pink1 is localized to cytosolic as well as mitochondrial fractions. Thus, our findings indicate that Pink1 plays a functional role in the survival of neurons and that cytoplasmic targets, in addition to its other actions in the mitochondria, may be important for this protective effect.  相似文献   

10.
11.
Inherited mutations in PARK7, the gene encoding DJ-1, are associated with loss of protein function and early-onset parkinsonism. Like human DJ-1 (hDJ-1), Drosophila DJ-1b protects against oxidative insult and is modified with oxidation. We demonstrate that hDJ-1 rescues flies mutant for DJ-1b, and that a conserved cysteine residue in the fly protein (C104, analogous to C106 in hDJ-1) is critical for biological antioxidant function in vivo. Targeted mutagenesis suggests that modification of DJ-1b at this residue inactivates the protective activity of the protein against oxidative stress. Further studies show that DJ-1 modification increases dramatically with age in flies, mice, and humans, with aged flies showing strikingly increased susceptibility to oxidative stress and markedly enhanced DJ-1b modification upon oxidative challenge. Overoxidation of DJ-1 with age and exposure to oxidative toxins may lead to inactivation of DJ-1 function, suggesting a role in susceptibility to sporadic Parkinson's disease.  相似文献   

12.
Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H2O2 in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1.  相似文献   

13.
Adeno-associated virus (AAV) vector delivery of an Apaf-1-dominant negative inhibitor was tested for its antiapoptotic effect on degenerating nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. The wild-type caspase recruitment domain of Apaf-1 was used as a dominant negative inhibitor of Apaf-1 (rAAV-Apaf-1-DN-EGFP). An AAV virus vector was used to deliver it into the striatum of C57 black mice, and the animals were treated with MPTP. The number of tyrosine hydroxylase-positive neurons in the substantia nigra was not changed on the rAAV-Apaf-1-DN-EGFP injected side compared with the noninjected side. We also examined the effect of a caspase 1 C285G mutant as a dominant negative inhibitor of caspase 1 (rAAV-caspase-1-DN-EGFP) in the same model. However, there was no difference in the number of tyrosine hydroxylase-positive neurons between the rAAV-caspase-1-DN-EGFP injected side and the noninjected side. These results indicate that delivery of Apaf-1-DN by using an AAV vector system can prevent nigrostriatal degeneration in MPTP mice, suggesting that it could be a promising therapeutic strategy for patients with Parkinson's disease. The major mechanism of dopaminergic neuronal death triggered by MPTP seems to be the mitochondrial apoptotic pathway.  相似文献   

14.
Parkinson's disease (PD) is the most common movement disorder characterized by dopaminergic dysfunction and degeneration. The cause of most PD cases is unknown, although postmortem studies have implicated the involvement of oxidative stress. The identification of familial PD-associated genes offers the opportunity to study mechanisms of PD pathogenesis in model organisms. Here, we show that DJ-1A, a Drosophila homologue of the familial PD-associated gene DJ-1, plays an essential role in oxidative stress response and neuronal maintenance. Inhibition of DJ-1A function through RNA interference (RNAi) results in cellular accumulation of reactive oxygen species, organismal hypersensitivity to oxidative stress, and dysfunction and degeneration of dopaminergic and photoreceptor neurons. To identify other genes that may interact with DJ-1A in regulating cell survival, we performed genetic interaction studies and identified components of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway as specific modulators of DJ-1A RNAi-induced neurodegeneration. PI3K signaling suppresses DJ-1A RNAi phenotypes at least in part by reducing cellular reactive oxygen species levels. Consistent with the genetic interaction results, we also found reduced phosphorylation of Akt in DJ-1A RNAi animals, indicating an impairment of PI3K/Akt signaling by DJ-1A down-regulation. Together with recent findings in mammalian systems, these results implicate impairments of PI3K/Akt signaling and oxidative stress response in DJ-1-associated disease pathogenesis. We also observed impairment of PI3K/Akt signaling in the fly parkin model of PD, hinting at a common molecular event in the pathogenesis of PD. Manipulation of PI3K/Akt signaling may therefore offer therapeutic benefits for the treatment of PD.  相似文献   

15.
Parkinson's disease (PD) is a common neurodegenerative movement disorder. Whereas the majority of PD cases are sporadic, rare genetic defects have been linked to this prevalent movement disorder. Mutations in DJ-1 are associated with autosomal recessive early-onset PD. The exact biochemical function of DJ-1 has remained elusive. Here we report the generation of DJ-1 knockout (KO) mice by targeted deletion of exon 2 and exon 3. There is no observable degeneration of the central dopaminergic pathways, and the mice are anatomically and behaviorally similar to WT mice. Fluorescent Amplex red measurements of H(2)O(2) indicate that isolated mitochondria from young and old DJ-1 KO mice have a 2-fold increase in H(2)O(2). DJ-1 KO mice of 2-3 months of age have a 60% reduction in mitochondrial aconitase activity without compromising other mitochondrial processes. At an early age there are no differences in antioxidant enzymes, but in older mice there is an up-regulation of mitochondrial manganese superoxide dismutase and glutathione peroxidase and a 2-fold increase in mitochondrial glutathione peroxidase activity. Mutational analysis and mass spectrometry reveal that DJ-1 is an atypical peroxiredoxin-like peroxidase that scavenges H(2)O(2) through oxidation of Cys-106. In vivo there is an increase of DJ-1 oxidized at Cys-106 after 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine intoxication of WT mice. Taken together these data indicate that the DJ-1 KO mice have a deficit in scavenging mitochondrial H(2)O(2) due to the physiological function of DJ-1 as an atypical peroxiredoxin-like peroxidase.  相似文献   

16.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration and a decrease in Bcl-2. These changes parallel MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking Bax are significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that Bax plays a critical role in the MPTP neurotoxic process and suggests that targeting Bax may provide protective benefit in the treatment of Parkinson's disease.  相似文献   

17.
Mutations in DJ-1, a human gene with homologues in organisms from all kingdoms of life, have been shown to be associated with autosomal recessive, early onset Parkinson's disease (PARK7). We report here the three-dimensional structure of the DJ-1 protein, determined at a resolution of 1.1 A by x-ray crystallography. The chain fold of DJ-1 resembles those of a bacterial protein, PfpI, that has been annotated as a cysteine protease, and of a domain of a bacterial catalase whose role in the activity of that enzyme is uncertain. In contrast to PfpI, a hexameric protein whose oligomeric structure is essential for its putative proteolytic activity, DJ-1 is a dimer with completely different intersubunit contacts. The proposed catalytic triad of PfpI is absent from the corresponding region of the structure of DJ-1, and biochemical assays fail to detect any protease activity for purified DJ-1. A highly conserved cysteine residue, which is catalytically essential in homologues of DJ-1, shows an extreme sensitivity to radiation damage and may be subject to other forms of oxidative modification as well. The structure suggests that the loss of function caused by the Parkinson's-associated mutation L166P in DJ-1 is due to destabilization of the dimer interface. Taken together, the crystal structure of human DJ-1 plus other observations suggest the possible involvement of this protein in the cellular oxidative stress response and a general etiology of neurodegenerative diseases.  相似文献   

18.
Fas is a cell surface death receptor that regulates peripheral tolerance and lymphoid homeostasis. In many pathologic conditions, ectopic Fas activation mediates tissue destruction. Several proteins that can bind to the cytoplasmic death domain of Fas have been implicated in Fas signal transduction. Here we show that FADD, which couples Fas to pro-caspase-8, and, Daxx, which couples Fas to the Jun N-terminal kinase pathway, bind independently to the Fas death domain. We have isolated a death domain mutant, termed FasΔ, that selectively binds Daxx but not FADD. In tranfected tissue culture cells, FasΔ activated Jun N-terminal kinase normally but was impaired in cell death induction. These results suggest that FADD and Daxx activate two independent pathways downstream of Fas and confirm the essential role of FADD binding in apoptosis induction.  相似文献   

19.

Purpose

Aberrant expression of DJ-1 has been proven to be associated with tumorigenesis in many carcinomas. However, its role in pancreatic cancer is unknown. The aims of this study were to investigate whether the serum DJ-1 might be a potential biomarker for pancreatic cancer and to determine the biologic function of DJ-1 expression in gemcitabine-induced chemoresistance of pancreatic cancer.

Methods

The serum level of DJ-1 was higher in 128 pancreatic cancer patients compared with 62 healthy controls by ELISA. To determine the effect of DJ-1 on pancreatic tumor chemoresistance, a siRNA-targeting DJ-1 was synthesized and a stably transfected cell line with DJ-1 over-expression was constructed. The mechanism of tumor chemoresistance was assessed by multiple methods, such as MTT assay, real-time PCR, Western blot and flow cytometry.

Results

The serum level of DJ-1 was higher in pancreatic cancer patients than healthy controls, and it has the relationship with tumor differentiation in pancreatic cancer. Down-regulation of DJ-1 enhanced gemcitabine-induced apoptosis in three pancreatic cancer cell lines. On the contrary, over-expression of DJ-1 desensitized the MIA PaCa-2 to the induction of apoptosis by gemcitabine.

Conclusions

Our results suggest that the serum level of DJ-1 may be a potential biomarker for pancreatic cancer, and that DJ-1 plays critical roles in the pancreatic tumor chemoresistance, supporting the development of chemotherapeutic approaches targeting this oncogene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号