首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bax (a death-promoting member of the bcl-2 gene family), the tumor suppressor gene product p53, and the ICE/ced-3-related proteases (caspases) have all been implicated in programmed cell death in a wide variety of cell types. However, their roles in radiation-induced neuronal cell death are poorly understood. In order to further elucidate the molecular mechanisms underlying radiation-induced neuronal cell death, we have examined the ability of ionizing radiation to induce cell death in primary cultured hippocampal neurons obtained from wild-type, p53-deficient and Bax-deficient newborn mice. Survival in neuronal cultures derived from wild-type mice decreased in a dose-dependent manner 24 hr after a single 10 Gy to 30 Gy dose of ionizing radiation. In contrast, neuronal survival in irradiated cultures derived from p53-deficient or Bax-deficient mice was equivalent to that observed in control, nonirradiated cultures. Western blot analyses indicated that neuronal p53 protein levels increased after irradiation in wild-type cells. However, Bax protein levels did not change, indicating that other mechanisms exist for regulating Bax activity. Adenovirus-mediated overexpression of p53 also caused neuronal cell death without increasing Bax protein levels. Irradiation resulted in a significant induction in caspase activity, as measured by increased cleavage of fluorogenic caspase substrates. However, specific inhibitors of caspase activity (zVAD-fmk, zDEVD-fmk and BAF) failed to protect postnatal hippocampal neurons from radiation-induced cell death. Staurosporine (a potent inducer of apoptosis in many cell types) effectively induced neuronal cell death in wild-type, p53-deficient and Bax-deficient hippocampal neurons, indicating that all were competent to undergo programmed cell death. These results demonstrate that both p53 and Bax are necessary for radiation-induced cell death in postnatal cultured hippocampal neurons. The fact that cell death occurred despite caspase inhibition suggests that radiation-induced neuronal cell death may occur in a caspase-independent manner. J. Neurosci. Res. 54:721–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Expression of the c-fos proto-oncogene in rat neocortical astrocytes in culture was examined using Northern blotting and immunocytochemistry. Marked induction of c-fos mRNA in astrocytes was observed after treatment with epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), dibutyryl cyclic AMP (db-cAMP), and phorbol diester (TPA; 12-O-tetra-decanoylphorbol 13-acetate), which are known to induce the proliferation or differentiation of astrocytes. Increase of c-fos protein immunoreactivity (IR) was obtained after treatment with fetal calf serum, EGF, bFGF, db-cAMP and TPA. High concentrations of calcium ionophore A23187, which were lethal to cultured astrocytes, also increased c-fos protein-IR. Treatment with lower concentrations of calcium ionophore (which slightly increase Ca2+ uptake), high K+ and nerve growth factor had no detectable effect on c-fos expression. These results show that depolarization does not induce c-fos in astrocytes and suggest that c-fos may play a role in differentiation and proliferation of astrocytes.  相似文献   

3.
Caspases are crucial effectors of the cell death pathway activated by virtually all apoptosis-inducing stimuli within neurons and nonneuronal cells. Among the caspases, caspase-3 (CPP32) appears to play a pivotal role and has been found to be necessary for developmentally regulated cell death in the brain. We have used mice lacking caspase-3 (-/-CPP32) to examine its involvement in cultured cerebellar granule neurons induced to undergo apoptosis by potassium deprivation (K+). We find that, following K+ deprivation, neurons from -/-CPP32 mice die to the same extent as those from normal (+/+) mice. Although a small delay in the induction of cell death is observed in -/-CPP32 neurons, the rate of cell death is generally comparable to that of +/+ cultures. Though not critical for neuronal death, caspase-3 is required for DNA fragmentation and chromatin condensation as judged by the absence of these apoptotic features in -/-CPP32 neurons. Boc.Asp.fmk, a pan caspase inhibitor, partially protects +/+ neurons from low-K+-mediated cell death and does so to the same extent in -/-CPP32 cultures, suggesting the involvement of a caspase other than caspase-3 in cell death. However, the protective effect of boc.Asp.fmk is not seen beyond 24 hr, suggesting that the effect of caspase inhibition is one of delaying rather than preventing apoptosis. The more selective caspase inhibitors DEVD.fmk, IETD.fmk, and VEID.fmk fail to affect cell death, indicating that members inhibited by these agents (such as caspases - 6 ,7, 8, 9 and 10) are also not involved in low-K+-mediated apoptosis.  相似文献   

4.
In diverse brain pathologies, astrocytes become reactive and undergo profound phenotypic changes. Connexin43 (Cx43), the main gap junction channel‐forming protein in astrocytes, is one of the proteins modified in reactive astrocytes. Downregulation of Cx43 in cultured astrocytes activates c‐Src, promotes proliferation, and increases the rate of glucose uptake; however, so far there have been no studies examining whether this cascade of events takes place in reactive astrocytes. In this work, we analyzed this pathway after a cortical lesion induced by a kainic acid injection. As previously described, astrocytes reacted to the lesion with an increase in glial fibrillary acidic protein and a decrease in Cx43 expression. Some of these reactive astrocytes proliferated, as estimated by bromodeoxyuridine incorporation and cyclins D1 and D3 upregulation. In addition, the expression of the glucose transporter GLUT‐3 and the enzyme responsible for glucose phosphorylation, Type II hexokinase (Hx‐2), were induced in reactive astrocytes, suggesting an increased glucose uptake. Previous in vitro studies reported that c‐Src is the link between Cx43 and glucose uptake and proliferation in astrocytes. Here, we found that c‐Src activity increased in the lesioned area. c‐Src activation and Cx43 downregulation preceded the peak of Hx‐2 and cyclin D3 expression, suggesting that c‐Src could mediate the effect of Cx43 on glucose uptake and proliferation in reactive astrocytes after an excitotoxic insult. Interestingly, we identify c‐Src, GLUT‐3, and Hx‐2 in the signaling mechanisms involved in the reaction of astroglia to injury. Altogether these data contribute to identify new therapeutical targets to enhance astrocyte neuroprotective activities. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Primary septo-hippocampal cell cultures were incubated in varying concentrations of tumor necrosis factor (TNF-alpha; 0.3-500 ng/ml) to examine proteolysis of the cytoskeletal protein alpha-spectrin (240 kDa) to a signature 145 kDa fragment by calpain and to the apoptotic-linked 120-kDa fragment by caspase-3. The effects of TNF-alpha incubation on morphology and cell viability were assayed by fluorescein diacetate-propidium iodide (FDA-PI) staining, assays of lactate dehydrogenase (LDH) release, nuclear chromatin alterations (Hoechst 33258), and internucleosomal DNA fragmentation. Incubation with varying concentrations of TNF-alpha produced rapid increases in LDH release and nuclear PI uptake that were sustained over 48 hr. Incubation with 30 ng/ml TNF-alpha yielded maximal, 3-fold, increase in LDH release and was associated with caspase-specific 120-kDa fragment but not calpain-specific 145-kDa fragment as early as 3.5 hr after injury. Incubation with the pan-caspase inhibitor, carbobenzosy- Asp-CH(2)-OC (O)-2-6-dichlorobenzene (Z-D-DCB, 50-140 microM) significantly reduced LDH release produced by TNF-alpha. Apoptotic-associated oligonucleosomal-sized DNA fragmentation on agarose gels was detected from 6 to 72 hr after exposure to TNF-alpha. Histochemical changes included chromatin condensation, nuclear fragmentation, and formation of apoptotic bodies. Results of this study suggest TNF-alpha may induce caspase-3 activation but not calpain activation in septo-hippocampal cultures and that this activation of caspase-3 at least partially contributes to TNF-alpha-induced apoptosis.  相似文献   

6.
7.
The immunocytochemical distribution of the neuronal form of nitric oxide synthase (nNOS) was compared with neuropathological changes and with cell death related DNA damage (as revealed by in situ end labeling, ISEL) in the hippocampal formation and entorhinal cortex of 12 age-matched control subjects and 12 Alzheimer's disease (AD) patients. Unlike controls, numerous nNOS-positive reactive astrocytes were found in AD patients around beta-amyloid plaques in CA1 and subiculum and at the places of clear and overt neuron loss, particularly in the entorhinal cortex layer II and CA4. This is the first evidence of nNOS-like immunoreactivity in reactive astrocytes in AD. In contrast to controls, in all but one AD subject, large numbers of ISEL-positive neuronal nuclei and microglial cells were found in the CA1 and CA4 regions and subiculum. Semiquantitative analysis showed that neuronal DNA fragmentation in AD match with the distribution of nNOS-expressing reactive astroglial cells in CA1 (r = 0.74, P < 0.01) and CA4 (r = 0.58, P < 0.05). A portion of the nNOS-positive CA2/CA3 pyramidal neurons was found to be spared even in the most affected hippocampi. A significant inverse correlation between nNOS expression and immunoreactivity to abnormally phosphorylated tau proteins (as revealed by AT8 monoclonal antibody) in perikarya of these CA2/3 neurons (r = -0.85, P < 0.01) suggests that nNOS expression may provide selective resistance to neuronal degeneration in AD. In conclusion, our results imply that an upregulated production of NO by reactive astrocytes may play a key role in the pathogenesis of AD.  相似文献   

8.
The administration of methimazole is known to induce cell death in rat olfactory receptor neurons (ORNs). We investigated whether this injury occurs via apoptosis or through necrosis and whether it involves the extrinsic or intrinsic pathway. Rats were intraperitoneally injected with vehicle (control) or 300 mg/kg methimazole. The experimental animals were also administered vehicle or a caspase-3 or caspase-9 inhibitor 30 min earlier. The administration of methimazole induced cell death predominantly in the mature ORNs and partially reduced olfactory sensitivity in the rats; the injured cells were TUNEL-positive and showed a nuclear staining pattern. This insult induced cytochrome c release from the mitochondria and a significant increase in the immunoreactivity of activated caspase-3 and caspase-9 as well as that of cleaved poly-ADP-ribose-polymerase; in addition, it caused a significant increase in the fluorogenic activity of caspase-3 and caspase-9. However, it did not affect the immunoreactivity of activated caspase-8 or the fluorogenic activity of caspase-8. Pretreatment with a caspase-3 or caspase-9 inhibitor nearly completely prevented the morphologic, biochemical, and functional changes induced by methimazole. These findings suggest strongly that methimazole-induced cell death in rat ORNs is predominantly apoptosis; moreover, the majority of this apoptotic cell death is triggered through mitochondrial cytochrome c-mediated caspase-3 activation pathway, and both caspase-3 and caspase-9 inhibitors can prevent methimazole-induced cell death in the ORNs.  相似文献   

9.
Proteasomal dysfunction has been implicated in neurodegenerative disorders and during aging processes. In frontotemporal dementias, corticobasal degeneration, and progressive supranuclear palsy, oligodendrocytes are specifically damaged. Application of proteasomal inhibitors to cultured oligodendrocytes is associated with apoptotic cell death. The present study was undertaken to investigate the death pathway activated in oligodendrocytes by proteasomal inhibition. Our data show that the proteasomal inhibitor MG-132 causes oxidative stress, as indicated by the upregulation of the small heat shock protein heme oxygenase-1 (HO-1) and the appearance of oxidized proteins. Activation of the mitochondrial pathway was involved in the apoptotic process. Mitochondrial membrane potential was disturbed, and cytochrome c was released from the mitochondria. Concomitantly, death-related caspases 3 and 9 were activated and poly(ADP-ribose)-polymerase cleavage occurred. MG-132-induced cell death, DNA-fragmentation, and caspase activation could be prevented by the broad caspase inhibitor zVAD-fmk. In contrast to oligodendrocytes, cultured astrocytes showed resistance to the treatment with proteasomal inhibitors and did not reveal cytotoxic responses. This was also observed in astrocytes differentiated in the presence of dibutyryl cyclic AMP. Hence, individual cells respond differently to proteasomal inhibition and the therapeutic use of proteasomal inhibitors, e.g. for the treatment of cancer or inflammatory diseases, needs to be carefully evaluated.  相似文献   

10.
In this report, we examined the possible functions of the cell death protease, caspase-3, in the axotomy-induced apoptosis of facial motoneurons in newborn rodents. Using in situ hybridization and Western blot, we found higher levels of caspase-3 mRNA and pro-caspase-3 protein expression in motoneurons of neonatal and 2-week-old rats than adult rats. Following facial motoneuron axotomy, caspase-3 mRNA and protein expression increased in motoneurons of both neonatal and adult rats. However, using an antibody directed to the activated form of the caspase-3 protease, we found that catalytically active caspase-3 was present only in axotomized neonatal motoneurons. As motoneurons in neonatal but not adult rodents are susceptible to axotomy-induced apoptosis, we hypothesized that caspase-3 may play a role in their demise. To determine the necessity of caspase-3 activation in axotomy-induced apoptosis, we counted the number of surviving motoneurons at 4 and 7 days following axotomy in wild type mice and caspase-3 gene-deleted mice. There were nearly three times more surviving motoneurons in caspase-3 gene-deleted mice than in wild type mice at both 4 days (mean 1074 vs. 464, P<0.005) and 7 days (mean 469 vs. 190, P<0.005) following injury, indicating a slower rate of death. Examination of the dying motoneurons using TUNEL staining (for fragmented DNA) and bisbenzimide staining (for nuclear morphology) revealed incomplete nuclear condensation in caspase-3-deficient motoneurons. These results demonstrate that caspase-3 activation plays important roles in the rapid demise of axotomized neonatal motoneurons.  相似文献   

11.
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen(Neu N; a neuronal marker) and Fluoro-Jade B(a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67(a marker for proliferating cells)-immunoreactive cells were reduced in number and reac hed the lowest level at 4 weeks. Doublecortin(DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine(Brd U)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature Brd U/Neu N double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.  相似文献   

12.
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.  相似文献   

13.
Cerebral inflammation and apoptotic cell death are two processes implicated in the progressive tissue damage that occurs following traumatic brain injury (TBI), and strategies to inhibit one or both of these pathways are being investigated as potential therapies for TBI patients. The tetracycline derivative minocycline was therapeutically effective in various models of central nervous system injury and disease, via mechanisms involving suppression of inflammation and apoptosis. We therefore investigated the effect of minocycline in TBI using a closed head injury model. Following TBI, mice were treated with minocycline or vehicle, and the effect on neurological outcome, lesion volume, inflammation and apoptosis was evaluated for up to 7 days. Our results show that while minocycline decreases lesion volume and improves neurological outcome at 1 day post-trauma, this response is not maintained at 4 days. The early beneficial effect is likely not due to anti-apoptotic mechanisms, as the density of apoptotic cells is not affected at either time-point. However, protection by minocycline is associated with a selective anti-inflammatory response, in that microglial activation and interleukin-1beta expression are reduced, while neutrophil infiltration and expression of multiple cytokines are not affected. These findings demonstrate that further studies on minocycline in TBI are necessary in order to consider it as a novel therapy for brain-injured patients.  相似文献   

14.
To characterize the distribution of apoptotic neurons and their relationships with the stage of disease, a history of HIV-dementia, and the degree of productive HIV infection, microglial activation and axonal damage, we examined the brains of 40 patients. Samples of frontal and temporal cortex, basal ganglia and brain stem were taken post-mortem from 20 patients with AIDS (including three with HIV-dementia, and eight with cognitive disorders that did not fulfil the criteria for HIV-dementia), 10 HIV-positive asymptomatic cases and 10 seronegative controls. Neuronal apoptosis was demonstrated by in situ end labelling in 18 AIDS cases and two pre-AIDS cases; a single apoptotic neuron was present in the temporal cortex of a control. Semiquantitative evaluation showed that the severity of neuronal apoptosis in the cerebral cortex correlated with the presence of cerebral atrophy, but not with a history of HIV dementia. There was no global quantitative correlation between neuronal apoptosis and HIV encephalitis or microglial activation. However, there was some topographical correlation between these changes. In the basal ganglia, apoptotic neurons were much more abundant in the vicinity of multinucleated giant cells and/or p24 expressing cells. Microglial activation was constantly present in these areas. Axonal damage was identified using beta-amyloid-precursor protein (betaAPP) immunostaining in 17 AIDS and eight pre-AIDS brains. Although no global quantitative correlation could be established between axonal damage and neuronal apoptosis there was an obvious topographic correlation supporting the view that axonal damage, either secondary to local microglial activation or due to the intervention of systemic factors, may also contribute to neuronal apoptosis.  相似文献   

15.
The zebrafish adult brain contains numerous neural progenitors and is a good model to approach the general mechanisms of adult neural stem cell maintenance and neurogenesis. Here we use this model to test for a correlation between Fgf signaling and cell proliferation in adult progenitor zones. We report expression of Fgf signals (fgf3,4,8a,8b,17b), receptors (fgfr1-4), and targets (erm, pea3, dusp6, spry1,2,4, and P-ERK) and document that genes of the embryonic fgf8 synexpression group acquire strikingly divergent patterns in the adult brain. We further document the specific expression of fgf3, fgfr1-3, dusp6, and P-ERK in ventricular zones, which contain neural progenitors. In these locations, however, a comparison at the single-cell level of fgfr/P-ERK expression with bromo-deoxy-uridine (BrdU) incorporation and the proliferation marker MCM5 indicates that Fgf signaling is not specifically associated with proliferating progenitors. Rather, it correlates with the ventricular radial glia state, some of which only are progenitors. Together these results stress the importance of Fgf signaling in the adult brain and establish the basis to study its function in zebrafish, in particular in relation to adult neurogenesis.  相似文献   

16.
Gu Z  Jiang Q  Zhang G 《Brain research》2001,901(1-2):79-84
To investigate the effect of the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) on cerebral ischemic injury, temporospatial alterations of active (diphosphorylated) ERK1/2 immunoreactivity in hippocampus was examined. Western blot showed that diphosphorylated ERK1/2 were decreased at 10 min of cerebral ischemia but increased rapidly (within 2 min) and transiently (within 4 h) during reperfusion. Immunohistochemistry showed that little diphosphorylated ERK1/2 immunoreactivity was seen in CA1 pyramidal cell bodies after ischemia, while strong immunoreactivity were seen in neuronal bodies in CA3/DG and in fiber systems in both CA1 and CA3 regions. Cerebral ventricular infusion of PD98059, a specific inhibitor of ERK kinase, completely prevented ERK1/2 activation after ischemia but had no effect on the survival of pyramidal cells in CA1 subfield. The results suggest that ERK1/2 activation in hippocampus after brain ischemia may not interfere with the postischemic cell death in CA1 region.  相似文献   

17.
Apolipoprotein E4 (ApoE4) increases the risk of late-onset Alzheimer's disease (AD). It binds tightly to β-amyloid protein (A β), which is known to activate the classical complement pathway in vitro. Since complement activation is a possible mechanism for promoting inflammation in AD, we tested, utilizing ELISA techniques, whether the various isoforms of ApoE could influence A β complement activation, or could themselves activate the pathway. A β applied alone to ELISA plate wells at concentrations of 100–500 ng showed a linear increase in ability to activate serum complement, but all the ApoE isoproteins were inactive. When 200 or 430 ng of A β were plated and then exposed to solutions of 100–200 ng of ApoE2, ApoE3, ApoE4 or bovine serum albumin (BSA), only ApoE4 significantly enhanced the activation. This ApoE4-specific enhancement of complement activation by A β may relate to its role in increasing the risk of late-onset AD.  相似文献   

18.
The present study aimed at understanding the effects of arachidonic acid peroxides on neuronal cell death using the mouse neuroblastoma cell line, Neuro-2A cells. Arachidonic acid peroxides were produced by ultraviolet (UV) radiation. UV-radiated arachidonic acid significantly reduced Neuro-2A cell viability at concentrations of more than 0.1 muM, with being more potential than non-radiated arachidonic acid. Nuclei of Neuro-2A cells killed with UV-radiated arachidonic acid were reactive to Hoechst 33342, a marker of apoptosis, and the effect was much greater than that achieved with non-radiated arachidonic acid. UV-radiated arachidonic acid persistently increased intracellular Ca(2+) concentrations and dissipated mitochondrial membrane potential in Neuro-2A cells. UV-radiated arachidonic acid-induced Neuro-2A cell death, whereas it was not affected by a pancaspase inhibitor or a caspase-3 inhibitor, was significantly inhibited by an inhibitor of caspase-1, -8, or -9. The results of the present study suggest that arachidonic acid peroxides induce apoptotic neuronal cell death in association with intracellular Ca(2+) rise and mitochondrial damage, in part via a caspase-dependent pathway regardless of caspase-3.  相似文献   

19.
Connexin32 (Cx32) is a gap junction protein and its mutations are responsible for X-linked Charcot-Marie-Tooth disease. We examined the functional abnormality of C6 glioma cells transfected with mutant (C53S and P172R) Cx32 genes. Nontransfected C6 did not express Cx32. Northern and Western blot analyses showed Cx32 mRNA and protein in cells with the wild-type gene as well as with the mutant Cx32 genes. An immunocytochemical study of cells with the wild-type gene showed the immunoreactive spots in the cell membrane. In cells with C53S or P172R mutant gene, however, the immunoreactivity was found in the cytoplasm. The scrape-loading method produced effective dye transfer in cells with the wild-type gene but not in those with mutant genes. A cell proliferation assay showed no differences in nontransfected cells, cells with the wild-type gene and those with the mutant genes. Messenger RNA expression for proteolipid protein did not change. These findings suggest that Cx32 gene mutation results in loss of cell-to-cell communication because of failure to incorporate Cx32 protein in the cell membrane. The mutations do not, however, interfere with cell proliferation or myelin-specific gene expression, at least myelin proteolipid protein expression in C6 glioma cells. J. Neurosci. Res. 51:154–161, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Although the precise mechanisms explaining loss of, and failure to regain, function after spinal cord injury are unknown, there is increasing interest in the role of "secondary cell death." One prevalent theme in cell loss in other regions of the CNS involves apoptosis executed by the intracellular caspase proteases. A recent study demonstrated that spinal cord injury rapidly increased the activation of caspase-3. Our previous studies demonstrated peak apoptosis in three of four cellular compartments 3 days after controlled contusion in the rat. We have extended these analyses to include enzyme and substrate studies of caspase subfamilies both in rostral and in caudal adjacent segments compared to the lesion site. Although presumed activation of programmed proenzyme is considered the mechanism for enhanced caspases, our novel analyses were designed to detect upregulation of gene expression. We surveyed traumatically injured spinal cord for caspase family messages with a modified differential mRNA display approach and found that the caspase-3 (CASP3) message was present and upregulated severalfold after injury. Our results clearly demonstrate that cell death in the spinal cord occurs after posttranslational activation of caspases that follow, at least for caspase-3, initial upregulation of CASP3 mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号