首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4–null (Sdc4–/–) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4–/– mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.  相似文献   

2.
Donor-derived IP-10 initiates development of acute allograft rejection   总被引:30,自引:0,他引:30  
An allograft is often considered an immunologically inert playing field on which host leukocytes assemble and wreak havoc. However, we demonstrate that graft-specific physiologic responses to early injury initiate and promulgate destruction of vascularized grafts. Serial analysis of allografts showed that intragraft expression of the three chemokine ligands for the CXC chemo-kine receptor CXCR3 was induced in the order of interferon (IFN)-gamma-inducible protein of 10 kD (IP-10, or CXCL10), IFN-inducible T cell alpha-chemoattractant (I-TAC; CXCL11), and then monokine induced by IFN-gamma (Mig, CXCL9). Initial IP-10 production was localized to endothelial cells, and only IP-10 was induced by isografting. Anti-IP-10 monoclonal antibodies prolonged allograft survival, but surprisingly, IP-10-deficient (IP-10(-/-)) mice acutely rejected allografts. However, though allografts from IP-10(+/+) mice were rejected by day 7, hearts from IP-10(-/-) mice survived long term. Compared with IP-10(+/+) donors, use of IP-10(-/-) donors reduced intragraft expression of cytokines, chemokines and their receptors, and associated leukocyte infiltration and graft injury. Hence, tissue-specific generation of a single chemokine in response to initial ischemia/reperfusion can initiate progressive graft infiltration and amplification of multiple effector pathways, and targeting of this proximal chemokine can prevent acute rejection. These data emphasize the pivotal role of donor-derived IP-10 in initiating alloresponses, with implications for tissue engineering to decrease immunogenicity, and demonstrate that chemokine redundancy may not be operative in vivo.  相似文献   

3.
CD7 is an immunoglobulin superfamily molecule involved in T and natural killer (NK) cell activation and cytokine production. CD7-deficient animals develop normally but have antigen-specific defects in interferon (IFN)-gamma production and CD8(+) CTL generation. To determine the in vivo role of CD7 in systems dependent on IFN-gamma, the response of CD7-deficient mice to lipopolysaccharide (LPS)-induced shock syndromes was studied. In the high-dose LPS-induced shock model, 67% of CD7-deficient mice survived LPS injection, whereas 19% of control C57BL/6 mice survived LPS challenge (P < 0.001). CD7-deficient or C57BL/6 control mice were next injected with low-dose LPS (1 microgram plus 8 mg D-galactosamine [D-gal] per mouse) and monitored for survival. All CD7-deficient mice were alive 72 h after injection of LPS compared with 20% of C57BL/6 control mice (P < 0.001). After injection of LPS and D-gal, CD7-deficient mice had decreased serum IFN-gamma and tumor necrosis factor (TNF)-alpha levels compared with control C57BL/6 mice (P < 0.001). Steady-state mRNA levels for IFN-gamma and TNF-alpha in liver tissue were also significantly decreased in CD7-deficient mice compared with controls (P < 0.05). In contrast, CD7-deficient animals had normal liver interleukin (IL)-12, IL-18, and interleukin 1 converting enzyme (ICE) mRNA levels, and CD7-deficient splenocytes had normal IFN-gamma responses when stimulated with IL-12 and IL-18 in vitro. NK1.1(+)/ CD3(+) T cells are known to be key effector cells in the pathogenesis of toxic shock. Phenotypic analysis of liver mononuclear cells revealed that CD7-deficient mice had fewer numbers of liver NK1.1(+)/CD3(+) T cells (1.5 +/- 0.3 x 10(5)) versus C57BL/6 control mice (3.7 +/- 0.8 x 10(5); P < 0.05), whereas numbers of liver NK1.1(+)/CD3(-) NK cells were not different from controls. Thus, targeted disruption of CD7 leads to a selective deficiency of liver NK1.1(+)/ CD3(+) T cells, and is associated with resistance to LPS shock. These data suggest that CD7 is a key molecule in the inflammatory response leading to LPS-induced shock.  相似文献   

4.
The IFN-gamma-inducible and CXCR3-targeting human CXC chemokines CXCL9 (Mig) and CXCL10 (IP10) have potent antitumor activity through attraction of cytotoxic T lymphocytes and inhibition of angiogenesis. The more recently identified CXCR3-targeting chemokine CXCL11 (I-TAC/IP9) proved to be a more potent chemokine than CXCL9 and CXCL10 in vitro, both in chemotaxis assays with CXCR3+ T lymphocytes and in calcium mobilization experiments. However, its antitumor activity in vivo has not been shown so far. To investigate this, mice were challenged with EL4 T-cell lymphoma cells, genetically modified to produce murine CXCL11. Tumor growth curves showed complete rejection of CXCL11-producing tumors but not of control tumors. Tumor infiltrate analysis by flow cytometry showed a clear correlation between rejection of CXCL11-producing tumors and an increase of tumor-infiltrating CD8+CXCR3+ as well as CD8+CXCR3- T lymphocytes. In vivo CD8 T-cell depletion completely abrogated the antitumor effect. No difference in angiogenesis between control and CXCL11-producing tumors was observed. In survivors, rechallenge experiments with wild-type tumor cells suggested development of protective antitumor immunity involving tumor-specific IFN-gamma production by CD8+ T lymphocytes. These experiments show, for the first time, antitumor activity of CXCL11 in vivo, which warrants exploration for its potential role in anticancer immunotherapy.  相似文献   

5.
6.
In models of acute lung injury, CXC chemokine receptor 2 (CXCR2) mediates migration of polymorphonuclear leukocytes (PMNs) into the lung. Since CXCR2 ligands, including CXCL1 and CXCL2/3, are chemotactic for PMNs, CXCR2 is thought to recruit PMNs by inducing chemotactic migration. In a model of PMN recruitment to the lung, aerosolized bacterial LPS inhalation induced PMN recruitment to the lung in wild-type mice, but not in littermate CXCR2-/- mice. Surprisingly, lethally irradiated wild-type mice reconstituted with CXCR2-/- BM still showed about 50% PMN recruitment into bronchoalveolar lavage fluid and into lung interstitium, but CXCR2-/- mice reconstituted with CXCR2-/- BM showed no PMN recruitment. Conversely, CXCR2-/- mice reconstituted with wild-type BM showed a surprisingly large defect in PMN recruitment, inconsistent with a role of CXCR2 on PMNs alone. Cell culture, immunohistochemistry, flow cytometry, and real-time RT-PCR were used to show expression of CXCR2 on pulmonary endothelial and bronchial epithelial cells. The LPS-induced increase in lung microvascular permeability as measured by Evans blue extravasation required CXCR2 on nonhematopoietic cells. Our data revealed what we believe to be a previously unrecognized role of endothelial and epithelial CXCR2 in LPS-induced PMN recruitment and lung injury.  相似文献   

7.
Chemokines are important modulators of neuroinflammation and neurodegeneration. In the brains of Alzheimer’s disease (AD) patients and in AD animal models, the chemokine CXCL10 is found in high concentrations, suggesting a pathogenic role for this chemokine and its receptor, CXCR3. Recent studies aimed at addressing the role of CXCR3 in neurological diseases indicate potent, but diverse, functions for CXCR3. Here, we examined the impact of CXCR3 in the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. We found that, compared with control APP/PSI animals, plaque burden and Aβ levels were strongly reduced in CXCR3-deficient APP/PS1 mice. Analysis of microglial phagocytosis in vitro and in vivo demonstrated that CXCR3 deficiency increased the microglial uptake of Aβ. Application of a CXCR3 antagonist increased microglial Aβ phagocytosis, which was associated with reduced TNF-α secretion. Moreover, in CXCR3-deficient APP/PS1 mice, microglia exhibited morphological activation and reduced plaque association, and brain tissue from APP/PS1 animals lacking CXCR3 had reduced concentrations of proinflammatory cytokines compared with controls. Further, loss of CXCR3 attenuated the behavioral deficits observed in APP/PS1 mice. Together, our data indicate that CXCR3 signaling mediates development of AD-like pathology in APP/PS1 mice and suggest that CXCR3 has potential as a therapeutic target for AD.  相似文献   

8.
Requirement of the chemokine receptor CXCR3 for acute allograft rejection   总被引:27,自引:0,他引:27  
Chemokines provide signals for activation and recruitment of effector cells into sites of inflammation, acting via specific G protein-coupled receptors. However, in vitro data demonstrating the presence of multiple ligands for a given chemokine receptor, and often multiple receptors for a given chemokine, have led to concerns of biologic redundancy. Here we show that acute cardiac allograft rejection is accompanied by progressive intragraft production of the chemokines interferon (IFN)-gamma-inducible protein of 10 kD (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T cell alpha chemoattractant (I-TAC), and by infiltration of activated T cells bearing the corresponding chemokine receptor, CXCR3. We used three in vivo models to demonstrate a role for CXCR3 in the development of transplant rejection. First, CXCR3-deficient (CXCR3(-/)-) mice showed profound resistance to development of acute allograft rejection. Second, CXCR3(-/)- allograft recipients treated with a brief, subtherapeutic course of cyclosporin A maintained their allografts permanently and without evidence of chronic rejection. Third, CXCR(+/+) mice treated with an anti-CXCR3 monoclonal antibody showed prolongation of allograft survival, even if begun after the onset of rejection. Taken in conjunction with our findings of CXCR3 expression in rejecting human cardiac allografts, we conclude that CXCR3 plays a key role in T cell activation, recruitment, and allograft destruction.  相似文献   

9.
OBJECTIVE: The molecular mechanisms of lung damage following thermal injury are not clear. The purpose of this study was to determine whether interleukin (IL)-1 mediates burn-induced inducible nitric oxide synthase (iNOS) expression, peroxynitrite production, and lung damage through c-Jun NH2-terminal kinase (JNK) signaling. DESIGN: Prospective, experimental study. SETTING: Research laboratory at a university hospital. SUBJECTS: Thermal injury models in the mice. INTERVENTIONS: IL-1 receptor type 1 (IL-1R1) mice, Tnfrsf1a mice, and wild-type (WT) mice were subjected to 30% total body surface area third-degree burn. The JNK inhibitor, SP600125, was given to mice to study the involvement of the JNK pathway in thermal injury-induced lung damage. WT --> WT, WT --> IL-1R1, and IL-1R1 --> WT chimeric mice were generated to determine the role of hematopoietic cells in IL-1-mediated lung damage. Neutrophils were harvested and treated in vitro with N-formyl-methionyl-leucyl-phenylalanine (fMLP). MEASUREMENTS AND MAIN RESULTS: IL-1R1 mice rather than Tnfrsf1a mice showed less thermal injury-induced lung damage. IL-1R1 mice displayed less lung JNK activity; intercellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), chemokine receptor 2 (CXCR2), and macrophage inflammatory protein-2 (MIP2), messenger RNA expression; myeloperoxidase activity; and neutrophil p38 mitogen-activated protein kinase (MAPK) phosphorylation after thermal injury. SP600125 significantly reduced thermal injury-induced blood dihydrorhodamine (DHR) 123 oxidation, iNOS expression, and lung permeability in WT mice but not in IL-1R1 mice. IL-1R1 --> WT chimeric mice rather than WT --> IL-1R1 chimeric mice showed less thermal injury-induced lung damage. fMLP increased reactive oxygen species (ROS) production of neutrophils in WT mice but not in IL-1R1 mice. SP600125 decreased ROS production of neutrophils in WT mice but not in IL-1R1 mice. CONCLUSIONS: Thermal injury-induced lung JNK activation; lung ICAM, VCAM, CXCR2, and MIP2 expression; and DHR 123 oxidation are IL-1 dependent. JNK inhibition decreases IL-1-mediated thermal injury-induced lung damage. Given that the IL-1 receptor is critical in thermal injury-induced p38 MAPK phosphorylation and ROS production of neutrophils, we conclude that IL-1 mediates thermal injury-induced iNOS expression and lung damage through the JNK signaling pathway.  相似文献   

10.
Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function and pulmonary neutrophil recruitment. Comparisons were made between injured mice with and without neutrophil depletion. We further examined the role of chemokines and adhesion receptors in neutrophil recruitment to the injured lung. We found that lung injury and resultant physiological dysfunction after contusion were dependent on the presence of neutrophils in the alveolar space. We show that CXCL1, CXCL2/3, and CXCR2 are involved in neutrophil recruitment to the lung after injury and that intercellular adhesion molecule 1 is locally expressed and actively participates in this process. Injured gp91-deficient mice showed improved lung function, indicating that oxidant production by neutrophil NADPH oxidase mediates lung dysfunction after contusion. These data suggest that both neutrophil presence and function are required for lung injury after lung contusion.  相似文献   

11.
ABSTRACT: INTRODUCTION: Acute lung injury (ALI) is a common disease in critically ill patients with a high morbidity and mortality. 12/15-lipoxygenase (12/15-LO) is an enzyme generating 12-hydroxy-eicosatetraenoic acid (12-HETE) and 15-HETE from arachidonic acid. It has been shown that 12/15-LO is involved in the regulation of vascular permeability during ALI. METHODS: To test whether 12/15-LO participates in leukocyte recruitment into the lung, we investigated the role of 12/15-LO in mouse models of lipopolysaccharide (LPS)-induced pulmonary inflammation and acid-induced ALI, a clinically relevant model of acute lung injury. RESULTS: The increase in neutrophil recruitment following LPS inhalation was reduced in 12/15-LO-deficient (Alox15-/-) mice and in wild-type (WT) mice after blocking of 12/15-LO with a pharmacological inhibitor. Bone marrow chimeras revealed that 12/15-LO in hematopoietic cells regulates neutrophil accumulation in the interstitial and alveolar compartments, whereas the accumulation of neutrophils in the intravascular compartment is regulated by non-hematopoietic and hematopoietic cells. Mechanistically, the increased plasma levels of the chemokine CXCL1 in Alox15-/- mice led to a reduced response of the neutrophil chemokine receptor CXCR2 to stimulation with CXCL1, which in turn abrogated neutrophil recruitment. Alox15-/- mice also showed decreased edema formation, reduced neutrophil recruitment, and improved gas exchange in an acid-induced ALI model. CONCLUSIONS: Our findings suggest that 12/15-LO modulates neutrophil recruitment into the lung by regulating chemokine/chemokine receptor homeostasis.  相似文献   

12.
Mortality related to adult respiratory distress syndrome (ARDS) ranges from 35% to 65%. Lung-protective ventilator strategies can reduce mortality during ARDS. The protective strategies limit tidal volumes and peak pressures while maximizing positive end-expiratory pressure. The efficacy of this approach is due to a reduction of shear-stress of the lung and release of inflammatory mediators. Ventilator-induced lung injury (VILI) is characterized by inflammation. The specific mechanism(s) that recruit leukocytes during VILI have not been elucidated. Because the murine CXC chemokines KC/CXCL1 and MIP-2/CXCL2/3, via CXCR2, are potent neutrophil chemoattractants, we investigated their role in a murine model of VILI. We compared two ventilator strategies in C57BL/6 mice: high peak pressure and high stretch (high peak pressure/stretch) versus low peak pressure/stretch for 6 hours. Lung injury and neutrophil sequestration from the high-peak pressure/stretch group were greater than those from the low-peak pressure/stretch group. In addition, lung expression of KC/CXCL1 and MIP-2/CXCL2/3 paralleled lung injury and neutrophil sequestration. Moreover, in vivo inhibition of CXCR2/CXC chemokine ligand interactions led to a marked reduction in neutrophil sequestration and lung injury. These findings were confirmed using CXCR2(-/-) mice. Together these experiments support the notion that increased expression of KC/CXCL1 and MIP-2/CXCL2/3 and their interaction with CXCR2 are important in the pathogeneses of VILI.  相似文献   

13.
The chemokines CXCL9/Mig, CXCL10/IP-10, and CXCL11/I-TAC regulate lymphocyte chemotaxis, mediate vascular pericyte proliferation, and act as angiostatic agents, thus inhibiting tumor growth. These multiple activities are apparently mediated by a unique G protein-coupled receptor, termed CXCR3. The chemokine CXCL4/PF4 shares several activities with CXCL9, CXCL10, and CXCL11, including a powerful angiostatic effect, but its specific receptor is still unknown. Here, we describe a distinct, previously unrecognized receptor named CXCR3-B, derived from an alternative splicing of the CXCR3 gene that mediates the angiostatic activity of CXCR3 ligands and also acts as functional receptor for CXCL4. Human microvascular endothelial cell line-1 (HMEC-1), transfected with either the known CXCR3 (renamed CXCR3-A) or CXCR3-B, bound CXCL9, CXCL10, and CXCL11, whereas CXCL4 showed high affinity only for CXCR3-B. Overexpression of CXCR3-A induced an increase of survival, whereas overexpression of CXCR3-B dramatically reduced DNA synthesis and up-regulated apoptotic HMEC-1 death through activation of distinct signal transduction pathways. Remarkably, primary cultures of human microvascular endothelial cells, whose growth is inhibited by CXCL9, CXCL10, CXCL11, and CXCL4, expressed CXCR3-B, but not CXCR3-A. Finally, monoclonal antibodies raised to selectively recognize CXCR3-B reacted with endothelial cells from neoplastic tissues, providing evidence that CXCR3-B is also expressed in vivo and may account for the angiostatic effects of CXC chemokines.  相似文献   

14.
Adoptive transfer of CD4+CD25+ regulatory T cells has been shown to have therapeutic effects in experimental graft-vs-host disease (GVHD) models. Chemokines play an important role in the recruitment of alloreactive donor T cells into target organs during GVHD. In this study, we investigated the effectiveness of targeted delivery of CD4+CD25+ regulatory T cells via a transfected chemokine receptor on reduction of organ damage during acute GVHD. High levels of expression of Th1-associated chemokines (CXCL9, CXCL10 and CXCL11) and their receptor CXCR3 were observed in the liver, lung and intestine of GVHD-induced recipient mice. Recipient mice that had undergone transfer of CD4+CD25+Foxp3+ CXCR3-transfected T cells (CXCR3-Treg cells) showed significant amelioration of GVHD changes in the liver, lung and intestine in comparison with recipient mice that had received CD4+CD25+Foxp3+ T cells (Treg cells) or naturally occurring CD4+CD25+ regulatory T cells. This was due to more pronounced migration of CXCR3-Treg cells and their localization for a longer time in Th1-associated chemokine-expressing organs, resulting in stronger suppressive activity. We succeeded in preparing chemokine receptor-expressing Treg cells and demonstrated their ability to ameliorate disease progression upon accumulation in target organs. This method may provide a new therapeutic approach for organ damage in acute GVHD.  相似文献   

15.
Inhibition of airway remodeling in IL-5-deficient mice   总被引:6,自引:0,他引:6       下载免费PDF全文
To determine the role of IL-5 in airway remodeling, IL-5-deficient and WT mice were sensitized to OVA and challenged by repetitive administration of OVA for 3 months. IL-5-deficient mice had significantly less peribronchial fibrosis (total lung collagen content, peribronchial collagens III and V) and significantly less peribronchial smooth muscle (thickness of peribronchial smooth muscle layer, alpha-smooth muscle actin immunostaining) compared with WT mice challenged with OVA. WT mice had a significant increase in the number of peribronchial cells staining positive for major basic protein and TGF-beta. In contrast, IL-5-deficient mice had a significant reduction in the number of peribronchial cells staining positive for major basic protein, which was paralleled by a similar reduction in the number of cells staining positive for TGF-beta, suggesting that eosinophils are a significant source of TGF-beta in the remodeled airway. OVA challenge induced significantly higher levels of airway epithelial alphaVbeta6 integrin expression, as well as significantly higher levels of bioactive lung TGF-beta in WT compared with IL-5-deficient mice. Increased airway epithelial expression of alphaVbeta6 integrin may contribute to the increased activation of latent TGF-beta. These results suggest an important role for IL-5, eosinophils, alphaVbeta6, and TGF-beta in airway remodeling.  相似文献   

16.
Toll-like receptor 3 agonist polyinosinic-polycytidilic acid (poly I:C) has been widely used as a potent adjuvant in tumor immunotherapy. In the present study, it was demonstrated that intraperitoneal injection of poly I:C could inhibit lung and liver metastasis of B16 melanoma cells in C57BL/6 mice in natural killer (NK) cells and interferon (IFN)-gamma dependent manner, leading to prolonged survival of the mice. B220 CD11c NK1.1 cells, recently defined as IFN-producing killer dendritic cells (IKDCs) were markedly increased in the spleen, lung, and liver of poly I:C-treated tumor bearing mice, compared with the control group. IFN-gamma induction by poly I:C in this unique NK cell subset indicated its critical contribution in tumor suppression in this model. Meanwhile, results of in vitro culture assay showed that poly I:C synergized with B16 cells could significantly promote IKDCs expansion in lymphocytes from different organs along with IFN-gamma production. Moreover, these ex vivo expanded IKDCs also exerted cytolytic activities against B16 cells and YAC-1 cells as conventional NK cells did. In conclusion, the findings of this study provide new insights into the role of IFN-gamma and IKDCs in the antitumor effect of poly I:C, and will possibly be helpful to explain why poly I:C may work as an adjucant to improve the antitumor effects of innate cells.  相似文献   

17.
18.

Introduction

The chemokine CXCL10 is produced during infection and inflammation to activate the chemokine receptor CXCR3, an important regulator of lymphocyte trafficking and activation. The goal of this study was to assess the contributions of CXCL10 to the pathogenesis of experimental septic shock in mice.

Methods

Septic shock was induced by cecal ligation and puncture (CLP) in mice resuscitated with lactated Ringer’s solution and, in some cases, the broad spectrum antibiotic Primaxin. Studies were performed in CXCL10 knockout mice and mice treated with anti-CXCL10 immunoglobulin G (IgG). Endpoints included leukocyte trafficking and activation, core body temperature, plasma cytokine concentrations, bacterial clearance and survival.

Results

CXCL10 was present at high concentrations in plasma and peritoneal cavity during CLP-induced septic shock. Survival was significantly improved in CXCL10 knockout (CXCL10KO) mice and mice treated with anti-CXCL10 IgG compared to controls. CXCL10KO mice and mice treated with anti-CXCL10 IgG showed attenuated hypothermia, lower concentrations of interleukin-6 (IL-6) and macrophage inhibitory protein-2 (MIP-2) in plasma and lessened natural killer (NK) cell activation compared to control mice. Compared to control mice, bacterial burden in blood and lungs was lower in CXCL10-deficient mice but not in mice treated with anti-CXCL10 IgG. Treatment of mice with anti-CXCL10 IgG plus fluids and Primaxin at 2 or 6 hours after CLP significantly improved survival compared to mice treated with non-specific IgG under the same conditions.

Conclusions

CXCL10 plays a role in the pathogenesis of CLP-induced septic shock and could serve as a therapeutic target during the acute phase of septic shock.  相似文献   

19.
Recent in vitro studies have suggested a role for sialylation in chemokine receptor binding to its ligand (Bannert, N., S. Craig, M. Farzan, D. Sogah, N.V. Santo, H. Choe, and J. Sodroski. 2001. J. Exp. Med. 194:1661-1673). This prompted us to investigate chemokine-induced leukocyte adhesion in inflamed cremaster muscle venules of alpha2,3 sialyltransferase (ST3Gal-IV)-deficient mice. We found a marked reduction in leukocyte adhesion to inflamed microvessels upon injection of the CXCR2 ligands CXCL1 (keratinocyte-derived chemokine) or CXCL8 (interleukin 8). In addition, extravasation of ST3Gal-IV(-/-) neutrophils into thioglycollate-pretreated peritoneal cavities was significantly decreased. In vitro assays revealed that CXCL8 binding to isolated ST3Gal-IV(-/-) neutrophils was markedly impaired. Furthermore, CXCL1-mediated adhesion of ST3Gal-IV(-/-) leukocytes at physiological flow conditions, as well as transendothelial migration of ST3Gal-IV(-/-) leukocytes in response to CXCL1, was significantly reduced. In human neutrophils, enzymatic desialylation decreased binding of CXCR2 ligands to the neutrophil surface and diminished neutrophil degranulation in response to these chemokines. In addition, binding of alpha2,3-linked sialic acid-specific Maackia amurensis lectin II to purified CXCR2 from neuraminidase-treated CXCR2-transfected HEK293 cells was markedly impaired. Collectively, we provide substantial evidence that sialylation by ST3Gal-IV significantly contributes to CXCR2-mediated leukocyte adhesion during inflammation in vivo.  相似文献   

20.
We investigated the role of antigen-presenting cells in early interferon (IFN)-gamma production in normal and recombinase activating gene 2-deficient (Rag-2(-/-)) mice in response to Listeria monocytogenes (LM) infection and interleukin (IL)-12 administration. Levels of serum IFN-gamma in Rag-2(-/-) mice were comparable to those of normal mice upon either LM infection or IL-12 injection. Depletion of natural killer (NK) cells by administration of anti-asialoGM1 antibodies had little effect on IFN-gamma levels in the sera of Rag-2(-/-) mice after LM infection or IL-12 injection. Incubation of splenocytes from NK cell-depleted Rag-2(-/-) mice with LM resulted in the production of IFN-gamma that was completely blocked by addition of anti-IL-12 antibodies. Both dendritic cells (DCs) and monocytes purified from splenocytes were capable of producing IFN-gamma when cultured in the presence of IL-12. Intracellular immunofluorescence analysis confirmed the IFN-gamma production from DCs. It was further shown that IFN-gamma was produced predominantly by CD8alpha+ lymphoid DCs rather than CD8alpha- myeloid DCs. Collectively, our data indicated that DCs are potent in producing IFN-gamma in response to IL-12 produced by bacterial infection and play an important role in innate immunity and subsequent T helper cell type 1 development in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号