首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to injuries in the central nervous system, injured peripheral neurons will regenerate their axons. However, axotomized motoneurons progressively lose their ability to regenerate their axons, following peripheral nerve injury often resulting in very poor recovery of motor function. A decline in neurotrophic support may be partially responsible for this effect. The initial upregulation of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) by Schwann cells of the distal nerve stump after nerve injury has led to the speculation that they are important for motor axonal regeneration. However, few experiments directly measure the effects of exogenous BDNF or GDNF on motor axonal regeneration. This study provided the first direct and quantitative evidence that long-term continuous treatment with exogenous GDNF significantly increased the number of motoneurons which regenerate their axons, completely reversing the negative effects of chronic axotomy. The beneficial effect of GDNF was not dose-dependent. A combination of exogenous GDNF and BDNF on motor axonal regeneration was significantly greater than either factor alone, and this effect was most pronounced following long-term continuous treatment. The ability of GDNF, either alone or in combination with BDNF, to increase the number of motoneurons that regenerated their axons correlated well with an increase in axon sprouting within the distal nerve stump. Thus long-term continuous treatment with neurotrophic factors, such as GDNF and BDNF, can be used as a viable treatment to sustain motor axon regeneration.  相似文献   

2.
Nigrostriatal dopaminergic neurons undergo sprouting around the margins of a striatal wound. The mechanism of this periwound sprouting has been unclear. In this study, we have examined the role played by the macrophage and microglial response that follows striatal injury. Macrophages and activated microglia quickly accumulate after injury and reach their greatest numbers in the first week. Subsequently, the number of both cell types declines rapidly in the first month and thereafter more slowly. Macrophage numbers eventually cease to decline, and a sizable group of these cells remains at the wound site and forms a long-term, highly activated resident population. This population of macrophages expresses increasing amounts of glial cell line-derived neurotrophic factor mRNA with time. Brain-derived neurotrophic factor mRNA is also expressed in and around the wound site. Production of this factor is by both activated microglia and, to a lesser extent, macrophages. The production of these potent dopaminergic neurotrophic factors occurs in a similar spatial distribution to sprouting dopaminergic fibers. Moreover, dopamine transporter-positive dopaminergic neurites can be seen growing toward and embracing hemosiderin-filled wound macrophages. The dopaminergic sprouting that accompanies striatal injury thus appears to result from neurotrophic factor secretion by activated macrophages and microglia at the wound site.  相似文献   

3.
Sun M  Kong L  Wang X  Lu XG  Gao Q  Geller AI 《Brain research》2005,1052(2):119-129
Both glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) can protect nigrostriatal dopaminergic neurons from neurotoxins in rodent and monkey models of Parkinson's disease (PD). These two neurotrophic factors are usually tested individually. This study was designed to compare GDNF, BDNF, or both, for their capabilities to correct behavioral deficits and protect nigrostriatal dopaminergic neurons in a rat model of PD. Gene transfer used a helper virus-free Herpes Simplex Virus (HSV-1) vector system and a modified neurofilament heavy gene promoter that supports long-term expression in forebrain neurons. Rats received unilateral intrastriatal injections of HSV-1 vectors that express either GDNF or BDNF, or both vectors, followed by intrastriatal injections of 6-hydroxydopamine (6-OHDA). Recombinant GDNF or BDNF was detected in striatal neurons in rats sacrificed at 7 months after gene transfer. Of note, GDNF was significantly more effective than BDNF for both correcting behavioral deficits and protecting nigrostriatal dopaminergic neurons. Expression of both neurotrophic factors was no more effective than expression of only GDNF. These results suggest that GDNF is more effective than BDNF for correcting the rat model of PD, and that there are no detectable benefits from expressing both of these neurotrophic factors.  相似文献   

4.
Injury to the central nervous system causes atrophy or death of connecting neurons and can modify the expression of neurotrophic factors. We observed transneuronal upregulation of brain-derived neurotrophic factor (BDNF) expression in the rat ipsilateral substantia nigra pars compacta after a striatal lesion induced by kainate. This effect is developmentally regulated because the enhancement of nigral BDNF expression was only observed when striatal lesion was performed on postnatal day (P) 15 and in adulthood, but not at P7. Interestingly, the lack of regulation of BDNF was coincident with the transynaptic degeneration of nigral neurons after striatal excitotoxic injury. Hence, the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta decreased when the lesion was performed at P7, but not at P15 or at P30. The analysis of the functional significance of this BDNF upregulation was done using trkB-IgG fusion proteins. After striatal injury, blockade of endogenous BDNF by trkB fusion proteins induced an atrophy of the dopaminergic neurons of the pars compacta. The injection of trkB-IgG fusion proteins did not modify the effects of kainate in the substantia nigra pars reticulata. Thus, our results show that BDNF exerts an autocrine/paracrine protective effect selectively on dopaminergic neurons against the loss of trophic support from the target striatum.  相似文献   

5.
The use of viral vectors for gene delivery offer many advantages for both basic research and therapeutic application through the continuous expression of a gene product within a target region. It is vital however that any gene product is correctly expressed in a biologically active form, and this should be confirmed prior to large scale in vivo studies. Using adeno-associated viral (AAV) vectors to direct the expression of either a neurotrophic factor or an anti-apoptotic protein, we have developed a range of in vitro assays to verify functional transgenic protein expression. Brain-derived neurotropic factor (BDNF) activity was confirmed by demonstrating enhanced generation of GABAergic neurons in embryonic (E15) striatal cultures and AAV-mediated glial-derived neurotrophic factor (GDNF) function using an assay for dopaminergic differentiation of embryonic (E14) ventral mesencephalic cultures. To assess functional anti-apoptotic factor expression we designed cell-survival assays, using embryonic cortical cultures to confirm Bcl-x(L) activity and the HT1080 cell-line for X-linked inhibitor of apoptosis protein (XIAP) activity following AAV-mediated expression. This study demonstrates that the use of functional assays provides valuable confirmation of desired biotherapeutic expression prior to extensive investigation with new gene delivery vectors.  相似文献   

6.
We investigated whether certain hydrophobic dipeptides, Leu-Ile, Leu-Pro, and Pro-Ile, which partially resemble the site on FK506 that binds to immunophilin, could stimulate glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) synthesis in cultured neurons and found only Leu-Ile to be an active dipeptide. Leu-Ile protected against the death of mesencephalic neurons from wild-type mice but not from mice lacking the BDNF or GDNF gene. Next, we examined the effects of i.p. or i.c.v. administration of Leu-Ile on BDNF and GDNF contents. Both types of administration increased the contents of BDNF and GDNF in the striatum of mice. Also, peripheral administration of Leu-Ile inhibited dopaminergic (DA) denervation caused by unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of mice. The number of rotations following a methamphetamine challenge was lower in the Leu-Ile-treated group than in the nontreated group. Next, we compared the calcineurin activity and immunosuppressant activity of Leu-Ile with those of FK506. Leu-Ile was not inhibitory toward calcineurin cellular activity in cultured neuronal cells. Furthermore, Leu-Ile did not suppress concanavalin A (ConA)-induced synthesis/secretion of interleukin-2 by cultured spleen cells, suggesting that the immunosuppressant activity of Leu-Ile may be negligible when used as a therapeutic tool for neurodegenerative diseases.  相似文献   

7.
8.
9.
10.
Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons. However, most motoneurons display retrograde atrophy and subsequently die. Two neurotrophic factors, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote the survival of motoneurons after injury. The long-term delivery of these neurotrophic factors to the motoneurons in the ventral horn of the spinal cord is problematic. One strategy to improve the outcome of the neurosurgical reinsertion of the ventral root following avulsion would involve gene transfer with adeno-associated viral (AAV) vectors encoding these neurotrophic factors near the denervated motoneuron pool. Here, we show that AAV-mediated overexpression of GDNF and BDNF in the spinal cord persisted for at least 16 weeks. At both 1 and 4 months post-lesion AAV-BDNF- and -GDNF-treated animals showed an increased survival of motoneurons, the effect being more prominent at 1 month. AAV vector-mediated overexpression of neurotrophins also promoted the formation of a network of motoneuron fibers in the ventral horn at the avulsed side, but motoneurons failed to extent axons into the reinserted L4 root towards the sciatic nerve nor to improve functional recovery of the hind limbs. This suggests that high levels of neurotrophic factors in the ventral horn promote sprouting, but prevent directional growth of axons of a higher number of surviving motoneurons into the implanted root.  相似文献   

11.
The capacity of the central nervous system for axonal growth decreases as the age of the animal at the time of injury increases. Changes in the expression of neurotrophic factors within embryonic and early postnatal spinal cord suggest that a lack of trophic support contributes to this restrictive growth environment. We examined neurotrophic factor gene profiles by ribonuclease protection assay in normal neonate and normal adult spinal cord and in neonate and adult spinal cord after injury. Our results show that in the normal developing spinal cord between postnatal days 3 (P3) and P10, compared to the normal adult spinal cord, there are higher levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and glial-derived neurotrophic factor (GDNF) mRNA expression and a lower level of ciliary neurotrophic factor (CNTF) mRNA expression. Between P10 and P17, there is a significant decrease in the expression of NGF, BDNF, NT-3, and GDNF mRNA and a contrasting steady and significant increase in the level of CNTF mRNA expression. These findings show that there is a critical shift in neurotrophic factor expression in normal developing spinal cord between P10 and P17. In neonate spinal cord after injury, there is a significantly higher level of BDNF mRNA expression and a significantly lower level of CNTF mRNA expression compared to those observed in the adult spinal cord after injury. These findings suggest that high levels of BDNF mRNA expression and low levels of CNTF mRNA expression play important roles in axonal regrowth in early postnatal spinal cord after injury.  相似文献   

12.
Spinal cord injury and cyclophosphamide-induced cystitis dramatically alter lower urinary tract function and produce neurochemical, electrophysiological, and anatomical changes that may contribute to reorganization of the micturition reflex. Mechanisms underlying this neural plasticity may involve alterations in neurotrophic factors in the urinary bladder. These studies have determined neurotrophic factors in the urinary bladder that may contribute to reorganization of the micturition reflex following cystitis or spinal cord injury. A ribonuclease protection assay was used to measure changes in urinary bladder neurotrophic factor mRNA (betaNGF, BDNF, GDNF, CNTF, NT-3, and NT-4) following spinal cord injury (acute/chronic) or cyclophosphamide-induced cystitis (acute/chronic). The correlation between urinary bladder nerve growth factor mRNA and nerve growth factor protein expression was also determined. Each experimental paradigm resulted in significant (P 相似文献   

13.
The expression of mRNA for brain-derived neurotrophic factor (BDNF) is regulated by early visual experience. In this study, we sought to determine whether other neurotrophic factor mRNAs are similarly regulated. We reared pigmented rats from birth to postnatal day 21 in a normal light cycle, constant light (LR) or constant darkness (DR). In the retina, superior colliculus (SC), primary visual cortex (V1), hippocampus (HIPP) and cerebellum (CBL), using a ribonuclease protection assay (RPA), we examined expression of the mRNAs for nerve growth factor (NGF), BDNF, NT3, NT4, ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF). LR or DR alter the expression of the mRNAs for NGF, BDNF and NT3 and CNTF within the visual system. LR also upregulated BDNF mRNA expression within the cerebellum. In all of the structures examined, NT4 mRNA expression was unaltered by LR or DR and GDNF mRNA was undetectable. Notably, the same rearing condition could induce changes of opposite sign in the mRNA for a single factor in different structures or for different factors in the same structure. Thus, during developmental stages when sensory experience and neuroelectric activity are important in the shaping of visual circuitry, vision regulates the expression of multiple neurotrophic factor mRNAs and each mRNA has a unique profile with respect to the locus and sign of activity-induced changes.  相似文献   

14.
In hereditary Huntington's disease, a triplet repeat disease, there is extensive loss of striatal neurons. It has been shown that brain-derived neurotrophic factor (BDNF) protects striatal neurons against a variety of insults. We confirmed that BDNF enhances survival and DARPP-32 expression in primary striatal cultures derived from postnatal mice. Furthermore, BDNF inhibited intracellular oxyradical stress triggered by dopamine, and partially blocked basal and dopamine-induced apoptosis. Nevertheless, BDNF failed to rescue striatal neurons from dopamine-induced cell death. Therefore, BDNF inhibits free radical and apoptotic pathways in medium spiny neurons, but does so downstream from the point of commitment to cell death.  相似文献   

15.
16.
Primary astrocytes were genetically modified ex vivo to express recombinant glial cell line-derived neurotrophic factor (GDNF) and subsequently were tested for their ability to provide neuroprotection to dopaminergic neurons in a 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease. A replication-defective retrovirus was constructed, which contained the rat GDNF sequence and a sequence encoding a beta-galactosidase (beta-gal)/neomycin phosphotransferase fusion protein, linked via an internal ribosomal entry site. Murine astrocytes transduced with this vector secreted GDNF into the culture media at the rate of 115 +/- 34 pg/24 h/10(5) cells and expressed cytoplasmic beta-gal, whereas control nontransduced astrocytes were negative for GDNF production and cytoplasmic beta-gal expression. Mice that received implants of GDNF-producing astrocytes into the striatum or nigra displayed elevated levels of GDNF compared to mice that received control nontransduced astrocytes. In addition, tissue content of GDNF was increased bilaterally and in brain regions both proximal and distal to the graft, even though astrocyte migration away from the graft site did not occur. Importantly, GDNF-producing astrocytes provided marked neuroprotection of nigral dopaminergic perikarya, and partial protection of striatal dopaminergic fibers, when implanted into the midbrain 6 days prior to a retrograde 6-OHDA lesion, as assessed by tyrosine hydroxylase immunohistochemistry. Similarly, GDNF-producing astrocytes prevented the acquisition of amphetamine-induced rotational behavior in 6-OHDA-treated mice and completely prevented dopamine depletion within the substantia nigra, as assessed by high-performance liquid chromatography. These results indicate that continuous exposure to low levels of GDNF provided by transgenic astrocytes provides marked neuroprotection of nigral dopaminergic neurons. (c)2002 Elsevier Science (USA).  相似文献   

17.
We reported recently that overexpression of neurotrophin-3 (NT-3) by motoneurons in the spinal cord of rats will induce sprouting of corticospinal tract (CST) axons (Zhou et al. [2003] J. Neurosci. 23:1424-1431). We now report that overexpression of brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF) in the rat sensorimotor cortex near the CST neuronal cell bodies together with overexpression of NT-3 in the lumbar spinal cord significantly increases axonal sprouting compared to that induced by NT-3 alone. Two weeks after unilaterally lesioning the CST at the level of the pyramids, we injected rats with saline or adenoviral vectors (Adv) carrying genes coding for BDNF (Adv.BDNF), GDNF (Adv.GDNF) or enhanced green fluorescent protein (Adv.EGFP) at six sites in the sensorimotor cortex, while delivering Adv.NT3 to motoneurons in each of these four groups on the lesioned side of the spinal cord by retrograde transport from the sciatic nerve. Four days later, biotinylated dextran amine (BDA) was injected into the sensorimotor cortex on the unlesioned side to mark CST axons in the spinal cord. Morphometric analysis of axonal sprouting 3 weeks after BDA injection showed that the number of CST axons crossing the midline in rats treated with Adv.BDNF or Adv.GDNF were 46% and 52% greater, respectively, than in rats treated with Adv.EGFP or PBS (P < 0.05). These data demonstrate that sustained local expression of neurotrophic factors in the sensorimotor cortex and spinal cord will promote increased axonal sprouting after spinal cord injury, providing a basis for continued development of neurotrophic factor therapy for central nervous system damage.  相似文献   

18.
Previously, we observed that injection of an adenoviral (Ad) vector expressing glial cell line-derived neurotrophic factor (GDNF) into the striatum, but not the substantia nigra (SN), prior to a partial 6-OHDA lesion protects dopaminergic (DA) neuronal function and prevents the development of behavioral impairment in the aged rat. This suggests that striatal injection of AdGDNF maintains nigrostriatal function either by protecting DA terminals or by stimulating axonal sprouting to the denervated striatum. To distinguish between these possible mechanisms, the present study examines the effect of GDNF gene delivery on molecular markers of DA terminals and neuronal sprouting in the aged (20 month) rat brain. AdGDNF or a control vector coding for beta-galactosidase (AdLacZ) was injected unilaterally into either the striatum or the SN. One week later, rats received a unilateral intrastriatal injection of 6-OHDA on the side of vector injection. Two weeks postlesion, rats injected with AdGDNF into either the striatum or the SN exhibited a reduction in the area of striatal denervation and increased binding of the DA transporter ligand [(125)I]IPCIT in the lesioned striatum compared to control animals. Furthermore, injections of AdGDNF into the striatum, but not the SN, increased levels of tyrosine hydroxylase mRNA in lesioned DA neurons in the SN and prevented the development of amphetamine-induced rotational asymmetry. In contrast, the level of T1 alpha-tubulin mRNA, a marker of neuronal sprouting, was not increased in lesioned DA neurons in the SN following injection of AdGDNF either into the striatum or into the SN. These results suggest that GDNF gene delivery prior to a partial lesion ameliorates damage caused by 6-OHDA in aged rats by inhibiting the degeneration of DA terminals rather than by inducing sprouting of nigrostriatal axons.  相似文献   

19.
We describe the discovery of a novel, 20 kDa, secreted human protein named mesencephalic astrocyte-derived neurotrophic factor, or MANF. The homologous, native molecule was initially derived from a rat mesencephalic type-1 astrocyte cell line and recombinant MANF subcloned from a cDNA encoding human arginine-rich protein. MANF selectively protects nigral dopaminergic neurons, versus GABAergic or serotonergic neurons. The discovery of MANF marks a more systematic approach in the search for astrocyte-derived, secreted proteins that selectively protect specific neuronal phenotypes. Compared to glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), MANF was more selective in the protection of dopaminergic neurons at lower (0.05-0.25 ng/mL) and middle (0.5-2.5 ng/mL) concentrations: MANF>GDNF>BDNF. GDNF was more selective at higher concentrations (25-50 ng/ml): GDNF>MANF>BDNF. Two domains in MANF of 39-AA and 109-AA respectively, and eight cysteines are conserved from C. elegans to man. MANF is encoded by a 4.3 Kb gene with 4 exons, and is located on the short arm of human chromosome 3. The secondary structure is dominated by alpha-helices (47%) and random coils (37%). Studies to determine the localization of MANF in the brains of rat, monkey, and man, as well as the receptor, signaling pathways, and biologically active peptide mimetics are in progress. The selective, neuroprotective effect of MANF for dopaminergic neurons suggests that it may be indicated for the treatment of Parkinson's disease.  相似文献   

20.
Exogenous neurotrophic factors provided at a spinal cord injury site promote regeneration of chronically injured rubrospinal tract (RST) neurons into a peripheral nerve graft. The present study tested whether the response to neurotrophins is associated with changes in the expression of two regeneration-associated genes, betaII-tubulin and growth-associated protein (GAP)-43. Adult female rats were subjected to a right full hemisection lesion via aspiration of the C3 spinal cord. A second aspiration lesion was made 4 weeks later and gel foam saturated in brain-derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF), or phosphate-buffered saline (PBS) was applied to the lesion site for 60 min. Using in situ hybridization, RST neurons were examined for changes in mRNA levels of betaII-tubulin and GAP-43 at 1, 3, and 7 days after treatment. Based on analysis of gene expression in single cells, there was no effect of BDNF treatment on either betaII-tubulin or GAP-43 mRNA expression at any time point. betaII-Tubulin mRNA levels were enhanced significantly at 1 and 3 days in animals treated with GDNF relative to levels in animals treated with PBS. Treatment with GDNF did not affect GAP-43 mRNA levels at 1 and 3 days, but at 7 days there was a significant increase in mRNA expression. Interestingly, 7 days after GDNF treatment, the mean cell size of chronically injured RST neurons was increased significantly. Although GDNF and BDNF both promote axonal regeneration by chronically injured neurons, only GDNF treatment is associated with upregulation of betaII-tubulin or GAP-43 mRNA. It is not clear from the present study how exogenous BDNF stimulates regrowth of injured axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号