首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Myelodysplastic syndrome (MDS) is rare in people aged <50 years. Most patients with this disorder experience progressive worsening of blood cytopenias, with an increasing need for transfusion. The more advanced and severe the disorder, the greater the risk that it will progress to acute myeloid leukemia. Therapy is typically based on the patient''s risk category, age, and performance status. Supportive care alone is a major option for lower-risk, older patients with MDS or those with comorbidities. The only potentially curative treatment option is hematopoietic stem-cell transplantation, which is typically used to treat high-risk, younger patients.

Objective

To describe and compare the hematologic complications, healthcare utilization, and costs of supportive care in patients with MDS aged <50 years and in older patients aged ≥50 years.

Methods

Using the i3/Ingenix LabRx claims database, this retrospective study included patients who were continuously enrolled (ie, 6 months preindex through 1 year postindex) in the study and who had an initial claim of MDS (index date) between February 1, 2007, and July 31, 2008. Patients treated with hypomethylating agents or thalidomide analogues were excluded. Claims included information on office visits, medical procedures, hospitalizations, drug use, and tests performed. The hematologic complications, costs, and utilization analyses were stratified by age into 2 age-groups—patients aged <50 years and those aged ≥50 years. The MDS-related diagnoses, utilization, and costs were analyzed postindex. The data used in this study spanned the period from August 1, 2006, to July 31, 2009.

Results

We identified 1133 newly diagnosed patients with MDS who received supportive care only during the study period; of these, 19.5% were younger than age 50 years. These younger patients included more females (62.0% vs 52.5%; P = .011) and had fewer comorbidities (mean Charlson comorbidy index, 1.2 vs 2.4; P <.001) and physician office visits than those aged ≥50 years. Postindex, compared with the older patients, the younger patients had less use of erythropoietin therapy and fewer transfusions, anemia diagnoses, and potential complications of neutropenia and pneumonia diagnoses; however, more diagnoses of neutropenia and of decreased white blood cell counts were seen in the younger patients than in the older patients (P ≤.034 for all comparisons). Furthermore, younger patients had fewer mean office visits in the postindex period than older patients (17.5 vs 24.2, respectively; P <.001) and fewer hospitalizations (32.1% vs 44.6%, respectively; P = .004), but they had a longer (although not statistically significant) mean length of hospital stay (21 vs 14 days, respectively; P = .131). Mean total healthcare charges were $96,277 (median, $21,287) in younger patients compared with $84,102 (median, $39,402) in older patients, although this difference, too, was not significant.

Conclusions

MDS is associated with frequent and prolonged hospitalizations, frequent outpatient visits, and high costs in younger and in older patients who are receiving supportive care. Although this study shows that younger patients aged <50 years do not have significantly higher costs overall, a small proportion may have a higher healthcare utilization and cost-related burden of MDS than patients aged ≥50 years.Myelodysplastic syndrome (MDS) encompasses a heterogeneous group of clonal disorders of hematopoiesis and is characterized by dysplastic morphology of marrow and blood cells, ineffective hematopoiesis, and peripheral blood cytopenias.1,2 Most patients with MDS experience progressive worsening of blood cytopenias, with an increasing need for transfusion.2 These patients also have an increasing number of potentially fatal infections and hemorrhagic complications.2 The more advanced and severe the MDS is, the greater the risk that the disease will progress to acute myeloid leukemia (AML).3 The disease may be classified into 1 of 5 subtypes—refractory anemia, refractory anemia with ringed sideroblasts (RARS), refractory anemia with excess of blasts (RAEB), RAEB in transformation (RAEB-T), or chronic myelomonocytic leukemia.3 Approximately 5% to 15% of the relatively lower-risk patients with refractory anemia/RARS transform to AML; by contrast, 40% to 50% of the high-risk patients with RAEB/RAEB-T transform to AML.3The therapeutic options that are tailored for specific MDS subgroups are typically based on factors such as the patient''s risk category, age, and performance status.3,4 The National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology recommend that all patients with MDS receive supportive care,3 which includes blood transfusions, erythropoietin with or without granulocyte colony-stimulating factor, iron chelation therapy, and prophylactic antibiotics.4,5 Other therapies indicated for the treatment of patients with MDS include the thalidomide analogue lenalidomide and the hypomethylating agents decitabine and 5-azacytidine.3,4 The only potentially curative treatment option is hematopoietic stem-cell transplantation, which is typically used to treat younger, high-risk patients.3,4 Supportive care alone remains a leading option for the treatment of lower-risk, older patients with MDS or those with comorbidities.3,4Data on the distribution of MDS in the general population are inconsistent, possibly because of misdiagnoses and/or underreporting of the disease.6,7 The most recent estimates of the annual incidence of MDS in the United States range from 3.3 to 5.0 per 100,000 persons.3,7,8 Some studies indicate that the median age of patients with MDS is approximately 65 years, whereas others note that more than 70% of cases occur in patients aged ≥70 years in the United States.3,6,9 The incidence of MDS in individuals aged ≥70 years is between 22 and 45 per 100,000 persons and increases with age.3,6,911Less than 10% of patients with MDS are aged <50 years; therefore, little is known about this disease in this younger age-group, particularly among patients who receive supportive care only.6,11,12 Some data suggest that younger patients with MDS have less aggressive disease.12,13 We compared hematologic complications, healthcare utilization, and costs in patients aged <50 years and in those aged ≥50 years who were newly diagnosed with MDS and received supportive care only.

KEY POINTS

  • ▸ The more advanced and severe the myelodysplastic syndrome (MDS) is, the greater the risk of progression to acute myeloid leukemia. Therapy is currently based on risk category, age, and performance status.
  • ▸ In the United States, the majority of newly diagnosed patients with MDS receive only supportive care, although for younger patients at high-risk, hematopoietic stem-cell transplantation is potentially the only curative option.
  • ▸ This analysis compares the hematologic complications, healthcare utilization, and cost of care between patients with MDS aged <50 years and those aged ≥50 years who receive supportive care only.
  • ▸ Although the younger patients had fewer office visits, they had longer mean length of hospital stay than the older group (21 vs 14 days, respectively).
  • ▸ Mean total healthcare charges were $96,277 in younger patients compared with $84,102 in older patients.
  • ▸ Based on this study, approximately 20% of patients with MDS are under age 50 years.
  • ▸ The results of this study suggest that a small proportion of younger patients with MDS who receive supportive care only may have a higher healthcare utilization and cost-related burden of MDS than older patients with this condition.
  相似文献   

2.
Multidrug- (MDR) and extensively drug-resistant tuberculosis (XDR TB) are commonly associated with Beijing strains. However, in KwaZulu-Natal, South Africa, which has among the highest incidence and mortality for MDR and XDR TB, data suggest that non-Beijing strains are driving the epidemic. We conducted a retrospective study to characterize the strain prevalence among drug-susceptible, MDR, and XDR TB cases and determine associations between strain type and survival. Among 297 isolates from 2005–2006, 49 spoligotype patterns were found. Predominant strains were Beijing (ST1) among drug-susceptible isolates (27%), S/Quebec (ST34) in MDR TB (34%) and LAM4/KZN (ST60) in XDR TB (89%). More than 90% of patients were HIV co-infected. MDR TB and XDR TB were independently associated with mortality, but TB strain type was not. We conclude that, although Beijing strain was common among drug-susceptible TB, other strains predominated among MDR TB and XDR TB cases. Drug-resistance was a stronger predictor of survival than strain type. Key words: Mycobacterium tuberculosis, drug resistance, transmission, genotype, South Africa, HIV, bacteria, tuberculosis, tuberculosis and other mycobacteria, antimicrobial resistanceDrug-resistant tuberculosis (TB) has emerged as a substantial threat to advances in global TB control over the past several decades (1). Worldwide, an estimated 630,000 cases of multidrug-resistant (MDR) TB occurred in 2011, and extensively drug-resistant (XDR) TB has now been reported in 84 countries (2). MDR TB and XDR TB are each associated with very high mortality rates (3), and their transmission—both in community and health care settings—remains an ongoing challenge in resource-limited settings and in countries with high rates of HIV co-infection.In South Africa, the incidence of MDR TB has increased 5-fold since 2002 (2,4). MDR TB treatment is now estimated to consume more than half of the budget allocated for TB control in South Africa (5). The emergence of XDR TB, and its associated high mortality rates, have further underscored the need for clarifying the factors driving the drug-resistant TB epidemic to better focus control efforts (3,6,7).Drug-resistant TB is generally considered a human-made phenomenon that occurs when inadequate TB treatment creates selection pressure for the emergence of drug-resistant Mycobacterium tuberculosis subpopulations (acquired resistance) (1). Researchers initially believed that the mutations causing drug resistance would exert a “fitness cost,” rendering those strains too weak to be transmitted (8,9). Nonetheless, transmission of drug-resistant TB strains has now been well-documented (1013), and laboratory studies have shown that clinical strains may have minimal fitness costs or even none (14). Emerging data suggest that most MDR TB and XDR TB cases in South Africa and worldwide are likely caused by primary transmission of drug-resistant strains (2,1519).Although the M. tuberculosis W/Beijing strain family has been described among cases of drug-susceptible, MDR TB, and XDR TB in South Africa, numerous other strain types have also been identified (20,21). Little is known about the transmissibility and virulence of M. tuberculosis strains aside from the W/Beijing strain family (22,23). In the Eastern Cape and Western Cape Provinces of South Africa, strains from the W/Beijing family have most often been associated with transmission of drug-resistant TB (2427). At our study site in KwaZulu-Natal Province, however, the LAM4/KZN strain type has predominated among MDR TB and XDR TB cases and has been linked to nosocomial transmission and high mortality rates (3,16,17,28,29). This strain is a member of the Euro-American strain family and was first described in this region in 1994, evolving into an increasingly resistant phenotype over time (29).The reasons for why the LAM4/KZN strain is prominent in KwaZulu-Natal Province, rather than the Beijing strain, which is seen globally and in other parts of South Africa, is unclear. Moreover, it is unknown whether the higher mortality among patients with MDR TB and XDR TB in KwaZulu-Natal can be explained, in part, by a difference in genotypic prevalence and associated differences in strain virulence (3,6,7,28). In this study, we sought to characterize the genotypic diversity of M. tuberculosis strains among isolates causing drug-susceptible TB, MDR TB, and XDR TB in KwaZulu-Natal Province, South Africa. We also examined the relationship between M. tuberculosis strain, drug resistance, and patient survival.  相似文献   

3.
4.
In the third season (2002) of the West Nile virus epidemic in the United States, two canids (wolf and dog) were diagnosed with West Nile virus encephalitis and myocarditis with similarities to known affected species (humans, horses, and birds). The West Nile virus infections were confirmed by immunohistochemistry and polymerase chain reaction.Since its 1999 introduction in New York, West Nile virus (WNV) has spread to >40 states, causing seasonal mosquito-borne disease in humans, horses, and birds (17). We recently identified two Illinois canids (a captive wolf and a domestic dog) with severe disease associated with WNV infection.Outside the Western Hemisphere, WNV has been endemic for decades (4,811). Canids have not been thought to be important in the epidemiology of this virus. However, a dog with neurologic disease that died in Africa in 1977 is now thought to have been infected with WNV (9,12). In a recent study in which four dogs were experimentally infected, no clinical disease was observed, and a low viremia developed in one dog (11). Natural infections occur in dogs, as indicated by serum antibodies; seropositivity in surveys was 37% in the 1980s in South Africa, 24% in the 1990s in India, and 5% in 1999 in New York City (10,11,13). In addition, a few individuals of some mammalian species have been listed as infected (not diseased): 14 bats, four rodents, three rabbits, two cats, two raccoons, and a skunk (6).  相似文献   

5.
6.
7.
Burkholderia pseudomallei, the causative agent of melioidosis, was isolated from abscesses of 2 pet green iguanas in California, USA. The international trade in iguanas may contribute to importation of this pathogen into countries where it is not endemic and put persons exposed to these animals at risk for infection.Key words: Burkholderia pseudomallei, iguana, zoonoses, abscess, melioidosis, bacteriaBurkholderia pseudomallei, a gram-negative bacterium, is the causative agent of melioidosis. Melioidosis is endemic in countries in Southeast Asia and in northern Australia, and has been sporadically reported from Central and South America (1). In the United States, most case-patients have traveled to disease-endemic areas (2).B. pseudomallei infection occurs through direct cutaneous inoculation with soil or water containing B. pseudomallei and through ingestion or inhalation of aerosolized bacteria. In humans, the incubation period is typically 1–21 days, but some patients demonstrate clinical signs years after exposure (1). Acute melioidosis can manifest as a severe pneumonia and septicemia, with death rates >40% in countries where access to medical care is limited. In chronic melioidosis, abscesses occur in various organs, including the lungs, liver, spleen, and cutaneous sites (1,3). In animals, abscesses and acute illness are common (4).B. pseudomallei is classified by US federal agencies as a tier 1 select agent. Tier 1 agents are believed to pose the greatest threat for deliberate misuse and potential harm to public health. Multiple regulations restrict access to these agents and reduce the risk of their release from secure settings (5). Infection is generally diagnosed by culture. Commercially available bacterial identification systems may provide initial identification; however, B. pseudomallei may be misidentified by some systems (6). Other identification tests are available, including PCR and antigen detection; these are not commonly used outside disease-endemic regions (3,7,8).  相似文献   

8.
We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid.Typhoid fever, which is caused by Salmonella enterica serotype Typhi, is endemic to the developing world; there were an estimated 26.7 million cases in 2010 (1). The incidence of typhoid fever in sub-Saharan Africa was an estimated 725 cases/100,000 persons in 2010, despite a lack of incidence studies conducted in West and central Africa (1). Antimicrobial susceptibility data are also scarce for this part of Africa. This issue is problematic because treatment with appropriate antimicrobial drugs is essential for recovery in the context of the global emergence of multidrug resistance.In the Indian subcontinent and Southeast Asia, the multidrug-resistant (MDR) Salmonella Typhi H58 clone, which was named after its haplotype (a combination of defined chromosomal single-nucleotide polymorphisms [SNPs]) (2,3), has spread rapidly and become endemic and predominant. During the 1990s, this clone acquired a large conjugative incHI1 pST6 plasmid encoding resistance to ampicillin, chloramphenicol, and co-trimoxazole (4,5); also in the 1990s, this MDR clone became resistant to quinolones and showed decreased susceptibility to ciprofloxacin because of point mutations in the chromosomal gyrA gene (2). The H58 clone has also spread to eastern Africa, where it has been the most prevalent haplotype (87%) in Kenya since the early 2000s (6).During 1997–2011, high incidence of MDR Salmonella Typhi was reported in some countries near the Gulf of Guinea in Africa, including Nigeria (7), Ghana (8,9), Togo (10), and the Democratic Republic of the Congo (11). During 1999–2003, a British surveillance system reported a prevalence of 19% (49/421) for MDR Salmonella Typhi isolates among imported cases of typhoid fever acquired in Africa, particularly in Ghana (12). However, nothing is known about the genotypes of these isolates, including whether they belong to the spreading MDR H58 clone.We report data for the occurrence, genotypes, and characterization of the resistance mechanisms of MDR Salmonella Typhi isolates. These isolates were obtained from the French National Reference Center for Salmonella (FNRC-Salm), Institut Pasteur (Paris, France), and Centre Pasteur du Cameroun (Yaoundé, Cameroon).  相似文献   

9.
The Walkerton, Canada, waterborne outbreak of 2000 resulted from entry of Escherichia coli O157:H7 and Campylobacter spp. from neighboring farms into the town water supply. Isolates of Campylobacter jejuni and Campylobacter coli obtained from outbreak investigations were characterized by phenotypic and genotypic methods, including heat-stable and heat-labile serotyping, phage typing, biotyping, fla–restriction fragment length polymorphism (RFLP) typing, and pulsed-field gel electrophoresis. Two main outbreak strains were identified on the basis of heat-stable serotyping and fla-RFLP typing. These strains produced a limited number of types when tested by other methods. Isolates with types indistinguishable from, or similar to, the outbreak types were found only on one farm near the town of Walkerton, whereas cattle from other farms carried a variety of Campylobacter strains with different type characteristics. Results of these analyses confirmed results from epidemiologic studies and the utility of using several different typing and subtyping methods for completely characterizing bacterial populations.An outbreak of Campylobacter jejuni in a farming community in southern Ontario, Canada, in 1985 resulted from contamination of well water caused by spring run-off and heavy rains (1). In May 2000, a second waterborne outbreak of Escherichia coli O157:H7 and Campylobacter occurred in Bruce County, Ontario. Well water serving the town of Walkerton was contaminated by surface water carrying livestock waste immediately after heavy rains (2,3). A detailed microbiologic and epidemiologic analysis of the most recent outbreak may provide insights that could help make this type of outbreak less frequent.Most sporadic cases of campylobacteriosis are associated with preparation or consumption of poultry products (4). Outbreaks have been associated with consumption of unpasteurized milk or unchlorinated water (5). An estimated 20% of cases of illness caused by C. jejuni are due to vehicles of infection other than food, including water (6). Waterborne outbreaks of Campylobacter tend to occur in spring or early fall, an association attributed to seasonality of surface water contamination and infection in cattle herds (5). Contaminated water sources have been implicated in outbreaks involving E. coli O157:H7 and Campylobacter together in Scotland (7) and in New York State (8,9). The former outbreak resulted from sewage contamination of the water supply of a small village in Fife, Scotland. The latter outbreak was associated with contamination of wells at a state fair (10). Excrement from birds and animals, including cattle, has been shown to contaminate surface water supplies used by humans infected with Campylobacter (9).Campylobacter spp. have been found to cause water-borne outbreaks worldwide; such outbreaks are a particular problem in Scandinavian countries where many people drink untreated water from streams and other sources (11). Untreated surface water has also been implicated in Campylobacter outbreaks in New Zealand (12,13), Finland (14), England, Wales (15,16), Australia (17), and the United States (18). In Canada, outbreaks have been rarely detected and have been associated with contamination of surface water (19,20) and consumption of unpasteurized milk (21).In the United States, disease caused by C. jejuni or C. coli has been estimated to affect 7 million people annually, causing 110–511 deaths and costing $1.2–$6 billion (22). These organisms are responsible for 17% of all hospitalizations related to foodborne illness in the United States, and although associated with a much lower case-fatality rate than Salmonella spp. and E. coli O157:H7, they account for 5% of food-related deaths (6). Although the incidence of Campylobacter infections generally appears to be higher in industrialized than in developing nations, some evidence exists that campylobacteriosis may be important from a social and economic point of view (23).Epidemiologic and microbiologic analyses were undertaken to better understand the circumstances leading to the Walkerton outbreak. C. jejuni was isolated from patients associated with the outbreak, and C. jejuni and C. coli were isolated from animals and animal manure on farms located near the town wells. This work summarizes the phenotypic and genotypic typing results for isolates associated with the outbreak.  相似文献   

10.
11.
12.
We describe the first known case of a device-related bloodstream infection caused by Staphylococcus aureus small colony variants. Recurrent pacemaker-related bloodstream infection within a 7-month period illustrates the poor clinical and microbiologic response to prolonged antimicrobial therapy in a patient infected with this S. aureus subpopulation.Infections caused by Staphylococcus aureus range from mild skin infections to acute life-threatening diseases such as pneumonia, osteomyelitis, and endocarditis. However, S. aureus may also cause a chronic disease with persistent and recurrent infections. Skin and soft tissue infections, chronic osteomyelitis, and persistent infections in patients with cystic fibrosis have been associated with small colony variants, a naturally occurring subpopulation of the species S. aureus (16). S. aureus small colony variants are characterized as electron transport deficient bacteria because of their auxotrophism to hemin or menadione or are recognized as thymidine-dependent. These variants produce very small, mostly nonpigmented and nonhemolytic colonies. In addition, they also demonstrate various other features that are atypical for S. aureus, including reduced coagulase production, failure to use mannitol, and increased resistance to aminoglycosides and cell-wall active antibiotics (310). Furthermore, the ability of these variants to persist intracellularly within nonprofessional phagocytes has been described (3,5,11). Because of their fastidious growth characteristics and unusual morphologic appearance, small colony variants present a challenge both to the microbiologist and the clinician, often resulting in misidentification and misinterpretation (1,2,7,8). Prerequisite for recovering and identifying these variants is the application of extended conventional culture and identification techniques (3,5,8). We report the first case of a pacemaker-related bloodstream infection caused by S. aureus small colony variants. This case illustrates the poor clinical and microbiologic response to prolonged antimicrobial therapy in patients infected with these variants.  相似文献   

13.
14.
15.
In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013–2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.Key words: Meningococcal meningitis, Neisseria meningitidis serogroup C, whole-genome sequencing, Niger, meningitis belt, bacteriaNeisseria meningitidis commonly causes meningitis in the African meningitis belt, where periodic meningococcal epidemics have contributed to the highest reported incidence of meningococcal meningitis in the world (1). Most meningococcal disease historically has been caused by N. meningitidis serogroup A (NmA); however, NmA disease dramatically decreased after the preventative MenAfriVac vaccination campaign was initiated in 2010 (2). Serogroup W (NmW) has been the major cause of meningococcal disease in the region since then (2).N. meningitidis serogroup C (NmC) disease has rarely been reported in the meningitis belt; it has not been detected in many molecular studies of invasive isolates (3,4) and is rarely found in carriage studies (5,6). The last large NmC epidemic in Africa occurred in Burkina Faso (then Upper Volta) in 1979 (7). During 2013 and 2014, NmC outbreaks were reported in Nigeria (8). The Nigerian outbreaks were caused by a novel NmC strain with a previously undescribed sequence type, 10217 (ST-10217), which does not belong to a defined clonal complex. In 2015, an epidemic of 9,367 meningococcal meningitis cases occurred in Niger, with NmC disease comprising most laboratory-confirmed cases (9).NmW disease has been reported in the meningitis belt since the 1980s (10,11), and NmW from clonal complex 11 (CC11) has been a major concern in the region since 2001 (12). The first large epidemic of disease caused by CC11 NmW occurred during 2002 in Burkina Faso (13). Subsequently, NmW disease outbreaks were reported in Niger during 2010 and 2011, both involving CC11 (14). These outbreaks were followed by another large epidemic caused by CC11 NmW in Burkina Faso during 2012 (15). Whole-genome sequencing (WGS) analysis of diverse NmW isolates from around the world has demonstrated that a clone within CC11, commonly associated with NmC, became globally dispersed after it switched to serogroup W (16,17). WGS analyses also provided sufficient resolution to assign isolates from the meningitis belt to a long-standing regional population and to a clone that became globally dispersed after an outbreak during the 2000 Hajj pilgrimage (16,17; A. Retchless, unpub. data).In addition to distinguishing among closely related strains, WGS provides information about allelic variation in genes that may affect antibiotic susceptibility and the coverage of protein-based vaccines. Two vaccines designed for serogroup B meningococcus have been approved for use in the United States and Europe: Trumenba and Bexsero. Trumenba targets the factor H–binding protein (FHbp), and includes components belonging to FHbp subfamilies A and B (18). Bexsero includes 4 different components: an FHbp of variant 1 (subfamily B); a Neisseria adhesion A protein (NadA); a neisserial heparin-binding antigen (NhbA); and outer membrane vesicles from a serogroup B strain containing PorA P1.4 (19). Recognizing the diversity of these genes among strains can aid in evaluating whether these vaccines may provide protection. Likewise, whole-genome sequences can be rapidly screened for indications of antibiotic resistance when the genetic determinants are well characterized, as with genes penA, gyrA, and rpoB, which are involved in reduced susceptibility to penicillin, ciprofloxacin, and rifampin, respectively. To clarify the meningococcal population in Niger during the 2015 epidemic season, we completed genomic analysis on the 102 NmC and NmW invasive isolates collected during this period.  相似文献   

16.
BACKGROUND: Literature is scarce about spontaneous rupture of hernia because spontaneous rupture of here is uncommon (1). Reported cases are complications of incisional hernias, recurrent inguinal hernia, and umbilical hernias. It is potentially life threatening (1) because the ensuing entrapment and tension on bowel mesentery may lead to vasovagal shock or strangulation.In addition to systemic problems and increased intra-abdominal pressure that lead to the herniation, the spontaneous rupture and evisceration is usually preceded by other factors such as inflammation that weaken the hernia covering (1, 2).We a report a case of spontaneous rupture of an incisional ventral hernia referred to the University of Ilorin teaching hospital.  相似文献   

17.

Background

Advances in therapies for rheumatoid arthritis (RA), particularly biologics, have transformed the treatment paradigm for RA. However, the associated costs of these therapies result in a significant economic burden on the healthcare system. As a chronic disease requiring lifelong treatment, most health plans now position RA drugs as a high-priority therapeutic category.

Objective

To identify provider and payer practices and perceptions regarding coverage of RA biologics in the current marketplace, as well as emerging trends in reimbursement practices.

Method

In November 2011, Reimbursement Intelligence, a healthcare research company, collected and analyzed quantitative and qualitative data via parallel-structure online surveys of 100 rheumatologists and 50 health plan payers (medical and pharmacy directors) who represent more than 80 million covered lives. The surveys included approximately 150 questions, and the surveys were designed to force a response for each question.

Results

Payers reported using tier placement, prior authorization, and contracting in determining coverage strategies for RA biologics. Among providers, experience with older RA agents remains the key driver for the choice of a biologic agent. A majority of payers and providers (68% and 54%, respectively) reported that they did not anticipate a change in the way their plans would manage biologics over the next 2 to 4 years. Payers’ responses indicated uncertainty about how therapeutic positioning of newer, small-molecule drugs at price parity to biologics would affect the current reimbursement landscape. Survey responses show that approval of an indication for early treatment of RA is not likely to change the prescribing and reimbursement landscape for RA biologics. This survey further shows that payers and providers are generally aligned in terms of perceptions of current and future treatments for RA.

Conclusion

Advances in RA therapies allow patients increasing options for effective disease management. However, the high cost of biologic therapies and the need for lifelong treatment raise economic concerns. Payer satisfaction with current therapies and uncertainty about added value of new therapies will create challenges for new medications coming to market.Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder and the most common form of inflammatory arthritis.1 RA affects 1% of the population, most often adults aged 40 to 70 years.2 Recent epidemiologic data indicate that the incidence of RA in women has risen in the past 10 years.3Because RA affects many individuals who are of working age and remains a major cause of disability, the economic burden of RA adds a significant cost not only to patients and their families, but also to society as a whole.1,4 In addition, reduced quality of life, loss of work productivity, and substantial healthcare utilization are factors that must be considered in RA management.4,5Because complications of RA may begin to develop within months of disease onset, early and aggressive treatment is considered clinically necessary to manage immediate symptoms of pain associated with inflammation, but also to slow disease progression to prevent long-term disability.1,6,7 Historically, estimates of work disability rates for RA have been high, with higher rates associated with longer disease duration; work disability estimates have been shown to reach 30% within 2 to 3 years of diagnosis.4,5 Recent estimates suggest that RA-related work disability rates remain high, although potentially lower than in earlier estimates.8 This 2008 longitudinal analysis showed estimates of 23% work disability at 1 to 3 years of disease onset and of 35% within 10 years.8

KEY POINTS

  • ▸ Advances in RA medications, particularly biologics, have transformed the treatment paradigm for RA; however, the associated costs of these therapies result in a significant economic burden on the healthcare system.
  • ▸ With a chronic disease requiring lifelong treatment, most health plans are positioning RA drugs as a high-priority therapeutic category.
  • ▸ This survey of 100 rheumatologists and 50 payers representing >80 million lives revealed that provider experience and satisfaction with older RA agents remains the underlying driver for choice of biologics.
  • ▸ Payers and providers alike reported that they did not anticipate a change in the way their plans would manage biologics over the next 2 to 4 years.
  • ▸ Payers were uncertain about the therapeutic positioning for newer, small-molecule drugs at price parity to biologics.
  • ▸ Survey responses also suggest that an indication for a biologic to treat early RA will likely not change current prescribing and reimbursement patterns.
Clinical studies have shown better clinical outcomes when aggressive treatment is initiated early, including treatment with a wide range of disease-modifying antirheumatic drugs (DMARDs) and non-DMARD combination therapies.79 A recent joint collaboration of the American College of Rheumatology (ACR) and the European League Against Rheumatism has led to the development of an updated classification system of RA, to shift the focus from late-stage disease features—such as structural changes and joint damage that can be determined from various imaging techniques—to early-stage disease features that are associated with persistent disease.6 Given the advances in treatment for RA, including nonbiologic and biologic options, along with the associated improved outcomes, this classification system update to include early-disease features marked a major shift in the RA disease construct.6The ACR guidelines outline clinical treatment pathways by first defining disease duration and activity.7 Disease duration is divided into 3 major categories: <6 months (equivalent to early disease), 6 to 24 months (equivalent to intermediate disease duration), and >24 months (equivalent to longer disease duration).7 Disease activity measurements are often qualitative in early-stage disease, and measures are subject to clinical judgment.7Pharmacotherapy for RA often includes a non-steroidal antiinflammatory drug, selected use of glucocorticoids, and initiation of a DMARD early in the disease course.1,7 Biologic therapies may be added when adequate disease control has not been met by previously initiated drug therapies, which may occur within the first year of diagnosis.1,7 With regard to biologic therapies, the ACR further subdivides “early disease” by disease duration of <3 months or 3 to 6 months, to accommodate the needs for early advancement of the patient to biologic therapies when disease activity is high.7Despite positive clinical outcomes from treatment advances, healthcare costs associated with the treatment of a prevalent and lifelong disease such as RA are a considerable issue for health plans. The ACR estimates that per-patient treatment with biologic therapies is typically in excess of $12,000 annually.10 The Agency for Healthcare Research and Quality estimates the annual costs for RA medications from as low as a few hundred dollars for oral, nonbiologic DMARDs to a high of more than $16,000 for injectable biologic DMARDs.11 As new therapeutic options for RA become available, provider practices and payer strategies to support evidence-based care within the confines of cost management demand close examination.This study was conducted to identify provider and payer practices and perceptions regarding therapeutic options and reimbursement for RA. To this end, Reimbursement Intelligence, a healthcare research company, conducted parallel online surveys with health plan payers and rheumatologists. Payers were asked to also consider market trends and potential for formulary coverage of RA therapies currently in development.  相似文献   

18.

Background

Few studies have estimated the economic effect of using an opioid that is associated with lower rates of gastrointestinal (GI) adverse events (AEs) than another opioid for postsurgical pain.

Objective

To estimate the number of postsurgical GI events and incremental hospital costs, including potential savings, associated with lower GI AE rates, for tapentadol immediate release (IR) versus oxycodone IR, using a literature-based calculator.

Methods

An electronic spreadsheet–based cost calculator was developed to estimate the total number of GI AEs (ie, nausea, vomiting, or constipation) and incremental costs to a hospital when using tapentadol IR 100 mg versus oxycodone IR 15 mg, in a hypothetical cohort of 1500 hospitalized patients requiring short-acting opioids for postsurgical pain. Data inputs were chosen from recently published, well-designed studies, including GI AE rates from a previously published phase 3 clinical trial of postsurgical patients who received these 2 opioids; GI event–related incremental length of stay from a large US hospital database; drug costs using wholesale acquisition costs in 2011 US dollars; and average hospitalization cost from the 2009 Healthcare Cost and Utilization Project database. The base case assumed that 5% (chosen as a conservative estimate) of patients admitted to the hospital would shift from oxycodone IR to tapentadol IR.

Results

In this hypothetical cohort of 1500 hospitalized patients, replacing 5% of oxycodone IR 15-mg use with tapentadol IR 100-mg use predicted reductions in the total number of GI events from 1095 to 1085, and in the total cost of GI AEs from $2,978,400 to $2,949,840. This cost reduction translates to a net savings of $22,922 after factoring in drug cost. For individual GI events, the net savings were $26,491 for nausea; $12,212 for vomiting; and $7187 for constipation.

Conclusion

Using tapentadol IR in place of a traditional μ-opioid shows the potential for reduced GI events and subsequent cost-savings in the postsurgical hospital setting. In the absence of sufficient real-world data, this literature-based cost calculator may assist hospital Pharmacy & Therapeutics committees in their evaluation of the costs of opioid-related GI events.Pain is a global health problem that affects 1 of 5 adults in the community1 and occurs in 43% to 77%24 of the approximate 35.1 million patients who are hospitalized annually in the United States.5 Pain is ubiquitous among the nearly 30.2 million people who undergo inpatient surgery annually in the United States.5 Opioid analgesics are a mainstay of postsurgical pain management,6 but are often associated with treatment-limiting gastrointestinal (GI), central nervous system, and respiratory adverse events (AEs).7 Of these, opioid-related GI AEs are the most common,810 with an incidence rate of 10% to 32% for nausea and/or vomiting and 15% to 41% for constipation.7,1114 These GI AEs are particularly troublesome after surgery, because they can exacerbate anesthesia-induced nausea and decreased GI motility, sometimes resulting in ileus.7 Furthermore, GI AEs are associated with increased healthcare resource utilization because of additional medications used to manage the GI AEs and an increase in hospital length of stay (LOS).7,10,1517

KEY POINTS

  • ▸ Opioid analgesics, a key to postsurgical pain management, are associated with lower gastrointestinal (GI) and other adverse event rates.
  • ▸ Unlike traditional opioids, such as oxycodone IR, that exert analgesic activity by binding to μ-opioid receptors, tapentadol IR has a second mechanism involving norepinephrine reuptake inhibition, which may help to minimize GI events.
  • ▸ Previous studies have shown that tapentadol IR causes fewer GI events than oxycodone IR in the postsurgical setting.
  • ▸ This new study compared the total GI events and associated incremental costs for tapentadol IR versus oxycodone IR in the postsurgical setting from a hospital perspective, using a cost calculator and a hypothetical cohort of 1500 hospitalized patients requiring short-acting opioids.
  • ▸ Replacing 5% of oxycodone IR 15-mg use with tapentadol IR 100 mg reduced the total number of postsurgical GI events from 1095 to 1085, which was associated with a cost reduction from $2,978,400 to $2,949,840.
  • ▸ Individual GI event net savings for the 5% use of tapentadol IR instead of oxycodone IR were $26,491 for nausea, $12,212 for vomiting, and $7187 for constipation.
  • ▸ The potential cost-savings associated with reduced GI events seen with tapentadol IR versus oxycodone IR in the postsurgical setting may suggest the need to look beyond drug-acquisition cost to consider the effect on net costs of care when making formulary decisions.
The guidelines for managing surgery-related pain advocate a multimodal, opioid-sparing approach to improve analgesic activity and to minimize the risk for opioid-related AEs.6,18 Most traditional opioids exert analgesic activity by binding to μ-opioid receptors in the brain; these receptors are also present in the GI tract. Tapentadol is a centrally acting analgesic with 2 mechanisms of action—μ-opioid receptor agonism and norepinephrine reuptake inhibition.19,20 These 2 mechanisms of action may account for the significant analgesia, along with the lower incidence and intensity of AEs that are normally associated with traditional μ-opioid receptor agonists, such as oxycodone.21In 2 phase 3 studies of patients with acute pain, including postoperative pain, the incidence of GI AEs was lower with tapentadol immediate release (IR) than with oxycodone IR at equianalgesic doses, including dose strengths other than tapentadol IR 100 mg.22,23We chose oxycodone IR as the traditional opioid because of its inclusion in guidelines for surgery-related pain,6 the availability of pivotal clinical studies comparing oxycodone IR with tapentadol IR,23,24 and its spectrum of AEs that is similar to that of tapentadol IR.23,24Although the clinical benefits of using opioids with different mechanisms of action are well documented, few studies have examined the potential economic effect of this strategy in postsurgical populations.The objective of this study was to estimate the number of potential reductions in postsurgical GI AEs and incremental hospital costs for GI event rates associated with tapentadol IR versus oxycodone IR, using a literature-based calculator. The analysis focused on data related to postsurgical GI AE rates, because of their availability in the published literature.  相似文献   

19.
Superantigens and streptococcal toxic shock syndrome   总被引:3,自引:0,他引:3  
Superantigens produced by Streptococcus pyogenes have been implicated with streptococcal toxic shock syndrome (STSS). We analyzed 19 acute-phase serum samples for mitogenic activity from patients with severe streptococcal disease. The serum samples from two patients in the acute phase of STSS showed strong proliferative activity. Streptococcal mitogenic exotoxin (SME) Z-1 and streptococcal pyrogenic exotoxin (SPE)-J were identified in one patient with peritonitis who recovered after 2 weeks in intensive care. SMEZ-16 was found in a second patient who died on the day of admission. Sequential serum samples taken on day 3 after admission from patient 1 showed clearance of mitogenic activity but absence of neutralizing anti-SMEZ antibodies. Serum samples taken on day 9 from this patient showed evidence of seroconversion with high levels of anti-SMEZ antibodies that neutralized SMEZ-1 and 12 other SMEZ-variants. These results imply that a high level of SMEZ production by group A streptococcus is a causative event in the onset and subsequent severity of STSS.Since the 1980s, a marked increase has occurred in highly invasive group A streptococcal (GAS) infections, in particular streptococcal toxic shock syndrome (STSS) associated with necrotizing fasciitis or myositis (14). The classical case definition for STSS is similar to staphylococcal toxic shock, caused by Staphylococcus aureus, but the outcome is more serious in STSS, with a reported death rate of 30% to 70% (2,5,6).The multiorgan involvement in STSS suggests that a toxin produced by GAS might be involved in pathogenesis. Prime candidates are the streptococcal superantigens (SAgs), a family of highly mitogenic proteins secreted individually or in certain combinations by many Streptococcus pyogenes strains (710), although other virulence factors, such as Streptolysin O and various cell wall antigens can also cause toxic shock (11). Superantigens simultaneously bind to major histocompatibility complex class II molecules and T-cell receptor molecules bearing a particular V-β region. This binding results in the activation of a large proportion of antigen-presenting cells and T cells, with subsequent release of high systemic levels of cytokines (1215).Several lines of evidence support the hypothesis of SAg involvement in STSS. Toxic shock syndrome (TSS) toxin, produced by S. aureus, has been associated with most menstrual TSS cases (7). TSS toxin is a typical SAg that is functionally and structurally related to the staphylococcal and streptococcal SAgs (16). Moreover, animal models have shown that TSS toxin and other SAgs induce TSS-like symptoms in rabbits and rodents (17,18). The lack of neutralizing anti-SAg antibodies appears to be a key risk factor for the development of staphylococcal and streptococcal toxic shock (19,20).The major cytokines released from antigen-presenting cells and T cells after activation by SAgs are tumor necrosis factor alpha (TNF-α), tumor necrosis factor beta (TNF-β), interleukin (IL)-1, and IL-2 (1114). TNF-α is the prime mediator of shock; anti–TNF-α has been shown to inhibit the progression of SAg-driven shock in mice and baboons (17,18,21).In contrast to TSS toxin and staphylococcal TSS, the association of individual streptococcal SAgs to STSS is much less understood. Several studies described the potential involvement of streptococcal pyrogenic exotoxin (SPE) A in invasive streptococcal disease (2,19,22,23), while others reported an association with SPE-C (24,25). In addition, some cases of STSS are not associated with SPE-A or SPE-C (26). Notably, these studies were performed without knowledge of other streptococcal SAgs that are now known to exist.Superantigen activity found in acute-phase serum samples from streptococcal disease patients has been reported. (In this article, the term “acute-phase serum” refers to serum taken on the day of admission). Sriskandan et al. published a study of seven patients with severe streptococcal infections: SPE-A was detected in serum samples from four patients (27). Recently, Norby-Teglund and Berdal reported a strong proliferative response in an acute-phase serum sample collected from a patient with STSS, indicating that the sample contained an unknown SAg (28). Mitogenic activity was also detected in serum samples from mice infected with a SAg-producing S. pyogenes strain (29).Since these reports, several novel streptococcal SAgs have been identified, including streptococcal mitogenic exotoxin Z (SMEZ; 30), SMEZ-2, SPE-G, SPE-H (31), SPE-J, and SPE-I (32), all possessing typical SAg features and highly mitogenic on human T cells. In addition, several variants of SMEZ showed significant antigenic variation (33). These findings suggest that, in addition to SPE-A and SPE-C, one or more of these novel toxins might be involved in STSS.All known streptococcal SAgs (with the exception of SMEZ, SPE-G, and SPE-J) are localized on mobile DNA elements (34). As a consequence, each GAS isolate usually carries the genes for SMEZ, SPE-G, and SPE-J, plus a certain combination of other sag genes. Not much is known about the control of sag gene expression, but a recent study indicates that an unknown host factor is involved in the control of SPE-C expression (35)We analyzed serum samples from 19 patients with severe streptococcal infections for mitogenic activity to identify bioactive SAgs and find a correlation between SAg activity and disease severity. In addition, we genotyped the matching streptococcal isolates from these patients for all known streptococcal sag genes and tested them for their ability to produce SAg protein in vitro.  相似文献   

20.
Hypertension is a significant and costly public health problem. It is a major, but modifiable contributor for the development of cardiovascular disease. Randomized controlled trials have shown that controlling hypertension reduces the risk of stroke, coronary artery disease, congestive heart failure, end-stage renal disease, peripheral vascular disease, as well as overall mortality. The risk of developing these hypertension-related complications is continuous, starting at a blood pressure level as low as 115/75 mm Hg. Despite the inherent health risks associated with uncontrolled hypertension, elevated blood pressure remains inadequately treated in the majority of patients. This article reviews guidelines for optimal evaluation of hypertension and current therapeutic options available to combat this common yet pervasive disease.Hypertension affects approximately 1 of 3 adults in the United States, and about 2 million new cases are diagnosed each year.1,2 An additional 28% of the US population is afflicted with prehypertension, and approximately 7% of Americans are not aware that they even have hypertension.3 Globally, hypertension affects more than 1 billion people and is projected to reach 1.56 billion by 2025.4 It is the leading cause of death and the second leading cause of lost disability-adjusted life-years worldwide.4 Randomized controlled clinical trials have shown that control of hypertension reduces the risk of stroke, coronary artery disease, congestive heart failure, end-stage renal disease, peripheral vascular disease, and mortality.1,5 The risk of developing these complications is continuous, starting at a blood pressure (BP) level as low as 115/75 mm Hg.6The total direct and indirect cost for hypertension in the United States in 2009 is estimated at $73.4 billion.3 Approximately 10% ($15 billion) of the US total annual drug expenditure is on antihypertensive medications.7 Despite these staggering costs, only 34% of Americans with hypertension are at their BP goal (<140/90 mm Hg).1 The reason for this failure is multi-factorial and only speculative, and not because of the lack of awareness or lack of effective pharmacologic agents or lack of understanding of the role of lifestyle modification. Since hypertension will develop in most Americans in their lifetime,8 early preventive measures and prompt management, including lifestyle and pharmacologic options, are essential to minimize complications associated with this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号