首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Anterior cruciate ligament reconstruction does not necessarily restore normal knee movement. Increased tibial rotation has previously been noted during pivoting activities and may be due to the orientation of the anterior cruciate ligament graft associated with traditional single bundle reconstruction techniques. Recent research has shown that it is possible to limit rotation during level walking using a single bundle anterior cruciate ligament reconstruction. This study evaluated rotational knee kinematics during a pivot task in a group of patients who had undergone anterior cruciate ligament reconstruction using a single bundle technique and compared the findings to a normal control group.

Methods

In 27 anterior cruciate ligament reconstruction and 25 control participants, internal–external rotation was measured during a descend stairs and pivot task in a gait laboratory.

Findings

Results showed that the anterior cruciate ligament reconstruction patients had less internal tibial rotation (for both range of rotation and maximum rotation) than the control participants (effect size = 0.7).

Interpretation

These results suggest that it is possible to limit rotation after anterior cruciate ligament reconstruction using a single bundle technique, even during a pivoting movement that places a high rotational load at the knee joint. The positioning of the femoral tunnel in a more anatomical position may be responsible for the reduced tibial rotation.  相似文献   

2.

Background

Normal ambulatory kinematics of the knee joint is often not fully restored after anterior cruciate ligament reconstruction, which may increase the risk for cartilage degeneration and premature osteoarthritis in the involved knees. Lower limb dominance may have impacts on knee joint kinematics after anterior cruciate ligament reconstruction, which may lead to a different prevalence of cartilage degeneration. This study aimed to evaluate the knee joint kinematics among patients with reconstruction on the dominant and non-dominant side.

Methods

Forty-one subjects with unilateral anterior cruciate ligament reconstruction (19 dominant, 22 non-dominant) were recruited after being discharged from rehabilitation programs. Twenty healthy subjects were recruited as the control group. Six degrees-of-freedom tibiofemoral motion during level walking was determined using a redundant point cluster-based marker set. Tibiofemoral joint motion and its bilateral differences were compared within each group and between groups.

Findings

The non-dominant reconstructed knees had less extension compared to their contralateral knees at heel strike and during middle stance phase (P = 0.02); whereas, the dominant reconstructed knees exhibited significantly reduced varus rotation (− 2.1° on mean, P = 0.027) and internal tibial rotation (P = 0.034) compared to their contralateral knees during both stance and swing phases.

Interpretation

The results show that different kinematics has been developed between the involved dominant and non-dominant knees after anterior cruciate ligament reconstruction, especially the secondary rotations. The differences are consistent with the unequal prevalence of cartilage degeneration in the knee joint. The findings demonstrated that the lower limb dominance had a significant effect on post-surgery knee kinematics.  相似文献   

3.

Background

Though the first landing of drop vertical jump task is commonly used to assess biomechanical performance measures that are associated with anterior cruciate ligament injury risk in athletes, the implications of the second landing in this task have largely been ignored. We examined the first and second landings of a drop vertical jump for differences in kinetic and kinematic behaviors at the hip and knee.

Methods

A cohort of 239 adolescent female basketball athletes (age = 13.6 (1.6) years) completed drop vertical jump tasks from an initial height of 31 cm. A three dimensional motion capture system recorded positional data while dual force platforms recorded ground reaction forces for each trial.

Findings

The first landing demonstrated greater hip adduction angle, knee abduction angle, and knee abduction moment than the second landing (P-values < 0.028). The second landing demonstrated smaller flexion angles and moments at the hip and knee than the first landing (P-values < 0.035). The second landing also demonstrated greater side-to-side asymmetry in hip and knee kinematics and kinetics for both the frontal and sagittal planes (P-values < 0.044).

Interpretation

The results have important implications for the future use of the drop vertical jump as an assessment tool for anterior cruciate ligament injury risk behaviors in adolescent female athletes. The second landing may be a more rigorous task and provides a superior tool to evaluate sagittal plane risk factors than the first landing, which may be better suited to evaluate frontal plane risk factors.  相似文献   

4.

Background

Recent work has shown that anterior cruciate ligament reconstructed patients exhibit an increased peak knee adduction moment during walking gait compared to healthy controls. An increased peak knee adduction moment has been suggested to be a potential mechanism of degeneration for knee osteoarthritis. The few studies in this area have not considered an exclusively female anterior cruciate ligament reconstructed group. This study tested the hypothesis that female anterior cruciate ligament-reconstructed patients would have higher peak knee adduction moments than controls.

Methods

Peak knee adduction moment during walking was compared between a group of anterior cruciate ligament reconstructed females and a group of female activity matched controls over ten 15 m walking trials in a laboratory at a self-selected pace.

Findings

Peak knee adduction moment was lower for the anterior cruciate ligament reconstructed group (N = 17, M = 0.31 Nm/kg·m, SD = 0.08) than for the control group (N = 17, M = 0.41 Nm/kg·m, SD = 0.12; t(32) = 2.483, p = 0.010, one-tailed, eta squared effect size = 0.16).

Interpretation

A group of female anterior cruciate ligament reconstructed subjects did not exhibit a gait characteristic which has been suggested to be associated with knee osteoarthritis development and has been shown to be present in male and mixed sex anterior cruciate ligament reconstructed populations previously.  相似文献   

5.

Background

While traditional surgical repair of the anterior cruciate ligament is able to restore anterior–posterior knee stability, laxity in the transverse plane remains. Double-bundle reconstruction has demonstrated greater rotational restraint than the single-bundle technique under passive loading conditions; however, no comparison has been made under physiological weight-bearing conditions. The purpose of this study was to determine differences in rotational knee kinematics during a dynamic task in patients who had received either a single- or double-bundle reconstruction.

Methods

Twenty-two patients exhibiting isolated anterior cruciate ligament rupture were randomly allocated either a single or double-bundle reconstruction. Three-dimensional knee kinematics were measured during a dynamic cutting activity prior to and following surgery. Functional range of rotation was compared between groups pre- and post-operatively and kinematics were assessed against uninjured control subjects.

Findings

No difference in overall range of rotation was found under physiological loading conditions. However, a significant interaction of the midpoint of the range of movement was observed; a greater external rotational shift in the single-bundle group followed reconstruction, while the kinematics of the double-bundle patient group shifted closer to those of the control group.

Interpretation

The double-bundle reconstruction demonstrated superior outcome in rotational kinematics to the single-bundle technique.  相似文献   

6.

Background

Alterations in knee joint kinematics have been suggested as a potential mechanism that influences the development of osteoarthritis of the knee after anterior cruciate ligament reconstruction. Whilst previous work has shown changes in internal–external tibial rotation during level walking, many patients aim to return to high impact activities following surgery. This study examined tibial rotation during single limb hop and drop landings in anterior cruciate ligament reconstructed knees compared to a control group, and also evaluated the influence of graft type (hamstring or patellar tendon).

Methods

In 48 participants (17 patellar tendon graft, 18 hamstring graft and 13 controls) internal–external rotation was measured during single limb hop and drop landings in a gait laboratory at mean of 10 months after surgery.

Findings

There was no difference between the two graft types and both patient groups had less internal rotation when compared to the control group. For 60% of patients, internal rotation values were at least 5°  less than the control group mean.

Interpretation

Anterior cruciate ligament reconstructed knees with both hamstring tendon and patellar tendon grafts show altered rotational kinematic patterns during high impact dynamic load activities.  相似文献   

7.

Background

Challenges in accurate, in vivo quantification of multi-planar knee kinematics and relevant timing sequence during high-risk injurious tasks pose challenges in understanding the relative contributions of joint loads in non-contact injury mechanisms. Biomechanical testing on human cadaveric tissue, if properly designed, offers a practical means to evaluate joint biomechanics and injury mechanisms. This study seeks to investigate the detailed interactions between tibiofemoral joint multi-planar kinematics and anterior cruciate ligament strain in a cadaveric model of landing using a validated physiologic drop-stand apparatus.

Methods

Sixteen instrumented cadaveric legs, mean 45(SD 7) years (8 female and 8 male) were tested. Event timing sequence, change in tibiofemoral kinematics (position, angular velocity and linear acceleration) and change in anterior cruciate ligament strain were quantified.

Findings

The proposed cadaveric model demonstrated similar tibiofemoral kinematics/kinetics as reported measurements obtained from in vivo studies. While knee flexion, anterior tibial translation, knee abduction and increased anterior cruciate ligament strain initiated and reached maximum values almost simultaneously, internal tibial rotation initiated and peaked significantly later (P < 0.015 for all comparisons). Further, internal tibial rotation reached mean 1.8(SD 2.5)°, almost 63% of its maximum value, at the time that peak anterior cruciate ligament strain occurred, while both anterior tibial translation and knee abduction had already reached their peaks.

Interpretation

Together, these findings indicate that although internal tibial rotation contributes to increased anterior cruciate ligament strain, it is secondary to knee abduction and anterior tibial translation in its effect on anterior cruciate ligament strain and potential risk of injury.  相似文献   

8.

Background

Knee kinematics during pivoting activities are not well studied, but might provide insight critical to understanding the pathology of the anterior cruciate ligament deficient knee. The purpose of this study was to compare in vivo kinematics during weight bearing pivot and squat activities in patients with unilateral anterior cruciate ligament deficient knees, and to contrast those kinematics with the uninjured contralateral knees.

Methods

Eight unilateral anterior cruciate ligament deficient patients with a mean age of 41 (SD 7) years were enrolled. Anterior cruciate injury was confirmed by positive Lachman test and MRI. Lateral fluoroscopic images of pivot and squat activities were recorded for both anterior cruciate ligament deficient and contralateral knees. Three-dimensional tibiofemoral kinematics and centers of rotation for each knee were determined using 3D–2D model registration techniques.

Findings

During pivoting, the tibia of the anterior cruciate ligament deficient knee was significantly more anterior than the contralateral knee during tibial neutral to internal rotation. The pivot activity showed lateral centers of rotation in both anterior cruciate ligament deficient and contralateral knees while squatting showed medial centers of rotation.

Interpretation

This dynamic method might be useful to objectively characterize restoration of dynamic function in knees with various types of anterior cruciate ligament reconstructions. These results also indicate kinematics during squatting type activities cannot be extrapolated to predict knee kinematics during pivoting types of activities.  相似文献   

9.

Background

Previous research has shown that patients with anterior cruciate ligament reconstruction have altered movement patterns in the reconstructed knee during walking. In the sagittal plane, graft specific changes in knee joint motion have been reported between hamstring and patellar tendon anterior cruciate ligament reconstruction grafts. This study examined the secondary planes of movement during walking in anterior cruciate ligament reconstructed knees to evaluate the influences of graft type (hamstring or patellar tendon) and control condition (control group or contralateral knee).

Methods

In 54 participants (18 patellar tendon graft, 18 hamstring graft and 18 controls) varus–valgus and internal–external rotation was measured during level walking in a gait laboratory at mean of 10 months after surgery. All patients had undergone primary unilateral anterior cruciate ligament reconstruction within 12 months of injury.

Findings

For internal–external rotation there was no difference between the graft types and both patient groups had reduced internal rotation (an external rotation offset) and reduced internal rotation range when compared to the control group and contralateral knee. For 31 of 36 patients, internal rotation values were less than the control group mean. The hamstring group had reduced varus rotation compared to both the patellar tendon and control groups, but not when compared to the contralateral knee.

Interpretation

The results show that there are differences in tibial rotation during walking in anterior cruciate ligament reconstructed knees compared to both the contralateral knee and uninjured control group. These kinematic alterations may relate to the high incidence of knee osteoarthritis observed in this population over time. Reduced varus in the hamstring group may relate to the graft harvest.  相似文献   

10.

Background

Anterior cruciate ligament deficiency and quadriceps muscle weakness are considered to be important risk factors for aberrant patellar tracking and subsequent patellofemoral osteoarthritis. However, data from in vivo experiments looking at dynamic patellar joint kinematics and muscle force are scarce. Therefore, the purpose of this study was to evaluate the effects of anterior cruciate ligament transection and loss of vastus medialis force on patellar tracking in the rabbit knee in vivo.

Methods

Eight skeletally mature New Zealand White Rabbits, weighing 6.0 kg (0.6 kg standard deviation) were used. The experimental trials consisted of active, concentric and eccentric movements of the knee joint. Measurements were performed with the intact, the anterior cruciate ligament deficient, and the vastus medialis transected knee. Patellofemoral kinematics (shift, rotation) were quantified from high speed video.

Findings

Following anterior cruciate ligament transection, patellar tracking occurred more laterally, and caused a significant lateral rotation of the patella. The addition of vastus medialis transection did not alter patellar tracking or rotation significantly for any of the force-matched experimental conditions.

Interpretation

The loss of the anterior cruciate ligament results in lateral patellar shift and rotation while the loss of vastus medialis muscle force does not affect patellar tracking or rotation in the anterior cruciate ligament deficient knee. We suggest that the current results should be considered carefully in future interpretations of knee extensor imbalance. More research is needed to describe the contribution of vastus medialis muscle strength to medial patellofemoral stability and confirm these results in the human knee.  相似文献   

11.

Background

Reconstruction of the anterior cruciate ligament is a standard surgical procedure in sports traumatology. The widespread replacement method using hamstring tendons has an important shortcoming namely delayed or missing bony healing in contrast to patellar tendon grafts where implant-free fixation is established by using the adjacent bone blocks. The purpose of this study was to describe a new implant-free surgical procedure using hamstring tendon grafts and to analyse the influence on tibiofemoral kinematics in vitro.

Methods

Nine human knee specimens with arthroscopically transected anterior cruciate ligaments were mounted on a dynamic knee simulator and weight-bearing muscle-loaded knee flexions were simulated while a robotic universal force sensor system was used to provide external tibial loads. Three different loading conditions were simulated including partial body weight only, an additional 50 N anterior tibial force or an additional Five Nm of internal rotational torque. After reconstruction of the anterior cruciate ligament using a tibial bone block hybrid technique these three trials were repeated. The kinematics was measured with an ultrasonic measuring system and different loading and ligament conditions were examined. Graft tunnel placement was verified by computed tomography.

Findings

Our fixation method achieved stability to anterior tibial drawer force whereas internal tibial rotation did not change before and after the reconstruction. Computed tomography confirmed anatomical graft and tunnel placement.

Interpretation

The presented operative procedure is technically feasible and leads to reproducible results concerning knee joint kinematics and graft placement.  相似文献   

12.

Objective

To compare lower-limb kinematic asymmetries during gait in individuals with unilateral and bilateral symptomatic osteoarthritis and controls.

Design

Cross-sectional.

Setting

Laboratory.

Participants

Participants (N=54) had symptomatic unilateral (n=18) or bilateral (n=18) knee osteoarthritis. Healthy controls were sex- and age-matched and similar in height and weight to osteoarthritis groups (n=18).

Intervention

Three-dimensional motion analysis was conducted while participants walked on a treadmill at 1.1m/s.

Main Outcome Measures

Maximum joint angles and velocities of the knee and hip during stance, knee flexion, knee adduction, and hip adduction at initial contact, pelvic drop, stride length, and average toe out.

Results

There was a significant limb effect for knee flexion at initial contact (P=.01). The bilateral osteoarthritis group demonstrated the largest between-limb asymmetry (2.83°; 95% confidence interval, .88–4.78; effect size [ES]=.67). The bilateral osteoarthritis group also displayed tendencies toward between-limb asymmetry in hip adduction at initial contact and peak knee adduction during stance; ESs were small (ES=.33 and .48). Lower-limb kinematics was symmetrical in the control and unilateral knee osteoarthritis groups.

Conclusions

Between-limb asymmetries are present even at mild to moderate stages of knee osteoarthritis. During this stage, between-limb asymmetry appears to be more prevalent in patients with bilateral symptomatic disease, suggesting that patients with unilateral disease maintain kinematic symmetry for longer in the knee osteoarthritis process. Further, early treatment strategies should target the restoration of gait symmetry and involve kinematics changes in both lower limbs. Future research is needed to determine the efficacy of such strategies with respect to kinematic asymmetry, pain, and disease progression.  相似文献   

13.

Background

Despite partial meniscectomies and ligament reconstructions as treatments of choice for meniscal and ligament injuries, respectively, the knee joint osteoarthritis persists.

Methods

A detailed nonlinear finite element model of the knee joint was developed to evaluate biomechanics of the tibiofemoral joint under 200 N drawer load with and without 1500 N compression preload. The model incorporated composite structure of cartilage and meniscus. The effects on joint response and articular contact pressure of unilateral partial meniscectomy, of changes in prestrain or material properties of the anterior cruciate ligament and of their combination were investigated.

Findings

Compressive preload further increases anterior cruciate ligament strains/forces in drawer loading. Partial meniscectomy and perturbations in anterior cruciate ligament prestrain/material properties, alone or combined, substantially alter the load transfer via covered and uncovered areas of cartilage as well as contact pressure distribution on cartilage. Partial meniscectomy especially when combined with a slacker anterior cruciate ligament diminish the load via affected meniscus generating unloaded regions on the cartilage.

Interpretation

Partial meniscectomy concurrent with a slack anterior cruciate ligament substantially alter cartilage contact pressures. These alterations further intensify in the event of greater external forces, larger meniscal resections and total anterior cruciate ligament rupture, thus suggesting a higher risk of joint degeneration.  相似文献   

14.

Background

Posterior-cruciate ligament retaining total knee arthroplasty designs have long been used with excellent clinical success, but often have shown kinematics and flexion performance that are significantly different from the natural knee. The purpose of this study was to compare deep-flexion knee kinematics in patients with two types of posterior-cruciate ligament retaining total knee arthroplasty.

Methods

One group received a traditional curved symmetric articular configuration, and one group received a design incorporating a lateral compartment which constrains the lateral condyle to the antero-posterior center of the tibial plateau in extension, but allows translation in flexion – roughly approximating the role of the anterior cruciate ligament. In vivo kinematics were analyzed using three-dimensional model registration and plain radiographs of kneeling and squatting activities in 20 knees in 18 patients.

Findings

Knees with the anterior cruciate ligament substituting design exhibited greater flexion, femoral antero-posterior translation and tibial internal rotation.

Interpretation

Geometric features intended to improve knee flexion, including greater antero-posterior stability, a more posterior tibial sulcus, and reshaped femoral condyles, do provide measurable and significant differences in deep-flexion knee kinematics.  相似文献   

15.

Background

Factors that contribute to sex-differences in the incidence of anterior cruciate ligament injuries among athletes are not well understood. Of interest is whether decision making during landing influences biomechanical factors associated with anterior cruciate ligament injury. This study examined the effects of decision making on the mechanics of two-footed landing tasks in women and men.

Methods

Twenty-nine healthy young adults (13 women, 16 men) completed drop landings and drop-jumps under preplanned and decision-making conditions. Biomechanical data were collected and effects of decision making on lower extremity kinematics and kinetics were examined as a function of task and sex.

Findings

Landing mechanics were influenced by decision-making condition, task, and sex. During drop-jumps, participants exhibited lesser hip flexion (− 3.3°), lesser knee flexion (− 5.1°), and greater knee abduction (+ 1.0°) at initial contact under decision-making conditions. Under decision-making conditions, no differences were observed in these variables between tasks or with respect to preplanned drop landings. Across tasks and sexes, participants exhibited greater ankle plantarflexion at initial contact (+ 1.6°), greater peak knee external rotation (+ 1.5°), lesser peak knee internal rotation (− 1.0°), and smaller hip adduction moments (− 0.2% body weight × height) under decision-making conditions. Women but not men exhibited smaller ankle inversion moments (− 0.1% body weight × height) under decision-making conditions.

Interpretation

Modifications in landing mechanics suggest a default towards the preplanned drop landing strategy under decision-making conditions. Across sexes, drop landings and drop-jumps may be no more dangerous under decision-making conditions, with respect to anterior cruciate ligament loading, than preplanned drop landings.  相似文献   

16.

Background

A key to understanding potential anterior cruciate ligament injury mechanisms is to determine joint loading characteristics associated with an injury-causing event. However, direct measurement of anterior cruciate ligament loading during athletic tasks is invasive. Thus, previous research has been unable to study the association between neuromuscular variables and anterior cruciate ligament loading. Therefore, the purpose of this study was to determine the influence of movement anticipation on anterior cruciate ligament loading using a musculoskeletal modeling approach.

Methods

Twenty healthy recreationally active females were recruited to perform anticipated and unanticipated sidestep cutting. Three-dimensional kinematics and kinetics of the right leg were calculated. Muscle, joint and anterior cruciate ligament forces were then estimated using a musculoskeletal model. Dependent t-tests were conducted to investigate differences between the two cutting conditions.

Findings

ACL loading significantly increased during unanticipated sidestep cutting (p < 0.05). This increase was primarily due to a significant increase in the sagittal plane ACL loading, which contributed 62% of the total loading. Frontal plane ACL loading contributed 26% and transverse plane ACL loading contributed 12%.

Interpretation

These results suggest that anterior cruciate ligament loading resulted from a multifaceted interaction of the sagittal plane shear forces (i.e., quadriceps, hamstrings, and tibiofemoral), as well as the frontal and transverse plane knee moments. Additionally, the results of this study confirm the hypothesis in the current literature that unanticipated movements such as sidestep cutting increase anterior cruciate ligament loading.  相似文献   

17.

Background

Prospective measures of high knee abduction moment during landing identify female athletes at high risk for non-contact anterior cruciate ligament injury. Biomechanical laboratory measurements predict high knee abduction moment landing mechanics with high sensitivity (85%) and specificity (93%). The purpose of this study was to identify correlates to laboratory-based predictors of high knee abduction moment for use in a clinic-based anterior cruciate ligament injury risk prediction algorithm. The hypothesis was that clinically obtainable correlates derived from the highly predictive laboratory-based models would demonstrate high accuracy to determine high knee abduction moment status.

Methods

Female basketball and soccer players (N = 744) were tested for anthropometrics, strength and landing biomechanics. Pearson correlation was used to identify clinically feasible correlates and logistic regression to obtain optimal models for high knee abduction moment prediction.

Findings

Clinical correlates to laboratory-based measures were identified and predicted high knee abduction moment status with 73% sensitivity and 70% specificity. The clinic-based prediction algorithm, including (Odds Ratio: 95% confidence interval) knee valgus motion (1.43:1.30–1.59 cm), knee flexion range of motion (0.98:0.96–1.01°), body mass (1.04:1.02–1.06 kg), tibia length (1.38:1.25–1.52 cm) and quadriceps to hamstring ratio (1.70:1.06–2.70) predicted high knee abduction moment status with C statistic 0.81.

Interpretation

The combined correlates of increased knee valgus motion, knee flexion range of motion, body mass, tibia length and quadriceps to hamstrings ratio predict high knee abduction moment status in female athletes with high sensitivity and specificity.

Clinical Relevance

Utilization of clinically obtainable correlates with the prediction algorithm facilitates high non-contact anterior cruciate ligament injury risk athletes' entry into appropriate interventions with the greatest potential to prevent injury.  相似文献   

18.

Background

Compared to matched controls, knee osteoarthritis patients walk with altered, kinematics, kinetics and muscle activity. Studies of osteoarthritis patient gait have focused on individual measures, and findings from these studies differ due to differences in patient levels of disability and age. Therefore, aims of this study were to examine kinematic, kinetic and muscle co-contraction gait variables within a single osteoarthritis patient group, and to determine if alterations in these variables are related to pain, symptom and function measures.

Methods

Thirty asymptomatic controls and 54 patients with radiographic evidence of knee osteoarthritis participated. Self-perceived measures of pain and symptoms, and gait (knee joint angles, moments and muscle co-contraction) were analysed and compared.

Findings

Osteoarthritis patients had greater self-perceived pain and symptoms on the questionnaires. Gait differences in the knee osteoarthritis patients were greater knee flexion at heel strike and during early stance along with reductions in the peak external knee extension moment in late stance. Co-contraction ratios highlighted greater lateral muscle activation in osteoarthritis patients, which were correlated with the magnitude of their adduction moments. Larger adduction moments were related to lower self-perceived pain and symptoms.

Interpretation

Osteoarthritis patients use predominantly lateral muscle activation during stance which may aid in stabilising the external knee adduction moment. Kinematic alterations in knee osteoarthritis patient gait occur without alterations in knee joint moments. Our results also suggest that adduction moments are lowered to reduce the patients’ pain and symptoms.  相似文献   

19.

Background

It has been proposed that female athletes who limit knee and hip flexion during athletic tasks rely more on the passive restraints in the frontal plane to deceleration their body center of mass. This biomechanical pattern is thought to increase the risk for anterior cruciate ligament injury. To date, the relationship between sagittal plane kinematics and frontal plane knee motion and moments has not been explored.

Methods

Subjects consisted of 58 female club soccer players (age range: 11–20 years) with no history of knee injury. Kinematics, ground reaction forces, and surface electromyography were collected while each subject performed a drop landing task. Subjects were divided into two groups based on combined sagittal plane knee and hip flexion angles during the deceleration phase of landing (high flexion and low flexion).

Findings

Subjects in the low flexion group demonstrated increased knee valgus angles (P = 0.02, effect size 0.27), increased knee adductor moments (P = 0.03, effect size 0.24), decreased energy absorption at the knee and hip (P = 0.02, effect size 0.25; and P < 0.001, effect size 0.59), and increased vastus lateralis EMG when compared to subjects in the high flexion group (P = 0.005, effect size 0.35).

Interpretation

Female athletes with limited sagittal plane motion during landing exhibit a biomechanical profile that may put these individuals at greater risk for anterior cruciate ligament injury.  相似文献   

20.

Background

Very little is known about the effects of applied torque about the long axis of the tibia in combination with muscle loads on anterior cruciate ligament biomechanics. The purpose of this study was to determine the effect of muscle contraction and tibial torques applied about the long axis of the tibia on anterior cruciate ligament strain behavior.

Methods

Six cadaver knee specimens were used to measure the strain behavior of the anterior cruciate ligament. Internal and external axial torques were applied to the tibia when the knee was between 30° and 120° of flexion in combination with the conditions of no muscle load, isolated quadriceps load, and simultaneous quadriceps and hamstring loading.

Findings

The highest anterior cruciate ligament strain values were measured when the muscles were not loaded, when the knee was at 120° of flexion, and when internal tibial torques were applied to the knee. During muscle loading the highest anterior cruciate ligament strain values were measured at 30° of flexion and then the strain values gradually decreased with increase in knee flexion. During co-contraction of the quadriceps and hamstring muscles the anterior cruciate ligament was unstrained or minimally strained at 60°, 90° and 120° of knee flexion.

Interpretation

This study suggests that quadriceps and hamstring muscle co-contraction has a potential role in reducing the anterior cruciate ligament strain values when the knee is in deep flexion. These results can be used to gain insight into anterior cruciate ligament injury mechanisms and to design rehabilitation regimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号