首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 分析我国结核分枝杆菌复合群(MTBC)临床分离株中GlnA1、Mpt70、LppX、GroES和LpqH 5种抗原编码基因多态性及其人T细胞表位的多态性。方法 选取13个省份临床分离的173株MTBC,采用PCR扩增5种抗原基因,并运用BioEdit软件进行序列比对,分析其人T细胞表位与非表位的变异情况。利用Mega 6.0软件分别计算同义突变率(dS)和非同义突变率(dN)及其比值。结果 173株菌的基因glnA1非表位区出现2个非同义突变位点;基因mpt70表位区出现1个非同义突变位点;基因lpqH表位区表现为1个非同义突变位点和1个同义突变位点;groES在整个基因中未发现任何突变;基因lppX表位区表现为5个非同义突变和1个同义突变位点,其中152位的氨基酸相同位点有9株菌发生了同义突变,表现较高的多态性。同时基因lppX的15个T细胞抗原表位中有7个表位发生了改变,其dN/dS值为0.19。结论 结核分枝杆菌抗原Mpt70、LppX和LpqH的人T细胞表位区具有多态性,反映了此抗原可能参与逃避宿主免疫的分化选择。GlnA1的非表位区的多态性,对该菌株的免疫反应影响较小。GroES序列相对保守,不具有明显的多态性,可能对结核分枝杆菌的鉴定、诊断及新型疫苗的研制具有重要作用。  相似文献   

2.
Epitope-based DNA vaccines designed to induce T cell responses specific for Mycobacterium tuberculosis (M. tb) are being developed as a means of addressing vaccine potency. In this study, we predicted 4 T cell epitopes from ESAT-6, Ag85A/B and CFP-10 antigens and constructed an ECANS (epitopes casted in a natural structure) DNA vaccine by inserting the epitope DNA segments separately into the gene backbone of M. tb-derived HSP65 (heat shock protein 65) carrier. The immunogenicity and protective efficacy of pECANS DNA vaccine were assessed in BALB/c mice after intramuscular immunization with 4 doses of 50 μg ECANS DNA and followed by mycobaterial challenge 4 weeks after the last immunization. Compared to plasmid encoding HSP65, pECANS DNA immunization elicited remarkably higher levels of IFN-γ production by both CD4+ and CD8+ T cells, which were coupled with higher frequencies of antigen-specific T cells and higher CTL activity. Significantly enhanced levels of Th1 cytokines (IFN-γ and IL-12) and increased serum IgG2a/IgG1 ratio were also noted, indicating a predominant Th1 immune response achieved by pECANS DNA immunization. In the consequence, a better protection against Mycobacterium bovis BCG challenge was achieved which was evidenced by reduced bacterial loads in lungs and spleens and profound attenuation of lung inflammation and injury. Our results suggested that multi-T cell-epitope based ECANS gene vaccine induced T cell response to multiple T cell epitopes and led to enhanced protection against mycobacterial challenge. This strategy might be a useful platform to design multi-T cell epitope-based vaccine against M. tb infection.  相似文献   

3.
Mycobacterium bovis (M. bovis) causes major economy and public health problem in numerous countries. In Great Britain, despite the use of a test-and-slaughter strategy, the incidence of bovine tuberculosis (bTB) in cattle has steadily risen in recent years. One strategy being considered to reduce the burden of bTB in cattle is the development of an efficient vaccine. The only current potentially available vaccine against tuberculosis, live attenuated M. bovis bacille Calmette–Guérin (BCG), has demonstrated variable efficacy in both humans and cattle and the development of improved vaccination strategies for cattle is a research priority. In this study we assessed the immunogenicity in cattle of two recombinant BCG strains, namely BCG Pasteur Δzmp1::aph and BCG Danish Δzmp1. By applying a recently defined predictive immune-correlate of protection (T cell memory responses measured by cultured ELISPOT), we have compared these two recombinant BCG with wild-type BCG Danish SSI. Our results demonstrated that both strains induced superior T cell memory responses compared to wild-type BCG. These data provide support for the prioritisation of testing BCG Danish Δzmp1 in vaccination/M. bovis challenge studies to determine its protective efficacy.  相似文献   

4.
Developing an efficacious vaccine is one of the highest priorities in tuberculosis research. A vaccine based on T cell epitopes representing multiple antigens is an ideal approach to generate effective cellular immunity against the disease. In the present study, we have selected four T cell epitopes from four well defined Mycobacterium tuberculosis antigens, Ag85C (Rv2903c), 10-kDa culture filtrate protein (CFP-10) (Rv3874), PPE68 (Rv3873) and INV (Rv1478). The epitope encoding genes were grafted into a Cpn 10 based epitope delivery system. The cpn 10-epitope chimeras were further cloned and expressed in BCG to obtain four rBCGs (BCG::CFP, BCG::FBP, BCG::PPE and BCG::INV). Both cellular and humoral immune responses induced by these r-BCG strains were evaluated in BALB/c mice after subcutaneous injection of a single dose of 1×10(6)CFU of the individual rBCGs. Compared to the parent BCG immunized animals the splenocytes derived from rBCG vaccinated groups showed greater antigen specific proliferation, characterized with higher IFN-γ response and reduced IL-4 secretion. Also rBCG vaccination was able to induce specific humoral immune response with an enhanced IgG2a/IgG1 ratio. The rBCGs therefore favor an epitope specific Th1 type response, which is known to be important for mycobacterial immunity. Further when two of the rBCGs (BCG::CFP and BCG::FBP) were tested for their protective efficacy both the rBCGs were comparable to BCG in a H37Rv challenge study performed in guinea pigs.  相似文献   

5.
《Vaccine》2016,34(38):4520-4525
There is a need to improve the efficacy of Bacille Calmette-Guérin (BCG) vaccination against tuberculosis in humans and cattle. Previously, we found boosting BCG-primed cows with recombinant human type 5 adenovirus expressing antigen 85A (Ad5-85A) increased protection against Mycobacterium bovis infection compared to BCG vaccination alone. The aim of this study was to decipher aspects of the immune response associated with this enhanced protection. We compared BCG-primed Ad5-85A-boosted cattle with BCG-vaccinated cattle. Polyclonal CD4+ T cell libraries were generated from pre-boost and post-boost peripheral blood mononuclear cells – using a method adapted from Geiger et al. (2009) – and screened for antigen 85A (Ag85A) specificity. Ag85A-specific CD4+ T cell lines were analysed for their avidity for Ag85A and their Ag85A epitope specificity was defined. Boosting BCG with Ad5-85A increased the frequencies of post-boost Ag85A-specific CD4+ T cells which correlated with protection (reduced pathology). Boosting Ag85A-specific CD4+ T cell responses did not increase their avidity. The epitope specificity was variable between animals and we found no clear evidence for a post-boost epitope spreading. In conclusion, the protection associated with boosting BCG with Ad5-85A is linked with increased frequencies of Ag85A-specific CD4+ T cells without increasing avidity or widening of the Ag85A-specific CD4+ T cell repertoire.  相似文献   

6.
Tuberculosis remains a major human health problem worldwide, and strategies for its prevention include the generation and characterization of new recombinant vaccines containing immunodominant antigens from Mycobacterium tuberculosis. By comparing the secretomes of wild-type Mycobacterium bovis and a PstS1-recombinant M. bovis BCG vaccine substrain (rBCG38), we identified six conserved hypothetical proteins (BCG2696, BCG1674, BCG0372, BCG0427, BCG2436c, and BCG3053) that are differentially expressed. Our findings will aid in the identification of highly immunogenic proteins present in rBCG.  相似文献   

7.
《Vaccine》2019,37(36):5371-5381
Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.  相似文献   

8.
MTB41 is a Mycobacterium antigen that is recognized by CD4+ T cells early after experimental infection of mice with Mycobacterium tuberculosis and by PBMC from healthy PPD positive individuals. Immunization of mice with plasmid DNA encoding the MTB41 gene sequence results in the development of antigen-specific CD4+ and CD8+ T cells, and protection against challenge with virulent M. tuberculosis. In the present studies, in contrast to DNA immunization, we show, that a strong MTB41-specific CD4+ T cell response, but no MHC class I restricted cytotoxic T lymphocyte (CTL) activity is detected in the spleen cells of infected mice. Therefore, this data suggests that the induction of CD8+ T cell response to MTB41 epitopes by DNA immunization may not be relevant to protection because these epitopes are not recognized during the infectious process. We also compared the repertoire of rMTB41 epitope recognition by CD4+ T cells of M. tuberculosis-infected mice with the recognition repertoire of mice immunized with the recombinant rMTB41 protein. Both regimens of sensitization lead to the recognition of the same molecular epitope. Coincidentally, immunization with the soluble recombinant protein plus adjuvant, a regimen known to generate primarily CD4+ T cells, resulted in induction of protection comparable to BCG in two well-established animal models of tuberculosis (mice and guinea pigs).  相似文献   

9.
Babesia bovis, a parasite infecting cattle and buffalo, continues to spread throughout the developing world. The babesial vaccine was developed to be a sustainable alternative treatment to control the parasite. However, genetic diversity is a major obstacle for designing and developing a safe and effective vaccine. The apical membrane antigen 1 (AMA-1) is considered to be a potential vaccine candidate antigen among immunogenic genes of B. bovis. To gain a more comprehensive understanding of B. bovis AMA-1 (BbAMA-1), three B. bovis DNA samples were randomly selected to characterize in order to explore genetic diversity and natural selection and to predict the antigen epitopes. The sequence analysis revealed that BbAMA-1 has a low level of polymorphism and is highly conserved (95.46–99.94%) among Thai and global isolates. The majority of the polymorphic sites were observed in domains I and III. Conversely, domain II contained no polymorphic sites. We report the first evidence of strong negative or purifying selection across the full length of the gene, especially in domain I, by demonstrating a significant excess of the average number of synonymous (dS) over the non-synonymous (dN) substitutions. Finally, we also predict the linear and conformational B-cell epitope. The predicted B-cell epitopes appeared to be involved with the amino acid changes. Collectively, the results suggest that the conserved BbAMA-1 may be used to detect regional differences in the B. bovis parasite. Importantly, the limitation of BbAMA-1 diversity under strong negative selection indicates strong functional constraints on this gene. Thus, the gene could be a valuable target vaccine candidate antigen.  相似文献   

10.
《Vaccine》2016,34(42):5132-5140
Most vaccines are based on protective humoral responses while for intracellular pathogens CD8+ T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8+ T cell priming, hampering vaccine efficacy. The multistage cDNA vaccine H56, encoding three secreted Mycobacterium tuberculosis antigens, was used to test a complete strategy to enhance vaccine’ immunogenicity. Potential CD8+ T cell epitopes in H56 were predicted using the NetMHC3.4/ANN program. Mice were immunized with H56 cDNA using dermal DNA tattoo immunization and epitope candidates were tested for recognition by responding CD8+ T cells in ex vivo assays. Seven novel CD8+ T cell epitopes were identified. H56 immunogenicity could be substantially enhanced by two strategies: (i) fusion of the H56 sequence to cDNA of proteins that modify intracellular antigen processing or provide CD4+ T cell help, (ii) by substitution of the epitope’s hydrophobic C-terminal flanking residues for polar glutamic acid, which facilitated their proteasome-mediated generation. We conclude that this whole strategy of in silico prediction of potential CD8+ T cell epitopes in novel antigens, followed by fusion to sequences with immunogenicity-enhancing properties or modification of epitope flanking sequences to improve proteasome-mediated processing, may be exploited to design novel vaccines against emerging or ‘hard to treat’ intracellular pathogens.  相似文献   

11.
De Groot AS  Martin W  Moise L  Guirakhoo F  Monath T 《Vaccine》2007,25(47):8077-8084
T-cell epitope variability is associated with viral immune escape and may influence the outcome of vaccination against the highly variable Japanese Encephalitis Virus (JEV). We computationally analyzed the ChimeriVax-JEV vaccine envelope sequence for T helper epitopes that are conserved in 12 circulating JEV strains and discovered 75% conservation among putative epitopes. Among non-identical epitopes, only minor amino acid changes that would not significantly affect HLA-binding were present. Therefore, in most cases, circulating strain epitopes could be restricted by the same HLA and are likely to stimulate a cross-reactive T-cell response. Based on this analysis, we predict no significant abrogation of ChimeriVax-JEV-conferred protection against circulating JEV strains.  相似文献   

12.
Virus-specific cytotoxic T lymphocytes (CTL) contribute to the control of virus infections including those caused by influenza viruses. Especially under circumstances when antibodies induced by previous infection or vaccination fail to recognize and neutralize the virus adequately, CTL are important and contribute to protective immunity. During epidemic outbreaks caused by antigenic drift variants and during pandemic outbreaks of influenza, humoral immunity against influenza viruses is inadequate. Under these circumstances, pre-existing CTL directed to the relatively conserved internal proteins of the virus may provide cross-protective immunity. Indeed, most of the known human influenza virus CTL epitopes are conserved. However, during the evolution of influenza A/H3N2 viruses, the most important cause of seasonal influenza outbreaks, variation in CTL epitopes has been observed. The observed amino acid substitutions affected recognition by virus-specific CTL and the human virus-specific CTL response in vitro. Examples of variable epitopes and their HLA restrictions are: NP383–391/HLA-B*2705, NP380–388/HLA-B*0801, NP418–426/HLA-B*3501, NP251–259/HLA-B*4002, NP103–111/HLA-B*1503. In some cases amino acid substitutions occurred at anchor residues and in other cases at T cell receptor contact residues. It is of special interest that the R384G substitution in the NP383–391 epitope was detrimental to virus fitness and was only tolerated in the presence of multiple functionally compensating co-mutations. In contrast, other epitopes, like the HLA-A*0201 restricted epitope from the matrix protein, M158–66, are highly conserved despite their immunodominant nature and the high prevalence of HLA-A*0201 in the population. A mutational analysis of this epitope indicated that it is under functional constraints. Also in influenza A viruses of other subtypes, including H5N1, the M158–66 is highly conserved.  相似文献   

13.
Mycobacterium bovis BCG is an attractive vaccine vector against breast milk HIV transmission because it elicits Th1-type responses in newborns. However, BCG causes disease in HIV-infected infants. Genetically attenuated Mycobacterium tuberculosis (Mtb) mutants represent a safer alternative for immunocompromised populations. In the current study, we compared the immunogenicity in mice of three different recombinant attenuated Mtb strains expressing an HIV envelope (Env) antigen construct. Two of these strains (ΔlysA ΔpanCD Mtb and ΔRD1 ΔpanCD Mtb) failed to induce significant levels of HIV Env-specific CD8+ T cell responses. In striking contrast, an HIV-1 Env-expressing attenuated ΔlysA Mtb containing a deletion in secA2, which encodes a virulence-related secretion system involved in evading adaptive immunity, generated consistently measurable Env-specific CD8+ T cell responses that were significantly greater than those observed after immunization with BCG expressing HIV Env. Similarly, another strain of ΔlysA ΔsecA2 Mtb expressing SIV Gag induced Gag- and Mtb-specific CD8+ T cells producing perforin or IFNγ, and Gag-specific CD4+ T cells producing IFNγ within 3 weeks after immunization in adult mice; in addition, IFNγ-producing Gag-specific CD8+ T cells and Mtb-specific CD4+ T cells were observed in neonatal mice within 1 week of immunization. We conclude that ΔlysA ΔsecA2 Mtb is a promising vaccine platform to construct a safe combination HIV-TB vaccine for use in neonates.  相似文献   

14.
The clonal Streptococcus equi causes equine strangles, a highly contagious suppurative lymphadenopathy and rhinopharyngitis. An important virulence factor and vaccine component, the antiphagocytic fibrinogen binding SeM of S. equi is a surface anchored fibrillar protein. Two recent studies of N. American, Japanese and European isolates have revealed a high frequency of N-terminal amino acid variation in SeM of S. equi CF32 that suggests this region of the protein is subject to immunologic selection pressure. The aims of the present study were firstly to map regions of SeM reactive with convalescent equine IgG and IgA and stimulatory for lymph node cells and secondly to determine effects of N-terminal variation on the functionality of SeM. Variation did not significantly affect fibrinogen binding or susceptibility of S. equi to an opsonic equine serum. Linear epitopes reactive with convalescent IgG and mucosal IgA were concentrated toward the conserved center of SeM. However, IgA but not IgG from every horse reacted with at least one peptide that contained variable sequence. Lymph node cells (CD4+) from horses immunized with SeM were strongly responsive to a peptide (αα36–138) encoding the entire variable region. SeM (CF32) specific mouse Mab 04D11 which reacted strongly with this larger peptide but not with shorter peptides within that sequence reacted strongly with whole cells of S. equi CF32 but only weakly with cells of any of 14 isolates of S. equi expressing different variants of SeM. These results in combination suggest that N-terminal variation alters a conformational epitope of significance in mucosal IgA and systemic T cell responses but does not affect antibody mediated phagocytosis and killing.  相似文献   

15.
《Vaccine》2022,40(8):1108-1115
Vaccines against bovine babesiosis must, ideally, induce a humoral immune response characterized by neutralizing antibodies against conserved epitopes and a cellular Th1 immune response. In Babesia bovis, proteins such as AMA-1, MSA-2c, and RAP-1 have been characterized and antibodies against these proteins have shown a neutralizing effect, demonstrating the implication of B and T-cell epitopes in the immune response. There is evidence of the existence of B and T-cell epitopes in these proteins, however, it remains to be defined, the presence of conserved peptides in strains from around the world containing B and T-cell epitopes, and their role in the generation of a long-lasting immunity. The aim in this paper was to identify peptides of Babesia bovis AMA-1, MSA-2c, and RAP-1 that elicit a neutralizing and long-lasting Th1 immune response. Peptides containing B-cell epitopes of AMA-1, MSA-2c and RAP-1, were identified. The immune response generated by each peptide was characterized in cattle. All peptides tested induced antibodies that recognized intraerythrocytic parasites, however, only 5 peptides generated neutralizing antibodies in vitro: P2AMA-1 (6.28%), P3MSA-2c (10.27%), P4MSA-2c (10.42%), P1RAP-1 (32.45%), and P4RAP-1 (36.98%). When these neutralizing antibodies were evaluated as a pool, the inhibition percentage of invasion increased to 52.37%. When the T cellular response was evaluated, two peptides: P3MSA2c and P2AMA1 induced a higher percentage (>70%) of activated CD4 +/CD45RO+ T cells than unstimulated cells. Additionally, both peptides induced the production of gamma interferon (IFN?) in PBMCs from vaccinated cattle after one year proving the implication of a long-lasting Th1 immune response. In conclusion, we identified conserved peptides containing B and T-cell epitopes in antigens of B. bovis that elicit a Th1 immune response and showed evidence that peptides from the same protein elicit different immune responses, which has implication for vaccine development in bovine babesiosis.  相似文献   

16.
《Vaccine》2016,34(50):6301-6308
Enhancement of the T cell-stimulating ability of Mycobacterium bovis BCG (BCG) is necessary to develop an effective tuberculosis vaccine. For this purpose, we introduced the PEST-HSP70-major membrane protein-II (MMPII)-PEST fusion gene into ureC-gene depleted recombinant (r) BCG to produce BCG-PEST. The PEST sequence is involved in the proteasomal processing of antigens. BCG-PEST secreted the PEST-HSP70-MMPII-PEST fusion protein and more efficiently activated human monocyte-derived dendritic cells (DCs) in terms of phenotypic changes and cytokine productions than an empty-vector-introduced BCG or HSP70-MMPII gene-introduced ureC gene-depleted BCG (BCG-DHTM). Autologous human naïve CD8+ T cells and naïve CD4+ T cells were effectively activated by BCG-PEST and produced IFN-γ in an antigen-specific manner through DCs. These T cell activations were closely associated with phagosomal maturation and intraproteasomal protein degradation in antigen-presenting cells. Furthermore, BCG-PEST produced long-lasting memory-type T cells in C57BL/6 mice more efficiently than control rBCGs. Moreover, a single subcutaneous injection of BCG-PEST more effectively reduced the multiplication of subsequent aerosol-challenged Mycobacterium tuberculosis of the standard H37Rv strain and clinically isolated Beijing strain in the lungs than control rBCGs. The vaccination effect of BCG-PEST lasted for at least 6 months. These results indicate that BCG-PEST may be able to efficiently control the spread of tuberculosis in human.  相似文献   

17.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the most often used vaccine worldwide and sole vaccine against tuberculosis. BCG is protective against severe form of childhood tuberculosis but less or not protective to adult pulmonary tuberculosis. Therefore, improved vaccination strategies and development of new tuberculosis vaccines are urgent demands. For those purposes, appropriate animal models that reflect human are critically useful. However, in animal models, BCG vaccination protects well against subsequent challenge of Mycobacterium tuberculosis. In this study we evaluated the duration of protective efficacy of the BCG vaccination in mice over time and found that efficacy was diminished 40 weeks after vaccination. The aged mice older than 45 weeks are protected sufficiently after the vaccination with BCG, suggesting that loss of its efficacy is not dependent on the age of mice but rather depends on the period from vaccination. The loss of protection occurred in TH1 polarized STAT6 deficient mice despite the maintenance of interferon (IFN)-gamma production activity of lymph node cells and splenic CD4+ T cells against M. tuberculosis antigens. Our data suggest that the duration from vaccination may explain the variation in BCG efficacy against adult pulmonary tuberculosis.  相似文献   

18.
Toussaint NC  Maman Y  Kohlbacher O  Louzoun Y 《Vaccine》2011,29(47):8745-8753
Rapidly mutating viruses such as the hepatitis C virus (HCV), the human immunodeficiency virus (HIV), or influenza viruses (Flu) call for highly effective universal peptide vaccines, i.e. vaccines that do not only yield broad population coverage but also broad coverage of various viral strains. The efficacy of such vaccines is determined by multiple properties of the epitopes they comprise. Beyond the specific properties of each epitope, properties of the corresponding source antigens are of great importance. If a response is mounted against viral proteins with a low copy number within the cell or against proteins expressed very late, this response may fail to induce lysis of the infected cells before budding can take place. We here propose a novel methodology to optimize the epitope composition and assembly in order to induce maximum protection.In order for a peptide vaccine to yield the best possible universal protection, several conditions should be met: (a) an optimal choice of target antigens, (b) an optimal choice of highly conserved epitopes, (c) maximum coverage of the target population, and (d) the proper ordering of the epitopes in the final vaccine to ensure favorable cleavage. We propose a mathematical formalism for epitope selection and ordering that balances the constraints imposed by these different conditions. Focusing on HCV, HIV, and Flu, we show that not all of the conditions can be satisfied for all viruses. Depending on the virus, different constraints are harder to fulfill: for Flu, the conservation constraint is violated first, while for HIV, it is difficult to focus the response at the optimal target antigens. The proposed methodology can be applied to any virus to assess the feasibility of optimally combining the above-mentioned constraints.  相似文献   

19.
《Vaccine》2020,38(32):5036-5048
BackgroundViral genetic variability presents a major challenge to the development of a prophylactic hepatitis C virus (HCV) vaccine. A promising HCV vaccine using chimpanzee adenoviral vectors (ChAd) encoding a genotype (gt) 1b non-structural protein (ChAd-Gt1b-NS) generated high magnitude T cell responses. However, these T cells showed reduced cross-recognition of dominant epitope variants and the vaccine has recently been shown to be ineffective at preventing chronic HCV. To address the challenge of viral diversity, we developed ChAd vaccines encoding HCV genomic sequences that are conserved between all major HCV genotypes and adjuvanted by truncated shark invariant chain (sIitr).MethodsAge-matched female mice were immunised intramuscularly with ChAd (108 infectious units) encoding gt-1 and -3 (ChAd-Gt1/3) or gt-1 to -6 (ChAd-Gt1-6) conserved segments spanning the HCV proteome, or gt-1b (ChAd-Gt1b-NS control), with immunogenicity assessed 14-days post-vaccination.ResultsConserved segment vaccines, ChAd-Gt1/3 and ChAd-Gt1-6, generated high-magnitude, broad, and functional CD4+ and CD8+ T cell responses. Compared to the ChAd-Gt1b-NS vaccine, these vaccines generated significantly greater responses against conserved non-gt-1 antigens, including conserved subdominant epitopes that were not targeted by ChAd-Gt1b-NS. Epitopes targeted by the conserved segment HCV vaccine induced T cells, displayed 96.6% mean sequence homology between all HCV subtypes (100% sequence homology for the majority of genotype-1, -2, -4 sequences and 94% sequence homology for gt-3, -6, -7, and -8) in contrast to 85.1% mean sequence homology for epitopes targeted by ChAd-Gt1b-NS induced T cells. The addition of truncated shark invariant chain (sIitr) increased the magnitude, breadth, and cross-reactivity of the T cell response.ConclusionsWe have demonstrated that genetically adjuvanted ChAd vectored HCV T cell vaccines encoding genetic sequences conserved between genotypes are immunogenic, activating T cells that target subdominant conserved HCV epitopes. These pre-clinical studies support the use of conserved segment HCV T cell vaccines in human clinical trials.  相似文献   

20.
De Groot AS  Marcon L  Bishop EA  Rivera D  Kutzler M  Weiner DB  Martin W 《Vaccine》2005,23(17-18):2136-2148
The design of epitope-driven vaccines that address the global variability of HIV has been significantly hampered by concerns about conservation of the vaccine epitopes across clades of HIV. We developed two computer-driven methods for improving epitope-driven HIV vaccines: the Epi-Assembler, which derives representative or "immunogenic consensus sequence" (ICS) epitopes from multiple viral variants, and VaccineCAD, which reduces junctional immunogenicity when epitopes are aligned in a string-of-beads format for insertion in a DNA expression vector. In this study, we report on 20 ICS HIV-1 peptides. The core 9-mer contained in these consensus peptides was conserved in 105-2250 individual HIV-1 strains. Nineteen of the 20 ICS epitopes (95%) evaluated in this study were confirmed in ELISpot assays using peripheral blood monocytes obtained from 13 healthy HIV-1 infected subjects. Twenty-five ICS peptides (all 20 of the peptides evaluated in this study and 5 additional ICS epitopes) were then aligned in a pseudoprotein string using "VaccineCAD", an epitope alignment tool that eliminates immunogenicity created by the junctions between the epitopes. Reordering the construct reduced the immunogenicity of the junctions between epitopes as measured by EpiMatrix, an epitope mapping algorithm. The reordered construct was also a more effective immunogen in vivo when tested in HLA-DR transgenic mice. These data confirm the utility of bioinformatics tools to design novel vaccines containing "immunogenic consensus sequence" T cell epitopes for a globally relevant vaccine against HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号