首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the role of soluble factors secreted by neurons and astrocytes in the differentiation of CNS stem cells. We showed that the soluble factors from neurons strongly induced multipotent cortical stem cells to acquire neuronal identity, while the factors from astrocytes promoted astrocytic differentiation. Neurons secreted the brain-derived neurotrophic factor and neurotrophin-3 to induce neuron differentiation, while astrocytes secreted ciliary neurotrophic factor for astrocyte differentiation. Both neurons and astrocytes secrete bone morphogenetic proteins (BMPs). Using BMP antagonists it was shown that BMPs were responsible for the neuron-induced neuronal differentiation, as well as the astrocyte-induced astrocytic differentiation. These findings demonstrate the importance of soluble signals in lineage-specific differentiation and provide evidence for the roles of neurons and astrocytes in stem cell differentiation.  相似文献   

2.
To probe the effect of glutamine and GABA on metabolism of [U-(13)C]glutamate, cerebellar astrocytes were incubated with [U-(13)C]glutamate (0.5 mM) in the presence and absence of glutamine (2.5 mM) or GABA (0.2 mM). It could be shown that consumption of [U-(13)C]glutamate was decreased in the presence of glutamine and release of labeled aspartate and [1,2,3-(13)C]glutamate decreased as well, whereas the concentrations of these metabolites increased inside the cells. Glutamine decreased energy production from [U-(13)C]glutamate presumably by substituting for glutamate as an energy substrate. No additional effect was seen in the presence of both glutamine and GABA. When cerebellar granule neurons were incubated with [U-(13)C]glutamate (0.25 mM) and GABA (0.05 mM), less [U-(13)C]glutamate was used for energy production than in controls. Because the barbiturate thiopental did not elicit such response (Qu et al., 2000, Neurochem Int 37:207-215) it appears that GABA also has a metabolic function in the glutamatergic cerebellar granule neurons in contrast to the astrocytes.  相似文献   

3.
4.
Oxygen consumption was measured polarographically in fractions enriched in astrocytes or neurons, and in synaptosomes derived from rats in which two subsequent stages of acute hepatic encephalopathy were induced by thioacetamide treatment. A 30% decrease of oxygen consumption was noted in astrocytes from animals with coma, well in agreement with the decrease of whole cerebral oxygen consumption and the increase of whole brain ammonia. In contrast, at the same stage the oxygen consumption in neurons was increased by some 35%, whereas synaptosomes remained unaffected. The results are in keeping with the view that astrocytes are the cells whose metabolism is primarily affected during hepatic encephalopathy. On the other hand, they support recent pathophysiologic evidence that ammonia-induced neuronal dysfunction is not a consequence of impaired energy metabolism in the nerve cells.  相似文献   

5.
6.
Chagas' disease, caused by the protozoan Trypanosoma cruzi, is characterized by an acute phase in which parasites circulate in the blood and proliferate in several cell types, especially muscle cells. A life-long chronic phase follows the acute phase. In young patients, the acute phase is more severe, and meningoencephalitis frequently occurs in children before 2 years of age. Parasites have been rarely observed in neurons but their presence inside glial cells has been reported without characterization of the glial cell type. The cells involved in the brain reaction to the parasites and the time course of this reaction remain to be studied. Therefore, using suckling and juvenile rats and different T. cruzi populations, we aimed at determining the brain target for parasite proliferation and the cells involved in the brain reaction. Around the middle of the acute phase, histological and ultrastructural findings indicated that T. cruzi proliferates in astrocytes, forming nests devoid of enclosing membrane as described for non-glial cells. The brain nodular reaction comprised astrocytes, microglia, macrophages and neutrophils. Resting microglia was devoid of parasites in contrast to macrophages and neutrophils that probably participate in parasite removal. Suckling animals were significantly more affected, the numbers of nests and nodules varying with inoculum size. Histoquantitative analysis showed higher number of nests at the parasitemic peak (day 13) and drastic fall at day 20 post-inoculation. The highest number of nodules occurred at day 20 with drastic reduction at day 30. Recovery from histopathological alterations occurred even in surviving younger animals.  相似文献   

7.
At the moment, there is no direct in vivo evidence of the relative amount of glucose taken up and metabolized by glial cells and neurons, respectively. Therefore, we developed a specific high cellular resolution beta-trajectory approach that allows recording and identification of individual tracks of electrons emitted during disintegrations of 14C. We used [14C]2-deoxyglucose (2DG), which is an analog of glucose and is not metabolized further than the first phosphorylation by hexokinase; this property allows localization of the tracer within the cell type where it is phosphorylated. The present technical approach associated a method of cellular trajectography mainly characterized by the high thickness of the emulsion (15 microm), which permits following of the trajectory of individual electrons. This technique was improved to preserve the in vivo label of diffusible compounds such as 2DG and 2DG-6P and associated with immunohistochemical detection of neurons and astrocytes. beta-Track counting of labeled compounds was performed in 5 microm glial fibrillary acidic protein (GFAP)- and microtubule-associated protein (MAP)2-immunolabeled paraffin adjacent sections. Of 3,075 counted beta-tracks, 53.0% were localized in astrocytes on GFAP-labeled sections and 60.1% in neurons on MAP2-labeled sections. These data represent the first in vivo evidence of the compartmentation of uptake and metabolism of glucose in neurons and astrocytes.  相似文献   

8.
Nuclear magnetic resonance (NMR) spectroscopy and biochemical assays were used to study the fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures. (1)H- and (13)C-NMR analysis of the media demonstrated a high and comparable uptake of [3-(13)C]alanine by the cells. Thereafter, alanine is transaminated predominantly to [3-(13)C]pyruvate, from which the (13)C-label undergoes different metabolic pathways in astrocytes and neurons: Lactate is almost exclusively synthesized in astrocytes, while in neurons and cocultures labeled neurotransmitter amino acids are formed, i.e., glutamate and gamma-aminobutyric acid (GABA). A considerable contribution of the anaplerotic pathway is observed in cocultures, as concluded from the ratio (C-2-C-3)/C-4 of labeled glutamine. Analysis of the multiplet pattern of glutamate isotopomers indicates carbon scrambling through the TCA cycle and the use of alanine also as energy substrate in neurons. In cocultures, astrocyte-deduced lactate and unlabeled exogenous carbon substrates contribute to glutamate synthesis and dilute the [2-(13)C]acetyl-CoA pool by 30%. The coupling of neuronal activity with shuttling of tricarboxylic acid (TCA) cycle-derived metabolites between astrocytes and neurons is concluded from the use of [4-(13)C]-monolabeled glutamate leaving the first TCA cycle turn already for glutamine and GABA synthesis, as well as from the labeling pattern of extracellular glutamine. Further evidence of a metabolic interaction between astrocytes and neurons is obtained, as alanine serves as a carbon and nitrogen carrier through the synthesis and regulated release of lactate from astrocytes for use by neurons. Complementary to the glutamine-glutamate cycle in the brain, a lactate-alanine shuttle between astrocytes and neurons would account for the nitrogen exchange of the glutamatergic neurotransmitter cycle in mammalian brain.  相似文献   

9.
Activation of the nuclear enzyme poly(ADP-ribose)-1 leads to the death of neurons and other types of cells by a mechanism involving NAD(+) depletion and mitochondrial permeability transition. It has been proposed that the mitochondrial permeability transition (MPT) is required for NAD(+) to be released from mitochondria and subsequently consumed by PARP-1. In the present study we used the MPT inhibitor cyclosporine-A (CsA) to preserve mitochondrial NAD(+) pools during PARP-1 activation and thereby provide an estimate of mitochondrial NAD(+) pool size in different cell types. Rat cardiac myocytes, mouse cardiac myocytes, mouse cortical neurons, and mouse cortical astrocytes were incubated with the genotoxin N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in order to activate PARP-1. In all four cell types MNNG caused a reduction in total NAD(+) content that was blocked by the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone. Inhibition of the mitochondrial permeability transition with cyclosporine-A (CsA) prevented PARP-1-induced NAD(+) depletion to a varying degree in the four cell types tested. CsA preserved 83.5% +/- 5.2% of total cellular NAD(+) in rat cardiac myocytes, 85.7% +/- 8.9% in mouse cardiac myocytes, 55.9% +/- 12.9% in mouse neurons, and 22.4% +/- 7.3% in mouse astrocytes. CsA preserved nearly 100% of NAD(+) content in mitochondria isolated from these cells. These results confirm that it is the cytosolic NAD(+) pool that is consumed by PARP-1 and that the mitochondrial NAD(+) pool is consumed only after MPT permits mitochondrial NAD(+) to exit into the cytosol. These results also suggest large differences in the mitochondrial and cytosolic compartmentalization of NAD(+) in these cell types.  相似文献   

10.
C Aoki  V M Pickel 《Brain research》1992,571(1):35-49
beta-Adrenergic receptors (beta AR) in the medial nuclei of tractus solitarii (m-NTS) and area postrema (AP) may bind to catecholamines released from neurons, whereas only the AP has fenestrated capillaries allowing access to circulating catecholamines. Since varied autonomic responses are seen following beta AR activation of the dorsal vagal complex, including the m-NTS and AP, we hypothesized that there might be a cellular basis for varied responses to beta AR stimulation that depends on the differential access to circulating catecholamines. Therefore, we comparatively examined the ultrastructural localization of the beta AR in relation to catecholaminergic neurons in these regions. An antibody directed against the C-terminal tail (amino acids 404-418) of hamster beta-adrenergic receptor (beta AR404) was used in this study. The localization of beta AR404 was achieved by the avidin-biotin peroxidase complex (ABC) technique in combination with a pre-embed immunogold labeling method to localize tyrosine hydroxylase (TH), the catecholamine-synthesizing enzyme. Within m-NTS and at subpostremal border, labeling for beta AR404 was evident along the intracellular surface of plasma membranes of small, apparently distal, astrocytic processes. Astrocytic processes with beta AR404-immunoreactivity formed multiple, thin lamellae around TH-labeled and non-TH neuronal cell bodies and dendrites. beta AR404-immunoreactive astrocytes also extended end-feet around blood vessels and surrounded groups of axon terminals that were directly juxtaposed to each other. Some, but not all, of these axons demonstrated TH-immunoreactivity. Fewer beta AR404-immunoreactive astrocytes were detected in AP, regardless of their proximity to catecholaminergic processes or blood vessels. The present astrocytic localization of beta AR404, together with the earlier, neuronal localization of beta AR's third intracellular loop, suggest that the beta AR may be substantially different between neurons and astrocytes. The regional difference in the prevalence of beta AR404-immunoreactive astrocytes suggests that these receptive sites may either: (i) be preferentially activated by catecholamines released from terminals rather than circulating catecholamines; or (ii) be down-regulated in AP due to blood-born substances, such as catecholamines. The extensive localization of beta AR in the border between m-NTS and AP also suggests that catecholaminergic activation of these astrocytes may dictate the degree of diffusion of catecholamines which are of neuronal or vascular origin. The specific localization of beta AR404-immunoreactivity to the more distal portions of astrocytes suggests the possibility that astrocytes have restrictive distributions of beta AR and that the beta-adrenergic activation lead to morphological or chemical changes that are also localized to the distal portions of astrocytes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
CD137 (ILA, 4-1BB), a member of the tumor necrosis factor receptor family, and its ligand CD137-L were assayed by RT-PCR and immunocytochemistry in cultured human brain cells. Results demonstrated that both neurons and astrocytes expressed specific RNA for CD137 and its protein, which was found both on the plasma membrane and in the cytoplasm. Surprisingly, microglia, which also expressed CD137 mRNA, showed negative immunostaining. CD137-L-specific RNA was detected only in astrocytes and neurons. When brain cells were treated with fibroblast growth factor-2 (FGF-2), upregulation of CD137 but not of its ligand was observed in neurons and astrocytes. Protein localization was also affected. In microglia, an inhibition of RNA expression was induced by treatment, whereas CD137-L remained negative. Our data are the first demonstration that human brain cells express a protein found thus far in activated immunocompetent cells and epithelia. Moreover, they suggest not only that CD137 and CD137-L might play a role in interaction among human brain cells, but also that FGF-2 might have an immunoregulatory function in brain, modulating interaction of the central nervous system with peripheral immunocompetent cells.  相似文献   

12.
The rates of uptake and oxidation of [U-(14)C]lactate and [U-(14)C]glucose were determined in primary cultures of astrocytes and neurons from rat brain, in the presence and absence of the monocarboxylic acid transport inhibitor alpha-cyano-4-hydroxycinnamate (4-CIN). The rates of uptake for 1 mM lactate and glucose were 7.45 +/- 1.35 and 8.80 +/- 1.0 nmol/30 sec/mg protein in astrocytes and 2.36 +/- 0.19 and 1.93 +/- 0.16 nmol/30 sec/mg protein in neuron cultures, respectively. Lactate transport into both astrocytes and neurons was significantly decreased by 0.25-1.0 mM 4-CIN; however, glucose uptake was not affected. The rates of (14)CO(2) formation from 1 mM lactate and glucose were 12.49 +/- 0.77 and 3.42 +/- 0.67 nmol/hr/mg protein in astrocytes and 29.32 +/- 2.81 and 10.04 +/- 1.79 nmol/hr/mg protein in neurons, respectively. Incubation with 0.25 mM 4-CIN decreased the oxidation of lactate and glucose to 57.1% and 54.1% of control values in astrocytes and to 13.2% and 41.6% of the control rates in neurons, respectively. Preincubation with 4-CIN further decreased the oxidation of both glucose and lactate. Studies with glucose specifically labeled in the one and six positions demonstrated that 4-CIN decreased mitochondrial glucose oxidation but did not impair the metabolism of glucose via the pentose phosphate pathway in the cytosol. The lack of effect of 4-CIN on glutamate oxidation demonstrated that overall mitochondrial metabolism was not impaired. These findings suggest that the impaired neuronal function and tissue damage in the presence of 4-CIN observed in other studies may be due in part to decreased uptake of lactate; however, the effects of 4-CIN on mitochondrial transport would significantly decrease the oxidative metabolism of pyruvate derived from both glucose and lactate.  相似文献   

13.
14.
We established selective primary cultures of neurons, astrocytes, and microglial cells from cryopreserved fetal cerebral cortex of cynomolgus monkeys (Macaca fascicularis). At 14 days in serum-containing medium, the cell cultures of the fetal cerebral cortex consisted primarily of neurons, astrocytes, and floating microglial cells. At 21 days, we observed a small number of myelin basic protein (MBP)-positive oligodendrocytes. The addition of cytosine arabinoside (a selective DNA synthesis inhibitor) at 2 days in culture eliminated proliferative glial cells, allowing adequate numbers of neurons to survive selectively. A chemically defined serum-free medium successfully supported neuronal survival at a level equivalent to that supported by the serum-containing medium. Brain-derived neurotrophic factor (BDNF) significantly affected the survival of primate neurons. Glutamate induced a significant degree of neuronal cell death against primate neurons and MK-801, a selective N-methyl-D-aspartate receptor (NMDAR) antagonist, blocked cell death, which suggests that primate cortical neurons have NMDAR and the glutamate-induced cell toxicity is mediated by NMDAR. In the serum-free medium, type-1 astrocytes responded to dibutyryl cyclic AMP and showed a process-bearing morphology. The growth of type-1 astrocytes in the serum-free medium was stimulated by epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and hydrocortisone, which are known growth factors in rat type-1 astrocytes. Cultured microglial cells expressed CD68, a monocyte marker. Macrophage-colony stimulating factor (M-CSF) stimulated microglial cell growth in the serum-free medium. These selective primary culture systems of primate cerebral cortical cells will be useful in issues involving species specificity in neuroscience.  相似文献   

15.
Luteinizing hormone-releasing hormone (LHRH) neurons play a pivotal role in the neuroendocrine control of mammalian reproduction. Astrocytes were shown to be involved in the regulation of LHRH neuronal function, but little is known about the contribution of astroglial-derived factors in the regulation of LHRH neuron development. In order to gain insight into the mechanisms regulating the development of these cells, at morphological and biochemical levels we characterized the neurotrophic effects exerted by young astrocytes (maintained in culture for 8 days in vitro) and old astrocytes (maintained 26 days) on the differentiation, proliferation, and phenotypic expression of immortalized hypothalamic LHRH (GT(1-1)) neurons in vitro. Culturing GT(1-1) cells in the presence of young glia for different time intervals caused a marked acceleration in the acquisition of their neuronal phenotype. At all times examined, GT(1-1) cells cocultured with young glia exhibited a significantly greater extension of processes/cell, larger number of processes/cell and greater surface area of growth cones than GT(1-1) cells grown over nonglial adhesive substrates (polylysine). By contrast, when GT(1-1) neurons were cocultured with old glia, the length of neuronal processes and the growth cone surface area were significantly lower than in control GT(1-1) neurons cultured in the absence of glia. At 3 days in vitro (DIV), GT(1-1) neurons cocultured with young glia exhibited a 50% lower incorporation of [(3)H]thymidine than GT(1-1) neurons cultured without glia. By contrast, in the presence of old glia [(3)H]thymidine incorporation was significantly higher in cells cocultured with glia than in GT(1-1) neurons cultured alone. Localization of the proliferating cells by dual immunohistochemical staining revealed that the incorporation of bromodeoxiuridine (BrdU) was restricted to nuclei of GT(1-1) neurons when these were cocultured with young glia, but associated with both neurons and astrocytes in the presence of old glia. At the functional level, coculture of GT(1-1) neurons with young glia increased the spontaneous release of LHRH as compared to GT(1-1) neurons grown in the absence of glia. By contrast, in the presence of old glia LHRH release in the medium was significantly lower than in controls. Conditioned medium of young glia (ACM-Y) induced significant neurotrophic and functional effects on GT(1-1) cells, but these effects were 50% less potent than the coculture itself. Heat denaturation of ACM-Y totally abolished its neurotrophic and functional properties, indicating that they involved a peptide factor. Suppression of bFGF activity in ACM-Y reduced its neurotrophic activity by approximately 40%, but did not affect its LHRH release-promoting effects. By contrast, neutralization of endogenous bFGF activity in GT(1-1) neurons cocultured with young glia counteracted both neurotrophic and functional effects of young glia. Treatment of old glia with bFGF rescued its neurotrophic and functional effects on GT(1-1) cells. Moreover, the ACM of aged bFGF-treated old glia was the most powerful neurotrophic stimulus for GT(1-1) neurons. These results suggest that: 1) soluble peptidic factors, including bFGF, and mechanism(s) requiring coculture are responsible for the highly potent neurotrophic and functional effects of young glia; 2) the inhibitory effects of old glia on neurite outgrowth and LHRH release are mediated in part by soluble inhibitory molecules and in part by factors requiring coculture with old glia; 3) old glia may revert to a growth-supporting state when treated with bFGF and this functional shift involves a diffusible molecule with potent neurotrophic and functional effects on immortalized LHRH neurons. (c) 2000 Wiley-Liss, Inc.  相似文献   

16.
A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.  相似文献   

17.
Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.  相似文献   

18.
《Neurological research》2013,35(6):632-643
Abstract

Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.  相似文献   

19.
The properties of astroglial gap junction channels and the protein that constitutes the channels were characterized by immunocytochemical, molecular biological, and physiological techniques. Comparative immunocytochemical labeling utilizing different antibodies specific for liver connexin 32 and connexin 26 and antibodies to peptides corresponding to carboxy-terminal sequences of the heart gap junction protein (connexin 43) indicates that the predominant gap junction protein in astrocytes is connexin 43. The expression of this connexin in cultured astrocytes was also established by Western and Northern blot analyses. Cultured astrocytes expressed connexin 43 mRNA and did not contain detectable levels of the mRNAs encoding connexin 32 or connexin 26. Further, the cells contained the same primary connexin 43 translation product and the same phosphorylated forms as heart. Finally, electrophysiological recordings under voltage-clamp conditions revealed that astrocyte cell pairs were moderately well coupled, with an average junctional conductance of about 13 nS. Single-channel recordings indicated a unitary junctional conductance of about 50-60 pS, which is of the same order as that found in cultured rat cardiac myocytes, where the channel properties of connexin 43 were first described. Thus, physiological properties of gap junction channels appear to be determined by the connexin expressed, independent of the tissue type.  相似文献   

20.
Clusterin (SGP-2) is a newly described glycoprotein associated with several putative functions including responses to brain injury. This study reports the regional and cell type expression of clusterin mRNA and its encoded glycoprotein in the rat brain; a limited comparison was also done with the human brain. Using in situ hybridization combined with immunocytochemistry, we found that astrocytes and neurons may express clusterin mRNA in the normal adult brain. While astrocytes throughout the brain contained clusterin mRNA, there was regional selectivity for neuronal clusterin expression. In the striatum, clusterin mRNA was not detected in neurons. Only a subset of substantia nigra dopaminergic neurons or locus ceruleus noradrenergic neurons (tyrosine hydroxylase immunopositive) contained clusterin mRNA. However, neuronal clusterin mRNA was prevaìent in pontine nuclei and in the red nucleus of the midbrain tegmentum. Similarly, clusterin mRNA was prevalent in both rat and human hippocampal neuron-specific enolase immunopositive pyramidal neurons, although rat CA1 neurons had less mRNA than CA2–CA3 neurons. Monotypic primary cell cultures from the neonatal rat showed clusterin mRNA in both neurons and astrocytes, but not in microglia. By immunocytochemistry, no clusterin immunopositive glia were observed in any region of the rat brain, confirming previous studies. However, clusterin immunopositive cells (putative neurons) were observed in the Purkinje cell layer of the cerebellum, medial and interposed cerebellar nuclei, trigeminal motor nucleus, and red nucleus. Finally, in vitro studies suggest that astrocytes, but not neurons, secrete clusterin, which is pertinent to clusterin immunodeposits found after experimental lesioning. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号