首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Soccer is the most commonly played sport in the world, with an estimated 265 million active soccer players by 2006. Inherent to this sport is the higher risk of injury to the anterior cruciate ligament (ACL) relative to other sports. ACL injury causes the most time lost from competition in soccer which has influenced a strong research focus to determine the risk factors for injury. This research emphasis has afforded a rapid influx of literature defining potential modifiable and non-modifiable risk factors that increase the risk of injury. The purpose of the current review is to sequence the most recent literature that reports potential mechanisms and risk factors for non-contact ACL injury in soccer players. Most ACL tears in soccer players are non-contact in nature. Common playing situations precluding a non-contact ACL injury include: change of direction or cutting maneuvers combined with deceleration, landing from a jump in or near full extension, and pivoting with knee near full extension and a planted foot. The most common non-contact ACL injury mechanism include a deceleration task with high knee internal extension torque (with or without perturbation) combined with dynamic valgus rotation with the body weight shifted over the injured leg and the plantar surface of the foot fixed flat on the playing surface. Potential extrinsic non-contact ACL injury risk factors include: dry weather and surface, and artificial surface instead of natural grass. Commonly purported intrinsic risk factors include: generalized and specific knee joint laxity, small and narrow intercondylar notch width (ratio of notch width to the diameter and cross sectional area of the ACL), pre-ovulatory phase of menstrual cycle in females not using oral contraceptives, decreased relative (to quadriceps) hamstring strength and recruitment, muscular fatigue by altering neuromuscular control, decreased “core” strength and proprioception, low trunk, hip, and knee flexion angles, and high dorsiflexion of the ankle when performing sport tasks, lateral trunk displacement and hip adduction combined with increased knee abduction moments (dynamic knee valgus), and increased hip internal rotation and tibial external rotation with or without foot pronation. The identified mechanisms and risk factors for non-contact ACL injuries have been mainly studied in female soccer players; thus, further research in male players is warranted. Non-contact ACL injuries in soccer players likely has a multi-factorial etiology. The identification of those athletes at increased risk may be a salient first step before designing and implementing specific pre-season and in-season training programs aimed to modify the identified risk factors and to decrease ACL injury rates. Current evidence indicates that this crucial step to prevent ACL injury is the only option to effectively prevent the sequelae of osteoarthritis associated with this traumatic injury.  相似文献   

3.
Lower‐extremity injury is common in soccer. A number of studies have begun to assess why specific lower‐extremity injuries occur. However, currently few studies have examined how footwear affects lower‐extremity mechanics. In order to address this question, 14 male (age: 22.1 ± 3.9 years, height: 1.77 ± 0.06 m, and mass: 73.3 ± 11.5 kg) and 14 female (age: 22.8 ± 3.1 years, height: 1.68 ± 0.07 m and mass: 64.4 ± 9.2 kg) competitive soccer players underwent a motion analysis assessment while performing a jump heading task. Each subject performed the task in three different footwear conditions (running shoe, bladed cleat, and turf shoe). Two‐way analyses of variance were used to examine statistical differences in landing mechanics between the footwear conditions while controlling for gender differences. These comparisons were made during two different parts (prior to and following) of a soccer‐specific jump heading task. A statistically significant interaction for the peak dorsiflexion angle (P = 0.02) and peak knee flexion angle (P = 0.05) was observed. Male soccer players exhibited a degree increase in dorsiflexion in the bladed cleat while female soccer players exhibited a three‐degree reduction in peak knee flexion in the bladed cleat condition. Other main effects for gender and footwear were also observed. The results suggest that landing mechanics differ based upon gender, footwear, and the type of landing. Therefore, training interventions aimed at reducing lower‐extremity injury should consider utilizing sport‐specific footwear when assessing movement patterns.  相似文献   

4.
BACKGROUND: Neuromuscular training that includes both plyometric and dynamic stabilization/balance exercises alters movement biomechanics and reduces ACL injury risk in female athletes. The biomechanical effects of plyometric and balance training utilized separately are unknown. HYPOTHESIS: A protocol that includes balance training without plyometric training will decrease coronal plane hip, knee, and ankle motions during landing, and plyometric training will not affect coronal plane measures. The corollary hypothesis was that plyometric and balance training effects on knee flexion are dependent on the movement task tested. STUDY DESIGN: Controlled laboratory study. METHODS: Eighteen high school female athletes participated in 18 training sessions during a 7-week period. The plyometric group (n = 8) performed maximum-effort jumping and cutting exercises, and the balance group (n = 10) used dynamic stabilization/ balance exercises during training. Lower extremity kinematics were measured during the drop vertical jump and the medial drop landing before and after training using 3D motion analysis techniques. RESULTS: During the drop vertical jump, both plyometric and balance training reduced initial contact (P = .002), maximum hip adduction angle (P = .015), and maximum ankle eversion angle (P = .020). During the medial drop landing, both groups decreased initial contact (P = .002) and maximum knee abduction angle (P = .038). Plyometric training increased initial contact knee flexion (P = .047) and maximum knee flexion (P = .031) during the drop vertical jump, whereas the balance training increased maximum knee flexion (P = .005) during the medial drop landing. CONCLUSION: Both plyometric and balance training can reduce lower extremity valgus measures. Plyometric training affects sagittal plane kinematics primarily during a drop vertical jump, whereas balance training affects sagittal plane kinematics during single-legged drop landing. CLINICAL RELEVANCE: Both plyometric and dynamic stabilization/balance exercises should be included in injury-prevention protocols.  相似文献   

5.
During landing and cutting, females exhibit greater frontal plane moments at the knee (internal knee adductor moments or external knee abduction moments) and favor the use of the knee extensors over the hip extensors to attenuate impact forces when compared with males. However, it is not known when this biomechanical profile emerges. The purpose of this study was to compare landing biomechanics between sexes across maturation levels. One hundred and nineteen male and female soccer players (9-22 years) participated. Subjects were grouped based on maturational development. Lower extremity kinematics and kinetics were obtained during a drop-land task. Dependent variables included the average internal knee adductor moment and sagittal plane knee/hip moment and energy absorption ratios during the deceleration phase of landing. When averaged across maturation levels, females demonstrated greater internal knee adductor moments (0.06±0.03 vs 0.01±0.02 N m/kg m; P<0.005), knee/hip extensor moment ratios (2.0±0.1 vs 1.4±0.1 N m/kg m; P<0.001) and knee/hip energy absorption ratios (2.9±0.1 vs 1.96±0.1 N m/kg m; P<0.001) compared with males. Higher knee adductor moments combined with disproportionate use of knee extensors relative to hip extensors observed in females reflect a biomechanical pattern that increases anterior cruciate ligament loading. This biomechanical strategy already was established in pre-pubertal female athletes.  相似文献   

6.
BACKGROUND: Biomechanical analysis of stop-jump tasks has demonstrated gender differences during landing and a potential increase in risk of noncontact anterior cruciate ligament injury for female athletes. Analysis of landing preparation could advance our understanding of neuromuscular control in movement patterns and be applied to the development of prevention strategies for noncontact anterior cruciate ligament injury. HYPOTHESIS: There are differences in the lower extremity joint angles and electromyography of male and female recreational athletes during the landing preparation of a stop-jump task. STUDY DESIGN: Controlled laboratory study. METHODS: Three-dimensional videographic and electromyographic data were collected for 36 recreational athletes (17 men and 19 women) performing vertical stop-jump tasks. Knee and hip angular motion patterns were determined during the flight phase before landing. RESULTS: Knee and hip motion patterns and quadriceps and hamstring activation patterns exhibited significant gender differences. Female subjects generally exhibited decreased knee flexion (P = .001), hip flexion (P = .001), hip abduction (P = .001), and hip external rotation (P = .03); increased knee internal rotation (P = .001); and increased quadriceps activation (P = .001) compared with male subjects. Female subjects also exhibited increased hamstring activation before landing but a trend of decreased hamstring activation after landing compared with male subjects (P = .001). CONCLUSION: Lower extremity motion patterns during landing of the stop-jump task are preprogrammed before landing. Female subjects prepared for landing with decreased hip and knee flexion at landing, increased quadriceps activation, and decreased hamstring activation, which may result in increased anterior cruciate ligament loading during the landing of the stop-jump task and the risk for noncontact ACL injury.  相似文献   

7.
8.
BACKGROUND: Frontal plane trunk and lower extremity adjustments during unanticipated tasks are hypothesized to influence hip and knee neuromuscular control, and therefore, contribute to anterior cruciate ligament (ACL) injury risk. The aims of this study were to examine frontal plane trunk/hip kinematics and hip and knee moments (measures of neuromuscular control) during unanticipated straight and side step cut tasks. METHODS: Kinematic and kinetic variables were collected while subjects performed two anticipated tasks, including walking straight (ST) and side step cutting (SS), and two unanticipated tasks (STU and SSU). Foot placement, thorax-pelvis-hip kinematic variables and hip and knee moments were calculated over the first 30% of stance. FINDINGS: Hip abduction angles and knee moments were significantly affected by task and anticipation. Hip abduction angles decreased, by 4.0-7.6 degrees , when comparing the SSU task to the ST, STU and SS tasks. The hip abduction angles were associated with foot placement and lateral trunk orientation. INTERPRETATION: Hip abduction angles and foot placement, not lateral trunk flexion influence trunk orientation. Anticipation influences hip and knee neuromuscular control and therefore may guide the development of ACL prevention strategies.  相似文献   

9.
PURPOSE: Anterior cruciate ligament (ACL) injuries often occur in women during cutting maneuvers to evade a defensive player. Gender differences in knee kinematics have been observed, but it is not known to what extent these are linked to abnormal neuromuscular control elsewhere in the kinetic chain. Responses to defense players, which may be gender-dependent, have not been included in previous studies. This study determined the effects of gender and defense player on entire lower extremity biomechanics during sidestepping. METHODS: Eight male and eight female subjects performed sidestep cuts with and without a static defensive opponent while 3D motion and ground reaction force data were recorded. Peak values of eight selected motion and force variables were, as well as their between-trial variabilities, submitted to a two-way (defense x gender) ANOVA. A Bonferroni-corrected alpha level of 0.003 denoted statistical significance. RESULTS: Females had less hip and knee flexion, hip and knee internal rotation, and hip abduction. Females had higher knee valgus and foot pronation angles, and increased variability in knee valgus and internal rotation. Increased medial ground reaction forces and flexion and abduction in the hip and knee occurred with the defensive player for both genders. CONCLUSIONS: A simulated defense player causes increased lower limb movements and forces, and should be a useful addition to laboratory protocols for sidestepping. Gender differences in the joint kinematics suggest that increased knee valgus may contribute to ACL injury risk in women, and that the hip and ankle may play an important role in controlling knee valgus during sidestepping. Consideration of the entire lower extremity contributes to an understanding of injury mechanisms and may lead to better training programs for injury prevention.  相似文献   

10.
Soccer is the most commonly played sport in the world, with an estimated 265 million active soccer players participating in the game as on 2006. Inherent to this sport is the higher risk of injury to the anterior cruciate ligament (ACL) relative to other sports. ACL injury causes a significant loss of time from competition in soccer, which has served as the strong impetus to conduct research that focuses to determine the risk factors for injury, and more importantly, to identify and teach techniques to reduce this injury in the sport. This research emphasis has afforded a rapid influx of literature aimed to report the effects of neuromuscular training on the risk factors and the incidence of non-contact ACL injury in high-risk soccer populations. The purpose of the current review is to sequence the most recent literature relating the effects of prevention programs that were developed to alter risk factors associated with non-contact ACL injuries and to reduce the rate of non-contact ACL injuries in soccer players. To date there is no standardized intervention program established for soccer to prevent non-contact ACL injuries. Multi-component programs show better results than single-component preventive programs to reduce the risk and incidence of non-contact ACL injuries in soccer players. Lower extremity plyometrics, dynamic balance and strength, stretching, body awareness and decision-making, and targeted core and trunk control appear to be successful training components to reduce non-contact ACL injury risk factors (decrease landing forces, decrease varus/valgus moments, and increase effective muscle activation) and prevent non-contact ACL injuries in soccer players, especially in female athletes. Pre-season injury prevention combined with an in-season maintenance program may be advocated to prevent injury. Compliance may in fact be the limiting factor to the overall success of ACL injury interventions targeted to soccer players regardless of gender. Thus, interventional research must also consider techniques to improve compliance especially at the elite levels which will likely influence trickle down effects to sub-elite levels. Future research is also needed for male soccer athletes to help determine the most effective intervention to reduce the non-contact ACL injury risk factors and to prevent non-contact ACL injuries.  相似文献   

11.
Centrally mediated changes in sensorimotor function have been reported in patients with chronic ankle instability (CAI). However, little is known regarding supraspinal/spinal adaptations during lower‐extremity dynamic movement during a multiplanar, single‐leg landing/cutting task. The purpose of this study was to investigate the effect of CAI on landing/cutting neuromechanics, including lower‐extremity kinematic, electromyography (EMG) activation, and ground reaction force (GRF) characteristics. One hundred CAI patients and 100 matched healthy controls performed five trials of a jump landing/cutting task. Sagittal‐ and frontal‐plane ankle, knee and hip kinematics, EMG activation in eight lower‐extremity muscles, and 3D GRF were collected during jump landing/cutting. Functional analyses of variance (FANOVA) were used to evaluate between‐group differences for dependent variables throughout the entire ground contact of the task. Relative to the control group, the CAI group revealed (a) reduced dorsiflexion, increased knee and hip flexion angles, (b) increased inversion and hip adduction angles, (c) increased EMG activation of medial gastrocnemius, peroneus longus, adductor longus, vastus lateralis, gluteus medius, and gluteus maximus, and (d) increased posterior and vertical GRF during initial landing, and reduced medial, posterior, and vertical GRF during mid‐landing and mid‐cutting. CAI patients demonstrated alterations in landing/cutting movement strategies as demonstrated by a higher susceptibility of foot placement for lateral ankle sprains, and more flexed positions of the knee and hip with higher EMG activation of knee and hip extensors to modulate GRF to compensate for the unstable ankle. This apparent compensation may be due to mechanical (limited dorsiflexion angle) and/or sensorimotor deficits in the ankle.  相似文献   

12.
OBJECTIVE:: To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. DESIGN:: Experimental study. SETTING:: Controlled research laboratory. PARTICIPANTS:: Twenty healthy female recreational athletes (10 HA and 10 LA). INTERVENTIONS:: Athletes performed 5 barefoot drop landings from a height of 30 cm. MAIN OUTCOME MEASURES:: Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. RESULTS:: Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). CONCLUSIONS:: These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.  相似文献   

13.
Forty-eight players from four senior, male soccer teams were tested for ranges of motion (ROM) in the lower extremity before, immediately after, and 24 h after different forms of soccer training. The players were tested after regular soccer training (A), after soccer training with contract-relax stretching prior to beginning the session (B), and after soccer training with stretching added at the end of the program (C). Each training session lasted 1.5 h. In group A all six ROMs were decreased 24 h after the training. In group B the only change in ROM noted was an increase in knee flexion directly after the training. In group C there was an increase in hip extension, hip flexion, and knee flexion directly after the training.  相似文献   

14.
BackgroundEpidemiological studies in soccer are important for injury prevention. However, most of the available information is limited to elite players.ObjectiveTo determine the epidemiology of injuries in amateur soccer players on artificial turf.DesignProspective cohort study during one competitive season (2010–2011).SettingAmateur soccer players. Participants: 231 players (aged 24.7; range: 18–38 years).Main outcome measuresInjury incidence was recorded prospectively according to the consensus statement for soccer.Results213 injuries were recorded; 57% of the players suffered injuries. Injury incidence was 5.1 (95% CI: 4.3–5.9) injuries/1000 h exposure. Injury incidence was higher in matches than in training (32.2 [95% CI: 23.1–41.3] vs. 2.4 [95% CI: 1.8–3.0] injuries/1000 h; p < 0.001). The thigh (22.1%), knee (20.2%), and ankle (19.2%) were the most affected regions. The most frequent diagnoses were thigh strain/muscle rupture (18.3%), and ankle and knee strain/ligament injury (17.3% and 11.3%, respectively). Time-loss due to injury was 20.3 (95% CI: 16.8–23.73) days. Most injuries (79%) were traumatic; 21% were overuse injuries. Re-injuries accounted for 10% of all injuries sustained during the season.ConclusionsInjury incidence in amateur soccer players is higher during matches played on artificial turf than during training sessions.  相似文献   

15.
Anterior cruciate ligament (ACL) injury is a common sports injury, particularly in females. Gender differences in knee kinematics have been observed for specific movements, but there is limited information on how these findings relate to other joints and other movements. Here we present an integrated analysis of hip, knee and ankle kinematics across three movements linked to non-contact ACL injury. It was hypothesised that there are gender differences in lower extremity kinematics, which are consistent across sports movements. Ten female and ten male NCAA basketball players had three-dimensional hip, knee and ankle kinematics quantified during the stance phase of sidestep, sidejump and shuttle-run tasks. For each joint angle, initial value at contact, peak value and between-trial variability was obtained and submitted to a two-way mixed design ANOVA (gender and movement), with movement condition treated as a repeated measure. Females had higher peak knee valgus and lower peak hip and knee flexion, with the same gender differences also existing at the beginning of stance (p<0.05). Peak valgus measures were highly correlated between movements, but not to static valgus alignment. Kinematic differences demonstrated by females for the sports movements studied, and in particular knee valgus, may explain their increased risk of ACL injury. These differences appear to stem largely from subject-specific neuromuscular mechanisms across movements, suggesting that prevention via neuromuscular training is possible.  相似文献   

16.
ObjectivesTo assess the effect of mid-flight trunk flexion and extension on the movements of body segments and lower extremity joints and subsequent landing mechanics during a jump-landing task.DesignParticipants performed three jump-landing conditions in a randomized order.MethodsForty-one participants completed jump-landing trials when performing three different mid-flight trunk motion: reaching forward, reaching up, and reaching backward. Whole-body kinematic and ground reaction force data were collected.ResultsThe reaching backward condition resulted in a more posteriorly positioned upper body center of mass (COM) and more anteriorly positioned pelvis COM, legs COM, hip, and knee joint positions relative to the whole-body COM in flight and at initial contact of landing. The reaching backward condition showed the least hip flexion and ankle plantarflexion angles at initial contact as well as the least hip and knee flexion angles and the greatest ankle dorsiflexion angles at 100 ms after landing. The reaching backward condition also demonstrated the greatest peak posterior ground reaction forces, peak and average knee extension moments, peak and average hip flexion moments, and peak knee varus moments within the first 100 ms after landing. Opposite changes were observed for the reaching forward condition.ConclusionsMid-flight trunk extension resulted in body postures that predisposed individuals to land with increased knee extension and varus moments and decreased knee flexion angles, which are indirectly associated with increased ACL loading. These findings may help to understand altered trunk motion during certain ACL injury events and provide information for developing jump-landing training strategies.  相似文献   

17.
Previous studies have shown conflicting information regarding leg dominance as an etiological factor for the risk of anterior cruciate ligament (ACL) injuries. It remains unclear if lower extremity neuromechanical limb asymmetries exist in experienced athletes. The purpose of this study was to evaluate lower extremity neuromechanical effects of leg dominance in female collegiate soccer athletes during an unanticipated side‐step cutting task. Twenty female collegiate soccer players completed an unanticipated side‐step cutting task, using their dominant and non‐dominant legs. Kinematic and kinetic data were collected to quantify joint angles and forces, with wireless electromyography (EMG) quantifying muscle activity. MANOVA's were conducted to determine the effect of leg dominance on hip and knee mechanics at and between pre‐contact, initial contact, peak knee adduction moment, and peak stance periods. Dependent variables consisted of peak time occurrences, hip and knee rotations and moments, ground reaction force, EMG amplitudes, stance time, and approach velocity. No significant differences were found for any variables at or between the periods of interest. Collegiate female soccer athletes exhibit similar movement patterns between dominant and non‐dominant legs while performing a side‐step cutting task, suggesting that leg dominance does not adversely influence known biomechanical non‐contact ACL risk factors.  相似文献   

18.
A prospective study of male soccer injuries among 12 teams playing at the highest competition level was carried out in Finland in 1993. Overall, two out of three players were injured during the whole season. The injury incidence per 1000 playing hours among injured players and all players during games was higher than during practice, 14.2 vs. 11.3 and 2.3 vs. 1.8, respectively. The lower extremity was involved in 76% of the injuries. Thigh injuries were most frequent (22%), whereas overuse injuries were scarce (6%). Eighteen per cent of the injured players needed surgery and in most cases (58%) the reason for surgery was a knee injury. Sixteen per cent of all injured players were absent from soccer for more than 1 month after the injury. The mean absence time was 17 days for all and 84 days for operatively treated players.  相似文献   

19.
20.
This study sought to determine if knowledge regarding the risk for knee injuries and the potential for their prevention is being translated to female adolescent soccer players (13–18 years), their parents, and coaches. Eligible participants in the 2007 indoor soccer season were surveyed to determine their knowledge of the risk for and the potential to prevent knee injuries, and their knowledge of effective prevention strategies, if they felt that injury prevention was possible. Team selection was stratified to be representative of both competitive and recreational level play and age group distributions within the selected soccer association. Of the study subjects, 773/1396 (55.4%) responded to the survey: 408 (53%) players, 292 (38%) parents, and 73 (9%) coaches. Most respondents (538 [71%]) were aware of the risk for knee injury. Coaches and parents were more likely than players to view knee injuries as preventable; however, appropriate prevention strategies were often not identified. Four hundred eighty‐four (63.8%) respondents reported that they had never received information on knee injuries. Substantial knowledge gaps regarding knee injury prevention and effective preventative strategies were identified. Given the predominance of knee injuries in female adolescent soccer players, there is an urgent need for knowledge translation of prevention strategies to decrease both incidence and long‐term consequences of knee injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号