首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Histone deacetylase inhibitors (HDACi) are compounds that target the epigenome and cause tumor cell-selective apoptosis. A large number of these agents that have different chemical structures and can target multiple HDACs are being testing in clinical trials and vorinostat is now an approved drug for the treatment of cutaneous T-cell lymphoma. Although these agents are showing promise for the treatment of hematologic malignancies, it is possible that different drugs may have different mechanistic, biological, and therapeutic activities. When comparing an HDACi belonging to the hydroxamic acid class of compounds (vorinostat) with a cyclic tetrapeptide (romidepsin), we showed that these agents regulate the expression of a common set of cellular genes, but certain genes specifically responded to each agent. Using the Emu-myc mouse model of B-cell lymphoma, we showed previously that overexpression of the prosurvival proteins Bcl-2 and Bcl-XL inhibited the apoptotic and therapeutic activities of the vorinostat. Herein, we compared and contrasted the apoptotic-inducing activities of the hydroxamic acid oxamflatin with romidepsin. Like vorinostat, oxamflatin was unable to kill lymphomas overexpressing Bcl-2 and Bcl-XL, indicating that these proteins can generally protect cells against this class of HDACi. In contrast, romidepsin was able to induce apoptosis in lymphomas overexpressing Bcl-2 with delayed kinetics of cell death and could mediate therapeutic responses against these lymphomas. However, romidepsin was inactive when Bcl-XL was overexpressed. These data provide strong support that HDACi of different chemical classes may have subtle yet potentially important differences in their molecular and biological activities.  相似文献   

2.
Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An alpha-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC50 of 0.045 micromol/L in the screening biochemical assay and an EC50 of 0.025 micromol/L in HeLa cell-based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classes I and II HDAC inhibition in assays using purified recombinant human isoforms. KD5170 shows significant antiproliferative activity against a variety of human tumor cell lines, including the NCI-60 panel. Significant tumor growth inhibition was observed after p.o. dosing in human HCT-116 (colorectal cancer), NCI-H460 (non-small cell lung carcinoma), and PC-3 (prostate cancer) s.c. xenografts in nude mice. In addition, a significant increase in antitumor activity and time to end-point occurred when KD5170 was combined with docetaxel in xenografts of the PC-3 prostate cancer cell line. The biological and pharmaceutical profile of KD5170 supports its continued preclinical and clinical development as a broad spectrum anticancer agent.  相似文献   

3.
4.
Broad-spectrum histone deacetylase inhibitors (HDACi) are used clinically as anticancer agents, and more isoform-selective HDACi have been sought to modulate other conditions, including chronic inflammatory diseases. Mouse studies suggest that HDACi downregulate immune responses and may compromise host defense. However, their effects on human macrophage antimicrobial responses are largely unknown. Here, we show that overnight pretreatment of human macrophages with HDACi prior to challenge with Salmonella enterica serovar Typhimurium or Escherichia coli results in significantly reduced intramacrophage bacterial loads, which likely reflect the fact that this treatment regime impairs phagocytosis. In contrast, cotreatment of human macrophages with HDACi at the time of bacterial challenge did not impair phagocytosis; instead, HDACi cotreatment actually promoted clearance of intracellular S. Typhimurium and E. coli. Mechanistically, treatment of human macrophages with HDACi at the time of bacterial infection enhanced mitochondrial reactive oxygen species generation by these cells. The capacity of HDACi to promote the clearance of intracellular bacteria from human macrophages was abrogated when cells were pretreated with MitoTracker Red CMXRos, which perturbs mitochondrial function. The HDAC6-selective inhibitor tubastatin A promoted bacterial clearance from human macrophages, whereas the class I HDAC inhibitor MS-275, which inhibits HDAC1 to -3, had no effect on intracellular bacterial loads. These data are consistent with HDAC6 and/or related HDACs constraining mitochondrial reactive oxygen species production from human macrophages during bacterial challenge. Our findings suggest that, whereas long-term HDACi treatment regimes may potentially compromise host defense, selective HDAC inhibitors may have applications in treating acute bacterial infections.  相似文献   

5.
To ascertain the potential for histone deacetylase (HDAC) inhibitor-based treatment in non-small cell lung cancer (NSCLC), we analyzed the antitumor effects of trichostatin A (TSA) and suberoylanilide hydroxamic acid (vorinostat) in a panel of 16 NSCLC cell lines via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. TSA and vorinostat both displayed strong antitumor activities in 50% of NSCLC cell lines, suggesting the need for the use of predictive markers to select patients receiving this treatment. There was a strong correlation between the responsiveness to TSA and vorinostat (P < 0.0001). To identify a molecular model of sensitivity to HDAC inhibitor treatment in NSCLC, we conducted a gene expression profiling study using cDNA arrays on the same set of cell lines and related the cytotoxic activity of TSA to corresponding gene expression pattern using a modified National Cancer Institute program. In addition, pathway analysis was done with Pathway Architect software. We used nine genes, which were identified by gene-drug sensitivity correlation and pathway analysis, to build a support vector machine algorithm model by which sensitive cell lines were distinguished from resistant cell lines. The prediction performance of the support vector machine model was validated by an additional nine cell lines, resulting in a prediction value of 100% with respect to determining response to TSA and vorinostat. Our results suggested that (a) HDAC inhibitors may be promising anticancer drugs to NSCLC and (b) the nine-gene classifier is useful in predicting drug sensitivity to HDAC inhibitors and may contribute to achieving individualized therapy for NSCLC patients.  相似文献   

6.
Histone deacetylases (HDACs) are a family of enzymes that have been of interest in drug discovery for more than 30 years. Inhibitors of HDACs are potential therapeutics for various diseases, such as neurodegenerative diseases, inflammation, viral infection, and especially cancer. Most HDAC inhibitors (HDACi) are designed for cancer therapy. In 2006, suberoylanilide hydroxamic acid was approved by the US Food and Drug Administration for once‐daily oral treatment of advanced cutaneous T‐cell lymphoma. In the meantime, there have been aggressive efforts to bring HDACi to the market for every major tumor type, either as a single therapy or in combination, and a number of compounds are currently undergoing clinical trials. Multiple strategies have been applied to the rational design of drugs targeting HDACs by taking advantage of the new developments in proteomics, chemogenomics, cheminformatics, and computational chemistry/biology. Herein, we review the current methods successfully used in developing novel HDACi. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 4, 585–602, 2010  相似文献   

7.
A strategy to develop chemotherapy agents by combining two complimentary chemo-active groups into a single molecule may have higher efficacy and fewer side effects than that of single-target drugs. In this article, we describe the synthesis and evaluation of a series of novel dual-acting levofloxacin–HDACi conjugates to target both histone deacetylase (HDAC) and tubulin polymerization. These bifunctional conjugates exhibited potent inhibitory activities against HDACs and tubulin polymerization. In docking analysis provides a structural basis for HDACs inhibition activities. Moreover, these conjugates showed selective anticancer activity that is more potent against MCF-7 compared to other four cancer cells A549, HepG2, PC-3, HeLa, but they had no toxicity toward normal cells.

Synthesis of a series of novel dual-acting levofloxacin–HDACi conjugates, which show potent inhibitory activities against HDACs, tubulin polymerization, and significant antiproliferative effect on MCF-7 cells.

Cancer is a highly complex multifactorial disease involving multiple cross-talking between signaling networks. Almost all single-target-based drugs suffer from severe toxicities or other undesirable side effects. In contrast, combination therapy, which combines multiple anticancer agents working with different mechanisms, might have superior efficacy and fewer side effects compared to single-target treatments.1,2Histone deacetylases (HDACs) are epigenetic enzymes that are capable of removing acetyl groups from ε-amino groups of lysine residues in histone or other nonhistone proteins.3 Abnormal expression of HDACs has been observed in various types of cancer,4–6 and these enzymes have emerged as important targets in the development of anticancer drugs. Consequently, inhibition of HDAC activity is now recognized as a powerful strategy for cancer therapy. There are 18 human HDAC isoforms categorized into four major classes: class I (HDACs 1, 2, 3, 8), class IIa (HDACS 4, 5, 7, 9), class IIb (HDACs 6 and 10), and class IV (HDAC 11) are Zn2+-dependent metalloenzymes, while class III (SirTs 1–7) are NDA+-dependent sirtuins.7,8 Of these HDAC isoforms, only HDACs 1, 2, 3, and 6 have shown biologically relevant deacetylation ability.9 Specially, selective inhibition of HDAC6 may have fewer side effects than pan-HDAC and class I isoform.10–12To date, more than twenty HDAC inhibitors have been initiated in clinical trials, and four HDAC inhibitors vorinostat (SAHA),13 romidepsin (FK-228),14 belinostat (PXD-101),15,16 panobinostat (LBH-589),17 have been approved by FDA for the treatment of T-cell lymphoma, cutaneous T-cell lymphoma and multiple myeloma. However, most of them are pan-HDAC (SAHA, LBH-589) or class I selective (FK-228, PXD-101) inhibitors, which usually lead to several mild to severe side effects.16,18,19 In addition, most of HDAC inhibitors lack visible efficacy against solid tumor,14,20 the doses given in clinical are much higher, which severely limit their clinical utility for the treatment of broad spectrum of cancer. Therefore, preclinical evaluation of new HDAC inhibitors will need to focus on improving HDAC isoform selectivity and enhancing potency against solid tumors. One strategy may be able to ameliorate the shortcomings of current inhibitors, which is to develop a dual-acting HDAC inhibitor (HDACi) by incorporation of the surface recognition group of prototypical HDACi into other anticancer drugs, forming a single molecule that can modulate intracellular multiple targets, other than various HDAC isoforms. So far, a few examples of bifunctional HDACi-derived conjugates have been obtained.21–26 Expansion of the diversity of such bifunctional conjugates could lead to broad acting, therapeutically viable anticancer drugs.In another aspect, fluoroquinolones (FQs) have recently been proven as an excellent class of broad-spectrum anticancer drugs against a variety of cancer cells such as bladder cancer,27 non-small cell lung carcinoma,28 colorectal carcinoma cells,29etc. For instance, it has been demonstrated that levofloxacin (Lv) displays antiproliferative activity against various cancer cells.30,31 Additionally, many of fluoroquinolones were potent inhibitors of tubulin polymerization and exhibited selective activity against some tumor cell types.32,33 More importantly, fluoroquinolones have favorable pharmacokinetic profiles and good adsorption, which possess an established record of safety.34 Therefore, on the basis of therapeutic effectives of aforementioned HDACi as well as fluoroquinolone, we conceived that concurrent inhibition of HDAC and tubulin polymerization would be a viable alternative approach for cancer treatment.In this work, we describe the design, synthesis and biological evaluation of novel dual-action levofloxacin–HDACi conjugates, which can be prepared conveniently by direct connection of levofloxacin with a triazole-liked SAHA (Fig. 1). The levofloxacin–SAHA conjugates (compounds 8a–c and 9a–c) of this design not only have HDACi unit but also have a second pharmacologically quinolone scaffold. Thus, they expand the exploration of bifunctional HDACi-derived conjugates. For comparison, the carboxylic acid analogues (by replacing the hydroxamic acid (–CONHOH) group with (–COOH), compounds 6a–c and 7a–c) were also prepared and evaluated for their HDAC and tubulin polymerization inhibition activity, antiproliferative activity and cell-type selectivity, etc.Open in a separate windowFig. 1Design of dual-acting levofloxacin–HDACi conjugates.  相似文献   

8.
Over the past few years, the histone deacetylase (HDAC) inhibitors have occupied an important place in the effort to develop novel, but less toxic, anticancer therapy. HDAC inhibitors block HDACs, which are the enzymes responsible for histone deacetylation, and therefore they modulate gene expression. The cellular effects of HDAC inhibitors include growth arrest and the induction of differentiation. Early successes in cancer therapeutics obtained using these drugs alone or in combination with other anticancer drugs emphasize the important place of posttranslational modifications of histones in cancer therapy. Histone tail modifications along with DNA methylation are the most studied epigenetic events related to cancer progression. Moreover, extranuclear functions of histones have also been described. Because HDAC inhibitors block HDACs and thereby increase histone acetylation, we propose a model wherein exogenous acetylated histones or other related acetylated proteins that are introduced into the nucleus become HDAC substrates and thereby compete with endogenous histones for HDACs. This competition may lead to the increased acetylation of the endogenous histones, as in the case of HDAC inhibitor therapy. Moreover, other mechanisms of action, such as binding to chromatin and modulating gene expression, are also possible for exogenously introduced histones.  相似文献   

9.
Histone deacetylase (HDAC) inhibitors are a new class of anticancer agents that act by inhibiting cancer cell proliferation and inducing apoptosis in various cancer cell lines. To investigate the anticancer effect of a novel histone deacetylase (HDAC) inhibitor MHY219, its efficacy was compared to that of suberoylanilide hydroxamic acid (SAHA) in human prostate cancer cells. The anticancer effects of MHY219 on cell viability, HDAC enzyme activity, cell cycle regulation, apoptosis and other biological assays were performed. MHY219 was shown to enhance the cytotoxicity on DU145 cells (IC50, 0.36 μM) when compared with LNCaP (IC50, 0.97 μM) and PC3 cells (IC50, 5.12 μM). MHY219 showed a potent inhibition of total HDAC activity when compared with SAHA. MHY219 increased histone H3 hyperacetylation and reduced the expression of class I HDACs (1, 2 and 3) in prostate cancer cells. MHY219 effectively increased the sub-G1 fraction of cells through p21 and p27 dependent pathways in DU145 cells. MHY219 significantly induced a G2/M phase arrest in DU145 and PC3 cells and arrested the cell cycle at G0/G1 phase in LNCaP cells. Furthermore, MHY219 effectively increased apoptosis in DU145 and LNCaP cells, but not PC3 cells, according to Annexin V/PI staining and Western blot analysis. These results indicate that MHY219 is a potent HDAC inhibitor that targets regulating multiple aspects of cancer cell death and might have preclinical value in human prostate cancer chemotherapy, warranting further investigation.  相似文献   

10.
Recent studies indicated that histone deacetylases (HDACs) can modulate the tumorigenesis and development of cancer cells. We evaluated the expression of class I HDACs in non-small cell lung cancer (NSCLC) cells and found that HDAC2 was significantly increased in NSCLC cells as compared with the normal bronchial epithelial cell line BEAS-2B. Silencing of HDAC2 by its specific siRNAs can significantly inhibit the in vitro migration and invasion of A549 and H1395 cells. While over expression of HDAC2 by transfection of pcDNA/HDAC2 plasmid can trigger the motility of NSCLC cells. Over expression of HDAC2 increased the protein and mRNA expression of firbronectin (FN), which can accelerate the metastasis of cancer cells. Similarly, knock down of HDAC2 suppressed the expression of FN. The inhibitor of NF-κB, while not ERK1/2 or PI3K/Akt, attenuated HDAC2 induced up regulation of FN and invasion of NSCLC cells. Furthermore, HDAC2 can markedly increase both mRNA and protein levels of p65 in NSCLC cells. Collectively, our data revealed that HDAC2 can trigger migration and invasion of NSCLC cells via up regulation FN through activation of NF-κB. It suggested HDAC2 might be a potential therapeutic target for the drug development of NSCLC patients.  相似文献   

11.
Bcr-Abl-independent signaling pathways are known to be involved in imatinib resistance in some patients with chronic myelogenous leukemia (CML). In this study, to find new targets for imatinib-resistant CML displaying loss of Bcr-Abl kinase target dependence, we isolated imatinib-resistant variants, K562/R1, K562/R2, and K562/R3, which showed profound declines of Bcr-Abl levels and its tyrosine kinase activity, from K562 cells. Importantly, the imatinib resistance mechanism in these variants also included aberrant acetylation of nonhistone proteins such as p53, Ku70, and Hsp90 that was due to upregulation of histone deacetylases (HDACs) and down-regulation of histone acetyltransferase (HAT). In comparison with K562 cells, the imatinib-resistant variants showed up-regulation of HDAC1, -2, and -3 (class I HDACs) and class III SIRT1 and down-regulation of CBP/p300 and PCAF with HAT activity, and thereby p53 and cytoplasmic Ku70 were aberrantly acetylated. In addition, these were associated with down-regulation of Bax and up-regulation of Bcl-2. In contrast, the class II HDAC6 level was significantly decreased, and this was accompanied by an increase of Hsp90 acetylation in the imatinib-resistant variants, which was closely associated with loss of Bcr-Abl. These results indicate that alteration of the normal balance of HATs and HDACs leads to deregulated acetylation of Hsp90, p53, and Ku70 and thereby leads to imatinib resistance, suggesting the importance of the acetylation status of apoptosis-related nonhistone proteins in Bcr-Abl-independent imatinib resistance. We also revealed that imatinib-resistant K562 cells were more sensitive to suberoylanilide hydroxamic acid, an HDAC inhibitor, than K562 cells. These findings may have implications for HDAC as a molecular target in imatinib-resistant leukemia cells.  相似文献   

12.
13.
Class IIa histone deacetylases (HDACs) regulate a variety of cellular processes, including cardiac growth, bone development, and specification of skeletal muscle fiber type. Multiple serine/threonine kinases control the subcellular localization of these HDACs by phosphorylation of common serine residues, but whether certain class IIa HDACs respond selectively to specific kinases has not been determined. Here we show that calcium/calmodulin-dependent kinase II (CaMKII) signals specifically to HDAC4 by binding to a unique docking site that is absent in other class IIa HDACs. Phosphorylation of HDAC4 by CaMKII promotes nuclear export and prevents nuclear import of HDAC4, with consequent derepression of HDAC target genes. In cardiomyocytes, CaMKII phosphorylation of HDAC4 results in hypertrophic growth, which can be blocked by a signal-resistant HDAC4 mutant. These findings reveal a central role for HDAC4 in CaMKII signaling pathways and have implications for the control of gene expression by calcium signaling in a variety of cell types.  相似文献   

14.
15.
16.
Histone deacetylases (HDACs) are enzymes that cleave off acetyl groups from acetyl‐lysine residues in histones and various nonhistone proteins. Four different classes of HDACs have been identified in humans so far. Although classes I, II, and IV are zinc‐dependent amidohydrolases, class III HDACs depend on nicotinamide adenine dinucleotide (NAD+) for their catalytic activity. According to their homology to Sir2p, a yeast histone deacetylase, the class III is also termed sirtuins. Seven members have been described in humans so far. As sirtuins are involved in many physiological and pathological processes, their activity has been associated with the pathogenesis of cancer, HIV, metabolic, or neurological diseases. Herein, we present an overview over sirtuins including their biology, targets, inhibitors, and activators and their potential as new therapeutic agents. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 6, 861–889, 2010  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号