首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
本研究的目的是 :将体外培养的小鼠胚胎大脑皮层和脊髓的神经干细胞经单细胞悬液微移植后观察其在大鼠纹状体的存活、迁移和分化的状况。实验在无血清条件下将这些细胞扩增、培养再经活细胞荧光染料 Di I标记后 ,采用微移植的方法 ,通过脑立体定位仪上用微玻璃针将干细胞分别植入成年大鼠双侧纹状体的对称部位。大鼠存活 8周后 ,经灌注固定、恒冷箱切片 ,在荧光显微镜下观察标记的移植细胞的迁移状况 ;用星形胶质细胞特异性抗体观察移植区 GFAP的表达 ,以显示移植细胞分化状况。结果表明 :来源于胚胎小鼠大脑皮层和脊髓的体外培养神经干细胞经微移植后 ,均可在成年大鼠脑内纹状体区域存活 ,移植的神经干细胞可向周围的脑实质内迁移 ,迁移细胞沿特定的纹状体结构分布。神经干细胞主要分化成星形胶质细胞。本实验结果提示 ,移植的神经干细胞可在脑实质内存活、迁移和分化。  相似文献   

2.
背景:目前神经干细胞多由动物获得,不适合人类临床移植治疗。 目的:探索体外环境下人胚胎纹状体来源神经干细胞的培养方法,同时观察其生物学特性。 方法:取经水囊引产的孕8-16周人胚胎纹状体,体外用无血清DMEM培养基进行培养,待细胞形成神经球后进行传代,并应用含体积分数10%胎牛血清的DMEM/ F12培养液进行诱导分化。 结果与结论:体外培养的人胚胎纹状体来源神经干细胞生长迅速,表达神经干细胞标志物nestin。克隆形成实验显示细胞克隆形成率为6.0%-7.0%;BrdU掺入实验显示细胞增殖率为37.9%。免疫荧光染色显示经诱导分化的细胞表达神经元标志物Ⅲ型β微管蛋白、星形胶质细胞标志物胶质纤维酸性蛋白及神经干细胞标志物nestin,但不表达少突胶质细胞标志物髓鞘碱性蛋白。可见人胚胎纹状体来源神经干细胞在体外无血清条件下可保持其生物学特点,具有自我更新能力,经胎牛血清诱导后可向神经元及星形胶质细胞分化。  相似文献   

3.
目的:观察电针治疗对脊髓损伤后少突胶质细胞增生及新生轴突髓鞘再形成的影响。方法:选用成年大鼠,制作中度脊髓损伤模型,应用督脉电针治疗。电镜观察各组髓鞘和少突胶质细胞的超微结构变化;原位杂交显示髓磷脂碱性蛋白(myelin basic protein,MBP)的基因表达。结果:脊髓损伤后髓鞘明显肿胀,部分崩解;少突胶质细胞坏死溶解。1~2周后出现少量增生少突胶质细胞和厚薄不等的髓鞘。电针组髓鞘肿胀较轻,少突胶质细胞坏死少。1周后可见较多增生的少突胶质细胞和完整髓鞘。原位杂交显示电针组MBP基因表达明显高于损伤组,3d组最低,1周达高峰,此后逐渐下降。结论:脊髓损伤后电针治疗可有效防止神经纤维的溃变,促进少突胶质细胞增生和再生神经纤维髓鞘再形成。  相似文献   

4.
背景:胚胎干细胞移植是否能够成为脑血管疾病治疗有效的方法已成为目前研究的热点。 目的:探讨胚胎干细胞分化神经前体细胞移植治疗脑血管疾病的效果及可行性。 方法:分别建立帕金森病、缺血性脑损伤以及血管性痴呆大鼠模型,并进行胚胎干细胞体外培养,诱导分化为神经前体细胞,将胚胎干细胞分化神经前体细胞移植入相应脑血管疾病模型大鼠脑内,观察脑血管病变大鼠的旋转行为学变化、脑组织病理变化以及海马结构的变化和神经细胞数目的变化。 结果与结论:胚胎干细胞分化神经前体细胞移植入帕金森病大鼠脑内后,阿朴吗啡诱发的旋转次数逐渐减少,呈下降趋势,纹状体多巴胺的含量明显增高。胚胎干细胞分化神经前体细胞移植入缺血性脑损伤大鼠脑内后,能够长期存在于脑内,并迁移、分布于受损的海马,构成海马结构,进一步分化为神经元,并且受损海马内的神经细胞数量明显增加。说明移植的胶质细胞源性神经营养因子基因修饰的胚胎干细胞可改善血管性痴呆大鼠的学习记忆功能,增强神经的可塑性,诱导自身定向迁移并分化为成熟神经元。  相似文献   

5.
背景:已知人脐带间充质干细胞对脊髓损伤存在着潜在的治疗价值,然而,当前对移植人脐带间充质干细胞治疗脊髓损伤及机制方面研究很少。目的:观察人脐带间充质干细胞对脊髓损伤大鼠的治疗效果。方法:40只Wistar大鼠建立脊髓损伤模型,38只造模成功后随机摸球法分为3组:空白对照组:只接受单纯损伤,不做任何移植;DMEM移植组:损伤后1周予以5μLDMEM局部移植;细胞移植组:损伤后1周予以5μL准备好的人脐带间充质干细胞局部移植(细胞数1×106)。移植后对实验动物通过BBB评分、体感诱发电位与运动诱发电位观察后肢功能恢复情况。分别于损伤后2,4,6,8,10周随机于细胞移植组抽取大鼠2只,免疫组织化学染色观察人脐带间充质干细胞存活、迁移、分化,通过胶质纤维酸性蛋白阳性细胞染色比较各组损伤局部胶质瘢痕形成面积。结果与结论:BBB评分损伤后4周细胞移植组高于其他两组(P0.05),损伤后12周细胞移植组与其他两组相比SEP、MEP潜伏期缩短、波幅值增高(P0.05)。免疫组织化学染色示人脐带间充质干细胞可向神经元、星形胶质细胞和少突胶质细胞分化,分化的少突胶质细胞并包绕轴突形成髓鞘。细胞移植组损伤局部胶质瘢痕面积均小于其他两组(P0.05),空白对照组、DMEM移植组间差异无显著性(P0.05)。提示未经体外诱导的人脐带间充质干细胞可于损伤大鼠脊髓体内向神经元、星形胶质细胞、少突胶质细胞分化,减小胶质瘢痕,并促进脊髓损伤大鼠神经功能的恢复。  相似文献   

6.
背景:国内有关一氧化碳中毒迟发性脑病治疗的报道,多采用药物治疗和高压氧治疗,但存在治疗疗程长,见效慢,花费较高等问题。 目的:首次观察骨髓间充质干细胞移植治疗一氧化碳中毒迟发性脑病前后星形胶质细胞及神经髓鞘的变化。 方法:以随机抽签方法将SD大鼠分为3组:对照组、假手术组及干细胞移植组。采用腹腔注入一氧化碳方法制作一氧化碳中毒迟发性脑病模型,干细胞移植组在注射后第0,3,6,12,24,72小时及1周时将同种异体骨髓间充质干细胞经左侧颈动脉植入到大鼠脑内;假手术组扎闭颈外动脉,用PBS代替细胞悬液;对照组不进行细胞移植。移植后1,2,3,4周采用免疫组织化学的方法检测胶质纤维酸性蛋白和固绿-FCF染色法观察髓鞘着色情况。 结果与结论:造模后6,12,24 h干细胞移植组大鼠脑内胶质纤维酸性蛋白表达明显高于对照组及假手术组(P < 0.05),干细胞移植组移植后1~4周大鼠脑内胶质纤维酸性蛋白表达差异无显著性意义(P > 0.05)。造模后6,12,24 h干细胞移植组大鼠脑内髓鞘平均吸光度明显高于对照组及假手术组(P< 0.05),且细胞移植后第2周明显高于第1,3,4周(P < 0.05)。 提示经左侧颈动脉在一氧化碳中毒迟发性脑病大鼠体内移植骨髓间充质干细胞可以增加星形胶质细胞反应性,促进髓鞘再生,移植的最佳时机为发病后6~24 h,细胞移植后的积极作用在一两周最明显。  相似文献   

7.
背景:研究表明神经干细胞和神经营养因子3基因修饰的神经细胞联合移植能够在移植后存活并有效促进脊髓横断后脊髓的功能恢复,但神经营养因子3基因修饰的神经干细胞能否在脊髓受损部位发挥功能并促进脊髓损伤大鼠的功能恢复?目的:观察神经营养因子3基因修饰胚胎脊髓神经干细胞移植后脊髓损伤大鼠的功能恢复情况及损伤局部的基因表达。方法:将30只SD大鼠在T9水平进行脊髓半切后,随机分为3组,分别在受损脊髓内植入细胞培养液、神经干细胞及神经营养因子3基因修饰神经干细胞。另取10只仅行椎板切除设置为空白对照。移植后通过行为学测试评价脊髓功能的恢复,RT-PCR和Western blot检测脊髓损伤部位神经营养因子3和髓鞘碱性蛋白的表达。结果与结论:移植神经营养因子3基因修饰神经干细胞组行为学测试结果最好,移植细胞培养液组行为学测试最差。与移植细胞培养液组相比,移植神经干细胞及神经营养因子3基因修饰神经干细胞组大鼠脊髓组织中神经营养因子3基因和髓鞘碱性蛋白基因的mRNA水平明显上调,在蛋白水平也有类似的结果,且神经营养因子3基因修饰神经干细胞组效果更明显。提示移植神经营养因子3基因修饰神经干细胞能促进脊髓受损部位出现更多向少突胶质细胞分化的细胞,并能更强的表达神经营养因子3。  相似文献   

8.
新生大鼠神经干细胞移植对脑缺血再灌注损伤的治疗作用   总被引:2,自引:0,他引:2  
目的:探讨新生大鼠神经干细胞移植治疗局灶性脑缺血再灌注损伤的可行性及疗效.方法:体外培养新生大鼠神经干细胞.采用改良的线栓法制作脑缺血再灌注模型,3d后用脑立体定位仪经脑室移植神经干细胞,移植时间点及再灌注1~7周对移植大鼠进行神经功能损伤程度评分(NSS).再灌注1、 2、 3、 5、 7周末麻醉处死大鼠,脑组织石蜡包埋.免疫组织化学方法观察移植后神经干细胞的存活、分布.结果:神经干细胞表达巢蛋白,在血清条件下分化为表达微管相关蛋白(MAP2)的神经元和表达胶质细胞纤维酸性蛋白(GFAP)的星形胶质细胞.神经干细胞移植组NSS评分在各个时间点均显著低于对照组.移植的神经干细胞分布于缺血侧皮质、纹状体,再灌注后3、 5、 7周,皮质、纹状体阳性细胞数分别较1、 2周显著增多,第3、 5、 7周之间差异无统计学意义.前3周组织结构疏松,缺损严重,而第5、 7周组织结构较前3周完整致密.结论:移植的神经干细胞能在脑缺血大鼠脑内存活、迁移,并能改善缺血后大鼠的神经功能状况.  相似文献   

9.
Olig1过表达对大鼠神经干细胞向少突胶质细胞分化的影响   总被引:1,自引:0,他引:1  
目的:Olig1基因修饰的神经干细胞(NSCs)移植治疗中枢神经脱髓鞘疾病具有重要的应用前景。本研究目的是构建大鼠olig1真核表达载体,并观察其过表达对大鼠NSCs向少突胶质细胞分化的影响。方法:采用RT-PCR,以新生大鼠脊髓RNA为模板,扩增olig1基因,定向克隆到pEGFP-N3载体中;用电穿孔方法转染pEGFP-N3-olig1表达载体至NSCs中,然后用RT-PCR鉴定olig1的表达,免疫荧光染色鉴定NSCs向少突胶质细胞的分化情况。结果:成功构建了pEGFP-N3-olig1真核表达载体,olig1在重组质粒转染的NSCs中能够高效表达。重组质粒转染的NSCs在体外诱导分化后,能够较空质粒转染的NSCs产生更多的少突胶质细胞(P0.01)。结论:Olig1过表达能够显著促进大鼠NSCs向少突胶质细胞方向分化。  相似文献   

10.
程辉  栗志  鞠学红 《解剖学研究》2010,32(2):134-137
视网膜缺血再灌注损伤尚无理想的治疗手段。神经干细胞是具有自我更新、多向分化潜能的细胞群,能分化成神经元、星形胶质细胞和少突胶质细胞。随着干细胞研究技术的不断发展,通过体外培养神经干细胞,移植整合入视网膜各层并定向诱导分化为目的细胞,有望重建视网膜功能。  相似文献   

11.
Pluripotent embryonic stem (ES) cells have emerged as a powerful tool for disease modeling and neural regeneration. Transplantation studies in rodents indicate that ES cell-derived glial precursors (ESGPs) efficiently restore myelin in dysmyelinating mutants and chemically induced foci of myelin loss. Here we explore the myelination potential of ESGPs in an antibody/complement-induced demyelination model. Microinjection of an antibody to myelin oligodendrocyte glycoprotein (MOG) and complement was employed to generate circumscribed areas of demyelination in the adult rat spinal cord. ESGPs transplanted into 2-day-old lesions were found to survive and differentiate into both oligodendrocytes and astrocytes. The engrafted cells remained largely confined to the lesion site and showed no evidence of tumor formation up until 4 weeks after transplantation. Within areas of pronounced microglial activation and macrophage extravasation, engrafted ES cell-derived oligodendrocytes contacted and enwrapped host axons and alongside endogenous glia, contributed to the formation of new myelin sheaths. These findings demonstrate that ESGPs transplanted into acutely demyelinated lesions can contribute to myelin repair.  相似文献   

12.
Recently, we have demonstrated that F3/contactin and NB-3 are trans-acting extracellular ligands of Notch that promote differentiation of neural stem cells and oligodendrocyte precursor cells into mature oligodendrocytes (OLs). Here, we demonstrate that human bone marrow stromal cells (hBMSCs) can be induced to differentiate into cells with myelinating glial cell characteristics in mouse retina after predifferentiation in vitro. Isolated CD90(+) hBMSCs treated with beta-mercaptoethanol for 1 day and retinoic acid for 3 days in culture changed into myelinating glia-like cells (MGLCs). More cells expressed NG2, an early OL marker, after treatment, but expression of O4, a mature OL marker, was negligible. Subsequently, the population of O4(+) cells was significantly increased after the MGLCs were predifferentiated in culture in the presence of either F3/contactin or multiple factors, including forskolin, basic fibroblast growth factor, platelet-derived growth factor, and heregulin, in vitro for another 3 days. Notably, 2 months after transplantation into mouse retina, the predifferentiated cells changed morphologically into cells resembling mature MGLCs and expressing O4 and myelin basic protein, two mature myelinating glial cell markers. The cells sent out processes to contact and wrap axons, an event that normally occurs during early stages of myelination, in the retina. The results suggest that CD90(+) hBMSCs are capable of morphological and functional differentiation into MGLCs in vivo through predifferentiation by triggering F3/Notch signaling in vitro.  相似文献   

13.
Cell replacement therapy holds great promise for treating a wide range of human disorders. However, ensuring the predictable differentiation of transplanted stem cells, eliminating their risk of tumor formation, and generating fully functional cells after transplantation remain major challenges in regenerative medicine. Here, we explore the potential of human neural stem/progenitor cells isolated from the embryonic forebrain (hfNSPCs) or the spinal cord (hscNSPCs) to differentiate to projection neurons when transplanted into the dorsal root ganglion cavity of adult recipient rats. To stimulate axonal growth, we transfected hfNSPC- and hscNSPC-derived neurospheres, prior to their transplantation, with a Tet-Off Runx1-overexpressing plasmid to maintain Runx1 expression in vivo after transplantation. Although pronounced cell differentiation was found in the Runx1-expressing transplants from both cell sources, we observed extensive, long-distance growth of axons exclusively from hscNSPC-derived transplants. These axons ultimately reached the dorsal root transitional zone, the boundary separating peripheral and central nervous systems. Our data show that hscNSPCs have the potential to differentiate to projection neurons with long-distance axonal outgrowth and that Runx1 overexpression is a useful approach to induce such outgrowth in specific sources of NSPCs.  相似文献   

14.
Induced pluripotent stem cells (iPSCs) generated from somatic cells of patients can be used to model different human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. Here, we analyzed neuronal properties of an iPSC line derived from a patient with a juvenile form of Huntington's disease (HD) carrying 72 CAG repeats (HD-iPSC). Although its initial neural inducing activity was lower than that of human embryonic stem cells, we found that HD-iPSC can give rise to GABAergic striatal neurons, the neuronal cell type that is most susceptible to degeneration in HD. We then transplanted HD-iPSC-derived neural precursors into a rat model of HD with a unilateral excitotoxic striatal lesion and observed a significant behavioral recovery in the grafted rats. Interestingly, during our in vitro culture and when the grafts were examined at 12 weeks after transplantation, no aggregate formation was detected. However, when the culture was treated with a proteasome inhibitor (MG132) or when the cells engrafted into neonatal brains were analyzed at 33 weeks, there were clear signs of HD pathology. Taken together, these results indicate that, although HD-iPSC carrying 72 CAG repeats can form GABAergic neurons and give rise to functional effects in vivo, without showing an overt HD phenotype, it is highly susceptible to proteasome inhibition and develops HD pathology at later stages of transplantation. These unique features of HD-iPSC will serve as useful tools to study HD pathology and develop novel therapeutics. Stem Cells2012;30:2054-2062.  相似文献   

15.
Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can serve as an effective and safe replacement therapy for CNS injury and degeneration.  相似文献   

16.
Successful strategies for transplantation of neural precursor cells for replacement of lost or dysfunctional CNS cells require long-term survival of grafted cells and integration with the host system, potentially for the life of the recipient. It is also important to demonstrate that transplants do not result in adverse outcomes. Few studies have examined the long-term properties of transplanted neural precursor cells in the CNS, particularly in non-neurogenic regions of the adult. The aim of the present study was to extensively characterize the fate of defined populations of neural precursor cells following transplantation into the developing and adult CNS (brain and spinal cord) for up to 15 months, including integration of graft-derived neurons with the host. Specifically, we employed neuronal-restricted precursors and glial-restricted precursors, which represent neural precursor cells with lineage restrictions for neuronal and glial fate, respectively. Transplanted cells were prepared from embryonic day-13.5 fetal spinal cord of transgenic donor rats that express the marker gene human placental alkaline phosphatase to achieve stable and reliable graft tracking. We found that in both developing and adult CNS grafted cells showed long-term survival, morphological maturation, extensive distribution and differentiation into all mature CNS cell types (neurons, astrocytes and oligodendrocytes). Graft-derived neurons also formed synapses, as identified by electron microscopy, suggesting that transplanted neural precursor cells integrated with adult CNS. Furthermore, grafts did not result in any apparent deleterious outcomes. We did not detect tumor formation, cells did not localize to unwanted locations and no pronounced immune response was present at the graft sites. The long-term stability of neuronal-restricted precursors and glial-restricted precursors and the lack of adverse effects suggest that transplantation of lineage-restricted neural precursor cells can serve as an effective and safe replacement therapy for CNS injury and degeneration.  相似文献   

17.
Efficient induction of oligodendrocytes from human embryonic stem cells   总被引:1,自引:0,他引:1  
Oligodendrocytes form myelin sheaths around axons to support rapid nerve conduction in the central nervous system (CNS). Damage to myelin can cause severe CNS disorders. In this study, we attempted to devise a protocol for the induction of oligodendrocytes from human embryonic stem (ES) cells to treat demyelinated axons. Four days after embryoid body formation, human ES cells were differentiated into neural precursors through selection and expansion procedures. Neural precursors were then grown in the presence of epidermal growth factor and then platelet-derived growth factor to generate oligodendrocyte precursor cells. After withdrawal of the growth factors, the cells were treated with thyroid hormone to induce differentiation into oligodendrocytes. This method resulted in approximately 81%-91% oligodendrocyte precursor cells and approximately 81% oligodendrocytes among total cells. The ability of the oligodendrocyte precursors to myelinate axons has been verified by coculturing with rat hippocampal neurons, confirming their biological functionality.  相似文献   

18.
脊髓神经干细胞对小鼠视网膜移植的研究   总被引:7,自引:0,他引:7  
孟晋宏  罗娜  鞠躬 《解剖学报》2002,33(4):342-345
目的 研究原代培养的脊髓神经干细胞在小鼠视网膜的整合和分化情况。 方法 利用细胞培养和体内移植技术 ,将原代脊髓神经干细胞 (NSC)移植到不同年龄小鼠的视网膜 ,并对移植后细胞的整合及分化情况进行了免疫组织化学分析。 结果  1 移植的NSC对组织的整合能力随宿主年龄的增加而降低 ;2 移植的NSC在宿主视网膜内可以分化为星形胶质细胞、少突胶质细胞和神经元。 结论 脊髓原代NSC移植到小鼠视网膜后的整合和分化均受内外因素的调控 ,为NSC的体内分化研究提供了新的证据  相似文献   

19.
Wang A  Tang Z  Park IH  Zhu Y  Patel S  Daley GQ  Li S 《Biomaterials》2011,32(22):5023-5032
Induced pluripotent stem cells (iPSCs) hold great promise for cell therapies and tissue engineering. Neural crest stem cells (NCSCs) are multipotent and represent a valuable system to investigate iPSC differentiation and therapeutic potential. Here we derived NCSCs from human iPSCs and embryonic stem cells (ESCs), and investigated the potential of NCSCs for neural tissue engineering. The differentiation of iPSCs and the expansion of derived NCSCs varied in different cell lines, but all NCSC lines were capable of differentiating into mesodermal and ectodermal lineages, including neural cells. Tissue-engineered nerve conduits were fabricated by seeding NCSCs into nanofibrous tubular scaffolds, and used as a bridge for transected sciatic nerves in a rat model. Electrophysiological analysis showed that only NCSC-engrafted nerve conduits resulted in an accelerated regeneration of sciatic nerves at 1 month. Histological analysis demonstrated that NCSC transplantation promoted axonal myelination. Furthermore, NCSCs differentiated into Schwann cells and were integrated into the myelin sheath around axons. No teratoma formation was observed for up to 1 year after NCSC transplantation in vivo. This study demonstrates that iPSC-derived multipotent NCSCs can be directly used for tissue engineering and that the approach that combines stem cells and scaffolds has tremendous potential for regenerative medicine applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号