首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To develop an enzyme linked immunosorbent assay (ELISA) to quantify the levels of specific aggrecan fragments generated by aggrecanase-mediated cleavage at the 373Glu-374 Ala bond within the aggrecan interglobular domain. METHODS: The ELISA employs a commercially available monoclonal antibody to capture aggrecan fragments containing keratan sulfate (KS). Aggrecan fragments generated by cleavage at the Glu-Ala bond were then detected using a monoclonal neoepitope antibody (mAb OA-1) that specifically recognizes the N-terminal sequence 'ARGSVIL'. RESULTS: The mAb OA-1 antibody was highly specific for the immunizing neoepitope peptide since neither peptides spanning the cleavage site nor mutated peptides were detected. Aggrecan fragments generated by ADAMTS-4 digested human aggrecan monomers and from IL-1-stimulated human cartilage explants were quantified by the ELISA, and we observed increased sensitivity of the ELISA compared to mAb OA-1 Western analysis. We also observed that the basal, as well as IL-1-stimulated production of ARGS aggrecan fragments from human articular cartilage explants was blocked by a selective aggrecanase inhibitor, consistent with generation of the ARGS neoepitope in human articular cartilage being mediated by aggrecanase. Using purified human aggrecan digested by ADAMTS-4 as standard to quantify ARGS aggrecan fragments in human synovial fluids, we determined that the calculated amount of ARGSVIL-aggrecan fragments by ELISA measurement is in agreement with the published levels of these fragments, supporting its potential utility as a biomarker assay for osteoarthritis. CONCLUSION: We have developed an assay that detects and quantifies specific aggrecan fragments generated by aggrecanase-mediated cleavage. Because aggrecanase mediates degradation of human articular aggrecan in joint disease, the KS/mAb OA-1 ELISA may serve as a biomarker assay for evaluation of preclinical and clinical samples.  相似文献   

2.
INTRODUCTION: Cleavage of aggrecan between residues Glu(373)-Ala(374), which is believed to be a key event in aggrecan destruction in arthritic diseases, has been attributed to an enzymatic activity, aggrecanase. Two cartilage aggrecanases have been identified, aggrecanase-1 (ADAM-TS4) and aggrecanase-2 (ADAM-TS5) and both enzymes have been shown very efficiently to cleave soluble aggrecan at the Glu(373)-Ala(374) site. OBJECTIVE: To determine whether ADAM-TS4 and/or ADAM-TS5 are the aggrecanases responsible for aggrecan catabolism following interleukin-1 (IL-1) and tumor necrosis factor (TNF) treatment of bovine articular cartilage. RESULTS: (1) IL-1- and TNF-stimulated release of aggrecan was associated with cleavage of aggrecan within the C-terminus at the ADAM-TS4 and ADAM-TS5-sensitive sites, Glu(1480)-Gly(1481), Glu(1667)-Gly(1668), and Glu(1871)-Leu(1872). (2) The order of cleavage following IL-1 stimulation of cartilage explants was the same as when soluble aggrecan is digested with recombinant human ADAM-TS4 and ADAM-TS5. (3) Both constitutive and stimulated cleavage of aggrecan at the ADAM-TS4 and ADAM-TS5-sensitive sites in cartilage was blocked by a general metalloproteinase inhibitor but not by a MMP-specific inhibitor, and this inhibition correlated with inhibition of aggrecan release from cartilage. (4) PCR and Western blot analysis indicated that both ADAM-TS proteases are expressed in cartilage explants; ADAM-TS5 is constitutively expressed whereas ADAM-TS4 is induced following IL-1 and TNF treatment. (5) Immunodepletion of both ADAM-TS4 and ADAM-TS5 from bovine articular cartilage cultures following IL-1 stimulation resulted in a 90% reduction of aggrecanase activity in the culture medium.  相似文献   

3.
The cleavage of biglycan by aggrecanases   总被引:3,自引:0,他引:3  
OBJECTIVE: Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4] and aggrecanase-2 (ADAMTS-5) have been named for their ability to degrade the proteoglycan aggrecan. While this may be the preferred substrate for these enzymes, they are also able to degrade other proteins. The aim of this work was to determine whether the aggrecanases could degrade biglycan and decorin. METHODS: Biglycan, decorin and aggrecan were purified from human and bovine cartilage and subjected to degradation by recombinant aggrecanase-1 or aggrecanase-2. In vitro degradation was assessed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) and immunoblotting, and the cleavage site in biglycan was determined by N-terminal amino acid sequencing. SDS/PAGE and immunoblotting were also used to assess in situ degradation in both normal and arthritic human articular cartilage. RESULTS: Both aggrecanase-1 and aggrecanase-2 are able to cleave bovine and human biglycan at a site within their central leucine-rich repeat regions. Cleavage occurs at an asparagine-cysteine bond within the fifth leucine-rich repeat. In contrast, the closely related proteoglycan decorin is not a substrate for the aggrecanases. Analysis of human articular cartilage from osteoarthritic (OA) and rheumatoid arthritic (RA) joints showed that a biglycan degradation product of equivalent size is present in the extracellular matrix. No equivalent degradation product was, however, detectable in normal adult human articular cartilage. CONCLUSION: Biglycan, which is structurally unrelated to aggrecan, can act as a substrate for aggrecanase-1 and aggrecanase-2, and these proteinases may account for at least part of the biglycan degradation that is present in arthritic cartilage.  相似文献   

4.

Background

Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.

Methods

TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.

Results

TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.

Conclusions

TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.  相似文献   

5.
OBJECTIVE: To characterize the time course of aggrecan and type II collagen degradation in the rat iodoacetate model of cartilage degeneration in relationship to the temporal sequence that has been described in human osteoarthritis (OA). DESIGN: Rats were injected intra-articularly in one knee joint with iodoacetate and damage to the tibial plateau was assessed from digitized images captured using an image analyzer. The articular cartilage from the tibial plateau was harvested, extracted and glycosaminoglycan (GAG) content was measured using the dimethylmethylene blue (DMMB) assay. Cartilage aggrecan neoepitopes were detected in cartilage extracts by Western blotting using antibodies recognizing the aggrecanase-generated C-terminal neoepitope NITEGE (BC-13) and the MMP-generated C-terminal neoepitope DIPEN (BC-4). A type II collagen collagenase-generated neoepitope was detected in cartilage extracts by ELISA using the Col2-3/4Cshort antibody; denatured collagen was detected using the Col2-3/4m antibody. RESULTS: Degenerative joint changes and proteoglycan (GAG) loss progressed with time after iodoacetate injection. Western blotting of cartilage extracts of iodoacetate treated rats demonstrated an increase in both aggrecanase- and MMP-generated epitopes with the NITEGE aggrecanase neoepitope being significantly elevated on days 7, 14 and 21 while DIPEN the MMP neoepitope was significantly elevated on days 7 and 14. The type II collagen neoepitope recognized by Col2-3/4Cshort was significantly increased in cartilage extracts of rats at days 14 and 21 after iodoacetate injection. CONCLUSION: The proteoglycan fragments extracted from the knee cartilage of rats after the intra-articular injection of iodoacetate appeared to result from cleavage at both aggrecanase and MMP sites. Cleavage of type II collagen by collagenase was also detected after iodoacetate injection and occurred subsequent to the initiation of aggrecan loss. These observations serve to demonstrate similarities in the mechanisms of cartilage degeneration induced by iodoacetate to those seen in articular cartilage in OA.  相似文献   

6.
OBJECTIVE: Aggrecan is degraded by Aggrecanases (ADAMTS-4 and -5) and MMPs, which cleave its core protein at different sites. Transforming growth factor (TGF)beta is known to stimulate matrix formation in cartilage, and ADAMTS-4 production in synoviocytes. The aim of this in-vitro study was to examine the effects of TGFbeta on aggrecanase production in human cartilage. DESIGN: Expression of ADAMTS-4 and -5 in chondrocyte cultures from normal or osteoarthritic cartilage was studied at mRNA level by RT-PCR. Aggrecanase activity was examined by western blot of aggrecanase-generated neoepitope NITEGE, and by measure of proteoglycan degradation in cartilage explants. RESULTS: TGFbeta strongly increased mRNA levels of ADAMTS-4, while ADAMTS-5 was expressed in a constitutive way in chondrocytes from normal and osteoathritic cartilage. TGFbeta also increased NITEGE levels and proteoglycan degradation. Addition of an aggrecanase inhibitor blocked the increase of NITEGE, and partially inhibited proteoglycan degradation. CONCLUSIONS: TGFbeta stimulates ADAMTS-4 expression and aggrecan degradation in cartilage. This catabolic action seems to be partially mediated by aggrecanases. It is, therefore, proposed that the role of TGFbeta in cartilage matrix turnover is not limited to anabolic and anti-catabolic actions, but also extends to selective degradation of matrix components such as aggrecan.  相似文献   

7.
OBJECTIVE: To develop and characterize a polyclonal antiserum (RAM 3.2), which recognizes the neo-C terminal cleavage product generated by the action of aggrecanase (ADAMts 4/5) on the G1-domain of human aggrecan. We also intend to use this antiserum to investigate normal, age-related changes in human articular cartilage. METHOD: The antiserum was raised in rabbits and its localization in cryosections of normal articular cartilage was investigated by immunohistochemistry. The concentration of the aggrecanase neo-epitope was also investigated in extracts of the tissue using SDS-PAGE and electrophoresis in large pore/agarose gels. RESULTS: The product of aggrecanase action appears to accumulate in the extracellular matrix during normal aging of the tissue. Furthermore, the concentration of the fragment depended on the topographical site on the femoral condyle from which the sample was selected. Electrophoretic and immunohistochemical analysis of the fragment in normal cartilage showed that in immature cartilage it was deposited mainly in the surface layers, whereas in mature samples it was distributed throughout the depth of the tissue. In contrast, immunoreactivity of osteoarthritic cartilage was always less and the distribution was more variable than in normal cartilage of the same age. CONCLUSIONS: (1) The proteolytic cleavage of aggrecan by aggrecanase is a normal homeostatic event and much of the neo-C terminal fragment produced by the enzyme is retained in the tissue. (2) The presence of this immunoreactive product in normal cartilage can be used as an indication of aggrecan turnover. (3) That in osteoarthritic cartilage there is a reduction in the concentration of the G1-fragments.  相似文献   

8.
OBJECTIVE: To investigate whether matrix metalloproteinases (MMPs) and/or aggrecanase in synovial fluid can be used as biochemical markers in the diagnosis of internal derangement (ID) of the temporomandibular joint (TMJ). STUDY DESIGN: Forty-four samples of synovial fluid were obtained from 35 patients with ID and osteoarthritis (OA) and 15 normal samples from 10 asymptomatic volunteers. MMP-2, -9, and aggrecanase in the synovial fluid were examined by immunoblotting. RESULTS: The incidences of MMP-2, -9, and aggrecanase expression in the ID and OA group were significantly higher than those in the normal group (P < .05). Those with anterior disc displacement without reduction and severe OA showed significantly high expression of MMP-9 compared with other disease subgroups (P < .05). Conversely, comparatively high expression of MMP-2 and aggrecanase was shown in the early-stage OA group. However, there was no significant difference in expression of MMP-2 and aggrecanase among disease subgroups. CONCLUSIONS: These findings suggested that expression of aggrecanase could be a potential biochemical marker for articular cartilage degradation in ID of the TMJ.  相似文献   

9.
The aim of the present study was to correlate the levels of COMP and aggrecan as indicators of tissue damage, in synovial fluid (sf) from carpal joints of acutely lame racehorses, with macroscopical lesions of articular cartilage (OA), osteochondral fractures and ligament tears found at arthroscopy. Sixty-three lame horses [49 Standardbred trotters (STB) and 14 Thoroughbreds (TB)] in conventional training and racing that underwent arthroscopy of their middle carpal or radiocarpal joints were included in the study. Intact as well as fragmented COMP and aggrecan released into the synovial fluid were quantified by western blot analyses and ELISA. The expression of COMP in tissues was estimated by mRNA in situ hybridisation and protein immunolocalisation in cartilage and osteochondral fractures. The concentration of sf-COMP was higher in TB with an osteochondral fracture than in STB with osteochondral fractures and TB and STB with OA. The chondrocytes in middle and deep zones of the articular cartilage of the osteochondral fragments (from a TB) expressed COMP mRNA, in contrast to the cartilage on the opposite side of the fracture where no expression was detected. In the synovial fluid from a joint (TB) with osteochondral fractures only intact COMP was present, whereas, fragmented COMP was more prominent in synovial fluid from a joint with OA. The concentration of sf-aggrecan did not differ between the two breeds, or between different lesions. The increased concentration of sf-COMP in TB with osteochondral fractures, but not in synovial fluid from equine joints with OA, is a novel finding. The results from this study indicate that elevated sf-COMP concentration in the joints of Thoroughbreds may be a useful marker for carpal joint osteochondral fragments.  相似文献   

10.
Aggrecan and cartilage oligomeric matrix protein (COMP) which are important degradation products of articular cartilage may be promising diagnostic markers in serum and/or synovial fluid for diagnosis of knee osteoarthritis (OA). Our objective was to measure serum and synovial fluid levels of aggrecan and COMP in patients with OA of the knee joint to find out if they could be of diagnostic value in OA and if their levels correlate with the clinical and radiological manifestations of the disease. Sixty-six patients suffering from primary knee OA with effusion (26 males and 40 females) were studied. Twenty individuals (six males and 14 females) with recent traumatic knee effusion matched for age and sex were chosen to serve as a control group. All subjects had thorough clinical and radiological (X-ray and MRI) evaluation. Aggrecan and COMP in serum and synovial fluid were measured by ELISA. Serum and synovial fluid aggrecan and COMP levels were significantly higher than the control. Serum and synovial fluid aggrecan and COMP levels were positively correlated with age, body mass index, disease duration, plain X-ray and MRI scores. In OA, serum and synovial fluid aggrecan and COMP levels are elevated and represent useful markers in the diagnosis. Moreover, these elevated levels positively correlated with radiological joint damage but not with clinical disease parameters. These markers have the potential to be used for monitoring articular cartilage destruction and response to different therapeutic modalities.  相似文献   

11.
OBJECTIVE: Aggrecan is the major proteoglycan in articular cartilage and is known to be degraded by various proteases, including matrix metalloproteinases (MMPs). The present study was undertaken to develop immunoassays detecting aggrecan and its fragments generated by MMP and non-MMP-mediated proteolysis. METHODS: Two immunoassays were developed: (1) the G1/G2 sandwich assay employing a monoclonal antibody (F-78) both as a capturing and a detecting antibody, and (2) the 342-G2 sandwich assay substituting the capturing antibody in the G1/G2 test with a monoclonal antibody, AF-28 recognizing the 342FFGVG neo-epitope generated by MMP cleavage. These assays were compared to the commercially available glycosaminoglycan (GAG) assay. RESULTS: In supernatants of Oncostatin M and Tumor Necrosis Factor alpha (OSM/TNFalpha) stimulated explants, high levels of G1/G2 fragments and GAGs were released in the initial phase (days 2-5), followed by low levels in the intermediate (days 9-12) and late phase (days 12-21). MMP-generated fragments were detected in the late phase only. In the presence of the general MMP inhibitor GM6001, 342-G2 was not detected, whereas the G1/G2 profile remained virtually unchanged. In patients with rheumatoid arthritis (RA), the release of G1/G2 molecules was decreased (27.3%), and that of the 342-G2 fragments increased compared to healthy controls (33.3%). CONCLUSION: The stimulation of bovine articular cartilage explants with OSM/TNFalpha released aggrecan fragments both in an MMP and non-MMP-mediated route. These immunoassays carry a potential as diagnostic tools for the quantitative assessment of the cartilage turnover in RA patients in addition to their utility in ex vivo explant cultures.  相似文献   

12.
OBJECTIVE: To investigate the immunolocalisation of beta-dystroglycan (beta-DG) and specific matrix metalloproteinases (MMPs)-3, -9, -13 and a disintegrin like and metalloproteinase thrombospondin type 1 motif 4 (ADAMTS-4) within the joint tissues of patients with osteoarthritis (OA) and unaffected controls. DESIGN: Cartilage, synovium and synovial fluid were obtained from the hip joints of five osteoarthritic (patients undergoing total hip replacement) and five control hip joints (patients undergoing hemiarthroplasty for femoral neck fracture). The samples were analysed for beta-DG protein using Western blot technique and by immunohistochemistry for tissue distribution of beta-DG, MMP-3, -9, -13, and ADAMTS-4. RESULTS: beta-DG was detected in the smooth muscle of both normal and osteoarthritic synovial blood vessels. Importantly, beta-DG was detected in endothelium of blood vessels of OA synovium, but not in the control endothelium. In the endothelium of osteoarthritic synovial blood vessels, beta-DG co-localised with MMP-3 and -9. MMP-13 and ADAMTS-4 showed no endothelial staining, and only weak staining of the vascular smooth muscle was found. In contrast, we did not detect beta-DG protein in cartilage or synovial fluid. CONCLUSIONS: beta-DG has been shown to have a role in angiogenesis, and our results demonstrate for the first time that there are clear differences in beta-DG staining between OA and control synovial blood vessels. The specific immunolocalisation of beta-DG within endothelium of inflamed OA blood vessels and its co-localisation with MMP-3 and -9, reported to have pro-angiogenic roles and believed to be involved in beta-DG cleavage, may also suggest that beta-DG plays a role in angiogenesis accompanying OA.  相似文献   

13.
14.
OBJECTIVE: Human osteoarthritis (OA) is characterized by aggrecanase-mediated depletion of cartilage aggrecan. We have examined the abundance, location and some biochemical properties of the six known aggrecanases (A disintegrin and metalloproteinase with thrombospondin-like motifs 1 (ADAMTS1) 4, 5, 8, 9 and 15) in normal and OA human cartilages. METHODS: Formalin-fixed, ethylenediamine tetraacetic acid (EDTA)-decalcified sections of full-depth cartilage from human OA tibial plateaus and normal control samples were studied by confocal imaging. Probes included specific antibodies to aggrecanases and two aggrecan epitopes, as well as biotinylated hyaluronan binding protein (HABP) for hyaluronan (HA) visualization. Cartilage extracts were analyzed by Western blot for the individual proteinases and aggrecan fragments. RESULTS: ADAMTS5 was present in association with cells throughout normal cartilage and was markedly increased in OA, particularly in clonal groups in the superficial and transitional zones, where it was predominantly co-localized with HA. Consistent with the confocal analysis, a high molecular weight complex of ADAMTS5 and HA was isolated from human OA cartilage by isotonic salt extraction and chromatography on Superose 6. The complex eluted with an apparent molecular size of about 2x10(6) and contained major ADAMTS5 forms of 150, 60, 40 and 30kDa. The yield of most forms on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was markedly enhanced by prior digestion of the complex with either Streptomyces hyaluronidase or chondroitinase ABC. CONCLUSION: ADAMTS5 abundance and distribution in human OA cartilages is consistent with a central role for this enzyme in destructive aggrecanolysis. HA-dependent sequestration of ADAMTS5 in the pericellular matrix may be a mechanism for regulating the activity of this proteinase in human OA cartilage.  相似文献   

15.
OBJECTIVE: To assess changes in knee joint fluid concentrations of transforming growth factor-beta1 (TGF-beta1) and proteoglycan (PG) fragments during the early course of post-traumatic osteoarthrosis (OA) after meniscectomy in the rabbit knee, and to ascertain whether the concentrations of these substances shortly after operation could be used as prognostic markers for the OA process. DESIGN: In 15 rabbits with medial meniscectomy in one knee and a sham operation in the other knee, synovial lavage fluid samples were taken repeatedly, before operation, every third week post-operatively until 12 weeks, thereafter every sixth week, and at death. Five rabbits each were killed at 13, 25 and 40 weeks. Synovial lavage fluid samples from five non-operated rabbits served as controls. At death, two histological scores were formed that characterized the highest (MAX) and the overall (ALL) degree of OA changes in each joint. RESULTS: TGF-beta1 and PG fragment concentrations in synovial lavage fluid correlated highly (R=0.81, P< 0.001). Both OA scores were higher in meniscectomized than controls (P< 0.05). The synovial lavage fluid concentration of TGF-beta1 at 3 weeks, but no other time point, correlated to the histological scores (ALL, R=0.58; MAX, R=0.52;P< 0.001). CONCLUSION: Higher concentrations of TGF-beta1 in synovial lavage fluid early after surgery seemed indicative for the later development of more severe OA changes in contrast to lower concentrations. The association between TGF-beta1 and the changes found later in the cartilage was underlined by the high correlations between this substance and PG fragment concentrations in synovial lavage fluid at all time points.  相似文献   

16.
To investigate the role of ADAMTS5 in murine osteoarthritis (OA), resulting from destabilization of the medial meniscus (DMM model) or from TGFb1 injection and enforced uphill treadmill running (TTR model). Wild‐type (WT) and ADAMTS5?/? mice were subjected to either DMM or TTR and joints were evaluated for meniscal damage, cartilage changes, and fibrotic ingrowths from the joint margins. Cartilage lesions were quantified on an 8‐point scoring system. Cartilage chondroitin sulfate (CS) content was evaluated by SafraninO staining and by quantitative electrophoresis (FACE). The abundance of aggrecan, versican, and specific aggrecanase‐generated products was determined by Western analysis. Joint changes were similar for WT mice taken through either the DMM or the TTR model. ADAMTS5 ablation essentially eliminated cartilage erosion and fibrous overgrowth in both models. In the TTR model, ADAMTS5 ablation did not eliminate aggrecanase activity from the articular cartilage but blocked fibrosis and resulted in the accumulation of aggrecan in the articular cartilage. The cartilage protection provided by ADAMTS5 ablation in the mouse does not result from prevention of aggrecanase activity per se, but it appears to be due to a blockade of joint tissue fibrosis and a concomitant increase in cartilage aggrecan content. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:516–522, 2011  相似文献   

17.
OBJECTIVE: To identify and characterize a cartilage degradation mechanism that is independent of the proteolytic cleavages by matrix metalloproteinases (MMPs) and aggrecanases. METHODS: The sensitivity of glycosaminoglycan (GAG) release and collagen release to an MMP/aggrecanase inhibitor, AG3340, was compared using a bovine nasal cartilage explant culture. The release of matrix proteins and hyaluronan (HA) from the culture was analyzed by immunoblotting and radioimmunoassay, respectively. Induction of HA-degrading activity by retinoic acid was examined using the cartilage explant culture and a primary culture of chondrocytes. Degradation of the matrix components of cartilage was also characterized in vivo using an acute arthritis model induced by an intra-articular injection of interleukin 1alpha (IL-1alpha). RESULTS: AG3340 did not effectively inhibit GAG release at a concentration of more than 10muM, while 10nM of the inhibitor completely suppressed collagen degradation. Retinoic acid induced the release of the aggrecan G1 domain, link protein and HA into the culture medium, and the release of these molecules was not completely inhibited by 10muM of AG3340. The molecules were released as ternary complexes. Retinoic acid induced HA degradation in the explant culture and hyaluronidase activity in the primary culture of chondrocytes. The release of the G1 domain of aggrecan and link protein into the synovial fluid was also observed in the IL-1alpha-induced acute arthritis model. CONCLUSION: A novel mechanism by chondrocyte-derived hyaluronidase(s) is involved in the release of the matrix components from cartilage, and the hyaluronidase(s) and MMPs/aggrecanases act in a coordinated manner in cartilage degradation.  相似文献   

18.
CLINICAL RELEVANCE: Measurement of markers of cartilage pathology in synovial fluid may provide clinical rheumatologists and osteoarthritis (OA) researchers important information for early diagnosis of OA as well as a method for monitoring disease progression and response to treatment. This study demonstrates the value of this approach in an established model of OA (cranial cruciate ligament rupture) at a point distant enough from the original surgical manipulation so as to have little to no effect on the marker concentrations. OBJECTIVE: The objective of this study was to determine whether measurement of markers of cartilage collagen cleavage and proteoglycan turnover in synovial fluid from a canine model could be used to detect cartilage changes following the onset of joint instability during the development of OA. DESIGN: A model of joint instability that develops OA was created in 18 mature dogs using monopolar radiofrequency energy (MRFE). MRFE was arthroscopically applied to one cranial cruciate ligament (CCL) while the contralateral CCL was sham treated. The treated CCLs ruptured approximately 8 weeks (55 +/- 1.6 days) after MRFE treatment. Synovial fluid was collected at time zero prior to MRFE treatment, 4 weeks after MRFE treatment, and at 4, 8, and 16 weeks after CCL rupture. Synovial fluid concentrations of the neoepitope COL2-3/4C long (type II collagen cleavage by collagenase) and epitopes 3B3(-) (proteoglycan aggrecan sulfation) and 846 (associated with aggrecan synthesis) were analyzed. RESULTS: Compared to sham treated joints, the synovial fluid concentrations of COL2-3/4C long and 3B3(-) were significantly increased 2.2 fold and 2.9 fold, respectively, in joints with MRFE treated CCLs following CCL rupture. Concentrations of the 846 epitope in synovial fluid showed a trend toward an increase, which was not significant, after CCL rupture. CONCLUSIONS: Concentrations of the collagenase-cleaved type II collagen neoepitope and 3B3(-) epitope in synovial fluid were significantly increased by 4 weeks and remained elevated for at least 16 weeks after CCL rupture. This suggests that in dogs the COL2-3/4C long neoepitope and 3B3(-) epitope are sensitive markers for changes in joint cartilage turnover in joints that are developing OA.  相似文献   

19.
OBJECTIVE: To determine the within- and between-patient variability in the concentrations of synovial fluid, serum and urine markers of joint tissue metabolism in a cohort of patients with knee pain and cartilage changes consistent with early-stage knee osteoarthritis. DESIGN: Samples of synovial fluid, serum, and urine were obtained from 52 patients on eight different occasions during 1 year, as part of a clinical trial in patients with cartilage abnormalities and knee pain. In joint fluid, aggrecan fragments were quantified by dye precipitation and enzyme-linked immunosorbent assay (ELISA), and matrix metalloproteinases-1 and -3, and tissue inhibitor of metalloproteinases-1 by sandwich ELISAs. In serum, keratan sulfate was quantified by ELISA. Type I collagen N-telopeptide cross-links in urine were determined by ELISA. RESULTS: The degree of cross-sectional variability in marker concentrations did not vary between the different sampling occasions, and did not differ between the periods of weeks 0 (baseline), 1-4 (treatment) and 13-26 (follow-up). Both between-patient and within-patient coefficients of variation varied for markers in different body fluid compartments, with the lowest variability for serum keratan sulfate, followed by urine type I collagen N-telopeptide crosslinks, and the highest for synovial fluid markers. For synovial fluid, aggrecan fragments showed the least variability, and matrix metalloproteinases the highest. One patient with septic arthritis showed a fivefold peak increase in joint fluid aggrecan fragment concentrations, while the concentration of matrix metalloproteinase-3 increased 100-fold. CONCLUSIONS: Molecular markers of joint tissue metabolism have been suggested as, for example, outcome measures for clinical trials of disease-modifying drugs in osteoarthritis. This report is the first to present data on between- and within-patient variability for such molecular markers in three different body fluid compartments in stable cohort of patients. The availability of such data enables calculations to determine the number of patients needed in prospective studies using these markers as outcome measures.  相似文献   

20.
Anterior cruciate ligament (ACL) trauma often occurs in combination with injury to the articular cartilage of the knee, this can result in earlier radiographic evidence of post traumatic osteoarthritis (OA) of the knee compared to the contralateral, ACL intact knee; however, the biomechanical and biological mechanisms associated with the onset and progression of this disease are not understood. We sought to gain insight into the mechanisms by determining the relationship between articular cartilage injury associated with ACL trauma and the expression of synovial fluid biomarkers of articular cartilage metabolism, and to evaluate the relationship between these biomarkers and the patient's perspective of the outcomes. Synovial fluid samples were acquired from 39 ACL injured subjects at an average of 10 weeks after injury, and 32 control subjects with normal knees (documented with clinical exam and MRI assessment). Subjects in the ACL‐injured group were classified as low‐risk for future OA if they displayed an International Cartilage Repair Society (ICRS) Grade 2 articular cartilage lesion or less and high‐risk for future OA if they had an ICRS Grade 3A articular cartilage lesion. The patient's perspective of the injury was evaluated with the Knee Injury and Osteoarthritis Outcomes Score (KOOS). There were no significant differences in mean concentrations of the markers of type II collagen metabolism (CPII, C2C, and C1,2C) or the aggrecan breakdown Alanine–Arginine–Glycine–Serine (ARGS) ‐fragment between control subjects and the subjects in the low‐ and high‐risk groups (p‐value range: 0.80–0.43). Associations between ARGS‐aggrecan concentration and KOOS subscales of symptoms and pain were significantly different between the low‐ and high‐risk groups (p = 0.03 and p = 0.01, respectively). Likewise, there was strong evidence in support of an association between the markers of type II collagen metabolism (C1,2C and CPII concentrations) and the KOOS subscale of pain between the low‐ and high‐risk groups (p = 0.051 and 0.077, correspondingly). In ACL injured subjects with concomitant Grade 3A articular cartilage injuries, concentrations of synovial fluid ARGS‐aggrecan were directly associated with improvements in KOOS symptoms and pain. These findings suggest the possible involvement of ARGS‐aggrecan in a localized tissue repair response involving an increase in aggrecan turnover following severe knee trauma. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:820–827, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号