首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryonic stem cell-derived hematopoietic stem cells   总被引:8,自引:0,他引:8       下载免费PDF全文
Despite two decades of studies documenting the in vitro blood-forming potential of murine embryonic stem cells (ESCs), achieving stable long-term blood engraftment of ESC-derived hematopoietic stem cells in irradiated mice has proven difficult. We have exploited the Cdx-Hox pathway, a genetic program important for blood development, to enhance the differentiation of ESCs along the hematopoietic lineage. Using an embryonic stem cell line engineered with tetracycline-inducible Cdx4, we demonstrate that ectopic Cdx4 expression promotes hematopoietic mesoderm specification, increases hematopoietic progenitor formation, and, together with HoxB4, enhances multilineage hematopoietic engraftment of lethally irradiated adult mice. Clonal analysis of retroviral integration sites confirms a common stem cell origin of lymphoid and myeloid populations in engrafted primary and secondary mice. These data document the cardinal stem cell features of self-renewal and multilineage differentiation of ESC-derived hematopoietic stem cells.  相似文献   

2.
Durand C  Dzierzak E 《Haematologica》2005,90(1):100-108
Hematopoietic stem cells (HSC) are at the foundation of the adult hematopoietic system. HSC give rise to all blood cells through a complex series of proliferation and differentiation events that occur throughout the lifespan of the individual. Because of their clinical importance in transplantation protocols, recent research has focused on the developmental origins and potential of embryonic HSC. In both mammalian and non-mammalian vertebrate embryos, two independent anatomical sites have been found to generate hematopoietic cells. The yolk sac (or its equivalent in amphibians, the ventral blood islands) participates in a first transient wave of hematopoiesis by producing primitive erythrocytes. Importantly, adult-type HSCs emerge autonomously in a second wave of hematopoietic generation in an intraembryonic region surrounding the dorsal aorta, the aorta-gonads-mesonephros (AGM) region. In this review, we will discuss research advances in the field of developmental hematopoiesis, with a particular emphasis on the cellular origins of AGM HSC and their regulation by the embryonic hematopoietic microenvironment.  相似文献   

3.
4.
Hematopoietic stem cell (HSC) self-renewal and differentiation is regulated by cellular and molecular interactions with the surrounding microenvironment. During ontogeny, the aorta–gonad–mesonephros (AGM) region autonomously generates the first HSCs and serves as the first HSC-supportive microenvironment. Because the molecular identity of the AGM microenvironment is as yet unclear, we examined two closely related AGM stromal clones that differentially support HSCs. Expression analyses identified three putative HSC regulatory factors, β-NGF (a neurotrophic factor), MIP-1γ (a C–C chemokine family member) and Bmp4 (a TGF-β family member). We show here that these three factors, when added to AGM explant cultures, enhance the in vivo repopulating ability of AGM HSCs. The effects of Bmp4 on AGM HSCs were further studied because this factor acts at the mesodermal and primitive erythropoietic stages in the mouse embryo. In this report, we show that enriched E11 AGM HSCs express Bmp receptors and can be inhibited in their activity by gremlin, a Bmp antagonist. Moreover, our results reveal a focal point of Bmp4 expression in the mesenchyme underlying HSC containing aortic clusters at E11. We suggest that Bmp4 plays a relatively late role in the regulation of HSCs as they emerge in the midgestation AGM.  相似文献   

5.
Mouse hematopoietic stem cells   总被引:25,自引:5,他引:20  
  相似文献   

6.
7.
8.
9.
Embryonic stem cells. Future perspectives   总被引:2,自引:0,他引:2  
Groebner M  David R  Franz WM 《Der Internist》2006,47(5):502, 504-502, 508
Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.  相似文献   

10.
Derived from the inner cell mass of blastocysts, embryonic stem cells (ESCs) retain the pluripotent features of early embryonic epiblast cells. In vitro, ESCs undergo spontaneous differentiation into a multitude of tissues, and thus are a powerful tool for the study of early developmental processes and a promising resource for cell-based therapies. We have pursued the derivation of functional, multipotent and engraftable hematopoietic stem cells (HSCs) from ESCs in order to investigate the genetic pathways specifying blood formation, as well as to lay the foundation for hematopoietic cell replacement therapies based on engineered ESCs. Theoretically, the generation of HSCs from patient-specific ESCs derived by nuclear transfer could provide for autologous hematopoietic therapies for the treatment of malignant and genetic bone marrow disorders. Although significant progress has been made in achieving hematopoietic differentiation from both murine and human ESCs, we have only a primitive understanding of the underlying mechanisms that specify hematopoietic cell fate, and a very limited capacity to direct the differentiation of the definitive HSC that would be suitable for clinical engraftment studies. Here we will review the progress to date and the significant problems that remain, and outline a strategy to achieve the directed differentiation of HSCs under conditions that might be appropriate for clinical scale-up and disease applications.  相似文献   

11.
Mobilization of hematopoietic stem cells   总被引:12,自引:0,他引:12  
Fu S  Liesveld J 《Blood reviews》2000,14(4):205-218
Hematopoietic stem cell transplantation has been extensively exploited as a therapeutic and research modality and has revolutionized current patient care. At present, more and more medical centers use peripheral blood progenitor cells for transplantation by mobilizing hematopoietic stem cells from bone marrow to peripheral blood because of potential advantages of peripheral blood stem cell transplantation over bone-marrow transplantation. Different effective mobilization regimens have been developed recently with chemotherapeutic agents, hematopoietic growth factors or their combination. This article reviews current developments related to hematopoietic stem cell mobilization including the biology of hematopoietic stem cells, strategies for mobilization, management for mobilization failure, mechanisms of mobilization, and side effects during mobilization. Finally, the Initiation-Amplification-Emigration-Adaptation Model is proposed to help aid understanding of the mechanisms of hematopoietic stem cell mobilization and to stimulate development of novel and optimal mobilization strategies for patient care.  相似文献   

12.
Tu Z  Ninos JM  Ma Z  Wang JW  Lemos MP  Desponts C  Ghansah T  Howson JM  Kerr WG 《Blood》2001,98(7):2028-2038
SH2-containing inositol 5'-phosphatase (SHIP) modulates the activation of immune cells after recruitment to the membrane by Shc and the cytoplasmic tails of receptors. A novel SHIP isoform of approximately 104 kd expressed in primitive stem cell populations (s-SHIP) is described. It was found that s-SHIP is expressed in totipotent embryonic stem cells to the exclusion of the 145-kd SHIP isoform expressed in differentiated hematopoietic cells. s-SHIP is also expressed in primitive hematopoietic stem cells, but not in lineage-committed hematopoietic cells. In embryonic stem cells, s-SHIP partners with the adapter protein Grb2 without tyrosine phosphorylation and is present constitutively at the cell membrane. It is postulated that s-SHIP modulates the activation threshold of primitive stem cell populations.  相似文献   

13.
14.
15.
Hematopoietic stem cells (HSC) lose their capacity for engraftment during ex vivo cytokine expansion. It has been shown that mesenchymal stem cells (MSC) improve HSC transplantability; however, the molecular mechanisms responsible for this effect have not yet been completely elucidated. This paper reports that expanding HSC in co-culture with MSC enhances a vascular cell adhesion molecule (VCAM-1)-dependent pro-migratory phenotype. MSC did not regulate the HSC expression of CD49d (VCAM-1 counter-receptor molecule), but did decrease the cytokine-induced HSC VCAM-1-mediated pro-adhesive phenotype. Co-culture with MSC reduced the expression of the inactive conformation of lymphocyte function-associated antigen (LFA-1) at the HSC uropod, and induced higher expression of an LFA-1 activation epitope. Interestingly, VCAM-1-dependent HSC migration was modulated by targeting this LFA-1 high affinity form, suggesting integrin cross-regulation. VCAM-1-mediated HSC transmigration appeared to favor the more primitive HSC immunophenotype. Our results suggested that co-culture with MSC improved VCAM-1-dependent migration of primitive HSC, which was affected in ex vivo cytokine-expanded HSCs by a mechanism involving LFA-1 modulation.  相似文献   

16.
Muscle-derived hematopoietic stem cells are hematopoietic in origin   总被引:45,自引:0,他引:45       下载免费PDF全文
It has recently been shown that mononuclear cells from murine skeletal muscle contain the potential to repopulate all major peripheral blood lineages in lethally irradiated mice, but the origin of this activity is unknown. We have fractionated muscle cells on the basis of hematopoietic markers to show that the active population exclusively expresses the hematopoietic stem cell antigens Sca-1 and CD45. Muscle cells obtained from 6- to 8-week-old C57BL/6-CD45.1 mice and enriched for cells expressing Sca-1 and CD45 were able to generate hematopoietic but not myogenic colonies in vitro and repopulated multiple hematopoietic lineages of lethally irradiated C57BL/6-CD45.2 mice. These data show that muscle-derived hematopoietic stem cells are likely derived from the hematopoietic system and are a result not of transdifferentiation of myogenic stem cells but instead of the presence of substantial numbers of hematopoietic stem cells in the muscle. Although CD45-negative cells were highly myogenic in vitro and in vivo, CD45-positive muscle-derived cells displayed only very limited myogenic activity and only in vivo.  相似文献   

17.
Stem cell transplantation represents a critical approach for the treatment of many malignant and non-malignant diseases. The foundation for these approaches is the ability to cryopreserve marrow cells for future use. This technique is routinely employed in all autologous settings and is critical for cord blood transplantation. A variety of cryopreservatives have been used with multiple freezing and thawing techniques as outlined in the later chapters. Freezing efficiency has been proven repeatedly and the ability of long-term stored marrow to repopulate has been established. Standard approaches outlined here are used in many labs as the field continues to evolve.  相似文献   

18.
A novel membrane protein has been identified in the course of screening for differentially expressed cDNAs in human embryonic hematopoietic sites. This 37- to 38-kDa molecule, designated KLIP-1 (killer lineage protein), consisting of 350 amino acids and containing five transmembrane domains, is encoded by the 5093-bp KLIP-1 gene, composed of nine exons and located on chromosome 6 (6p21.1-6p21.2). We found the KLIP-1 protein to be expressed by nucleated hematopoietic cells, from early embryonic hematopoietic stem cells through mature adult blood lymphoid lineages, either as membrane or as cytoplasmic molecules. In day-30/32 human embryo sections, KLIP-1 protein expression is restricted to circulating hematopoietic cells at hematopoiesis sites. Membrane KLIP-1 is expressed by fetal and adult GP-A(+) erythroblasts, the fetal liver CD34(+) subset, fetal spleen, and adult bone marrow CD56(+) NK and CD19(+) B cells. Among mature blood cells, surface KLIP-1 expression is restricted to CD56(+) NK cells, indicating KLIP-1 to be a novel marker of this population. Altogether, these results indicate that membrane export of KLIP-1 antigen is developmentally and ontogenetically regulated. The high degree of conservation of the KLIP-1 protein sequence among mammals strongly suggests that it plays an important role during hematopoiesis and may exercise similar functions in human and mouse blood cells. The KLIP-1 molecule may therefore constitute a powerful tool for improving knowledge of both human hematopoiesis and NK cell ontogeny and immune functions.  相似文献   

19.
Embryonic stem cells for cardiac muscle engineering   总被引:4,自引:0,他引:4  
The aim of cardiac tissue engineering is twofold: (1) to provide three-dimensional cardiac tissue to restore the function of diseased hearts and (2) to develop improved test beds for target validation and substance screening. Both concepts have been successfully demonstrated by several groups using immature primary heart cells, but these cells are essentially postmitotic, precluding clinical and large-scale in vitro applications. Identification of a renewable cell source is therefore one of the key objectives in the field. Embryonic stem (ES) cells are attractive candidates because they can be propagated in large quantities, have a robust capacity to differentiate into cardiac myocytes, and can be obtained from humans. Classic isolation of ES cells from the inner cell mass is associated with destruction of the respective embryo. Thus, alternative technologies to generate stem cell lines with ES cell properties are inevitably called for. This review discusses the usefulness of ES cells in cardiac tissue engineering and alternative, embryo-sparing technologies to derive ES cells.  相似文献   

20.
Embryonic stem cells can form germ cells in vitro   总被引:52,自引:0,他引:52  
Knock-in embryonic stem (ES) cells, in which GFP or lacZ was expressed from the endogenous mouse vasa homolog (Mvh), which is specifically expressed in differentiating germ cells, were used to visualize germ cell production during in vitro differentiation. The appearance of MVH-positive germ cells depended on embryoid body formation and was greatly enhanced by the inductive effects of bone morphogenic protein 4-producing cells. The ES-derived MVH-positive cells could participate in spermatogenesis when transplanted into reconstituted testicular tubules, demonstrating that ES cells can produce functional germ cells in vitro. In vitro germ cell differentiation provides a paradigm for studying the molecular basis of germ line establishment, as well as for developing new approaches to reproductive engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号