首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following experimental spinal cord injury (SCI), there is a delayed loss of neurofilament proteins but relatively little is known regarding the status of other cytoskeletal elements. The purpose of the present study was to compare the extent and time course of the MAP2 loss with that of neurofilament proteins, and to examine tau protein levels and distribution following SCI. Within 1 to 6 hours following SCI, there is rapid loss of MAP2, tau, and nonphosphorylated neurofilament proteins at the injury site. In contrast, the loss of phosphorylated neurofilament proteins was not significant until 1 week postinjury. In addition to the loss of MAP2 protein, there was extensive beading of MAP2-immunoreactive dendrites extending into the white matter. This was most pronounced 1 hour after injury and gradually resolved such that beading was no longer evident 2 weeks after SCI. The time course of beading resolution is similar to that of behavioral recovery following SCI, but the functional significance of the beading remains to be determined. Together, these results demonstrate that there are 2 phases of cytoskeletal disruption following SCI; a rapid loss of MAP2, tau, and nonphosphorylated neurofilament proteins, and a delayed loss of phosphorylated neurofilaments.  相似文献   

2.
The elevation and clearance of extracellular potassium following a standard contusion injury was studied in the thoracic spinal cord of rats. Animals were anesthetized, paralyzed, laminectomized at T9-T11, then artificially ventilated. A 10-g rod was released 5.0 cm above the cord with the dura intact. After impact, the dura-arachnoid and pial membranes were incised to allow penetration of K(+)-selective microelectrodes. Electrodes utilized a valinomycin ionophore and were double-barreled, with tip diameters of 3-5 microns. Extracellular potassium activity ([K+]o) increased with the depth of penetration. The maximum values of [K+]o occurred at depths greater than 500 microns, and remained so with time after injury. These data indicate that a dorsal-ventral gradient of [K+]o develops in spinal cords contused from the dorsal surface, with the greatest elevation of [K+]o in the gray matter. In 8 preparations, the maximum [K+]o was 65 +/- 8 mM (mean +/- S.E.M.) at 5 +/- 1 min after injury. The [K+]o peak values decayed with a half-time of 11.0 +/- 3.4 min. Compared with data available for the injured cat spinal cord, the peak [K+]o recovered relatively rapidly. Although a simple diffusion model could account for the rapid clearance of [K+]o, the persistence of dorsal-ventral [K+]o gradients could not be explained by such a model. It is postulated that secondary injury processes contributed to the persistent [K+]o gradients.  相似文献   

3.
The purpose of this study was to examine the degree, persistence, and nature of forelimb behavioral deficits following cervical spinal cord contusion injury in the rat. Forelimb reaching and pellet retrieval, forehead adhesive sticker removal, and vibrissae-induced forelimb placing were examined for 16 weeks following a weight-drop injury (10.0 g-2.5 cm) at the C4-C5 spinal level. Nine of 13 rats studied were unable to perform the pellet retrieval task due to pronounced forelimb extension hypometria. However, these animals did carry out the forehead sticker removal and vibrissae-induced placing tasks. Therefore, the loss of reaching ability related to pellet retrieval was not due to generalized paralysis. This interpretation was further supported by evaluation of the rostrocaudal extent of relative motoneuron loss from 1-mm divisions through the lesion zone. The extent of motoneuron pathology ranged from 2 to 6 mm but was largely confined to the C4-C5 spinal segments. Morphometric assessments of axonal sparing revealed that pellet retrieval performance during the last month of observation was significantly correlated with fiber sparing in the dorsal columns and ventral white matter, whereas no significant correlation could be demonstrated with regard to dorsolateral white matter. While there were no conspicuous differences in qualitative assessments of damage to interneuron pools (i.e., laminae V to VII) between the nonreaching and retrieval-recovered rats, the possibility of combined white and gray matter pathology contributing to this deficit still exists. These initial findings thus demonstrate that the weight-drop contusion injury model can be adopted to studies of cervical spinal cord trauma in the rat. Such lesions yield permanent deficits in forelimb function lending to future studies of possible therapeutic interventions. Furthermore, performance deficits observed at 1 week postinjury in the placing and forehead sticker removal tasks can be predictive of any potential for long-range spontaneous recovery in pellet retrieval ability.  相似文献   

4.
Central necrosis following contusion to the sheep's spinal cord   总被引:1,自引:0,他引:1  
J D Yeo  S Stabback  B McKenzie 《Paraplegia》1977,14(4):276-285
This paper presents the results of a study on the pathological changes associated with post traumatic central spinal cord necrosis.  相似文献   

5.
Spinal cord injury is accompanied by an initial inflammatory reaction followed by secondary injury that is caused, in part, by apoptosis. Recruitment of leukocytes from the blood compartment to the site of inflammation in the injured spinal cord has been attributed to locally generated chemotactic agents (cytokines and chemokines). In addition to upregulation in the message levels of a number of chemokines, we have found up-regulation in the message levels of several chemokine receptors following spinal cord contusion injury. To reduce the inflammatory response after spinal cord injury, we have blocked the interaction of chemokine receptors with their ligands using the vMIPII chemokine antagonist. Using a rat model of spinal cord contusion injury, we show that continuous infusion of the antagonist for up to 7 days results in a decrease in infiltrating hematogenous cells at the site of injury. Histological evaluation ofthe tissue showed fewer activated macrophages at the site of injury. Concomitantly, reduced neuronal loss and gliosis were observed in the antagonist infused spinal cord. In addition, increased expression of Bcl-2 gene, an endogenous inhibitor of apoptosis, was seen in the antagonist infused spinal cord at 7 days post injury. Morphologically, staining with the bisbenzamide dye Hoechst 33342 showed significantly more apoptotic bodies in the vehicle compared to antagonist infused spinal cord. Our data suggest that chemokine antagonist infusion post-injury results in limiting the inflammatory response following spinal cord contusion injury, thereby attenuating neuronal loss, possibly due to decreased apoptosis. These findings support the contention that disrupting chemokine interactions with their receptors may be an effective approach in reducing the secondary damage after spinal cord injury.  相似文献   

6.
This study was initiated due to an NIH “Facilities of Research — Spinal Cord Injury” contract to support independent replication of published studies that appear promising for eventual clinical testing. We repeated a study reporting the beneficial effects of recombinant human erythropoietin (rhEPO) treatment after spinal cord injury (SCI). Moderate thoracic SCI was produced by two methods: 1) compression due to placement of a modified aneurysm clip (20 g, 10 s) at the T3 spinal segment (n=45) [followed by administration of rhEPO 1000 IU/kg/IP in 1 or 3 doses (treatment groups)] and 2) contusion by means of the MASCIS impactor (n = 42) at spinal T9 (height 12.5 cm, weight 10 g) [followed by the administration of rhEPO 5000 IU/kg/IP for 7d or single dose (treatment groups)]. The use of rhEPO following moderate compressive or contusive injury of the thoracic spinal cord did not improve the locomotor behavior (BBB rating scale). Also, secondary changes (i.e. necrotic changes followed by cavitation) were not significantly improved with rhEPO therapy. With these results, although we cannot conclude that there will be no beneficial effect in different SCI models, we caution researchers that the use of rhEPO requires further investigation before implementing clinical trials.  相似文献   

7.
The majority of human spinal cord injuries involve gray matter loss from the cervical or lumbar enlargements. However, the deficits that arise from gray matter damage are largely masked by the severe deficits due to associated white matter damage. We have developed a model to examine gray matter-specific deficits and therapeutic strategies that uses intraspinal injections of the excitotoxin kainic acid into the T9 and L2 regions of the spinal cord. The resulting deficits have been compared to those from standard contusion injuries at the same levels. Injuries were assessed histologically and functional deficits were determined using the Basso, Beattie, and Bresnahan (BBB) 21-point open field locomotor scale and transcranial magnetic motor evoked potentials (tcMMEPs). Kainic acid injections into T9 resulted in substantial gray matter damage; however, BBB scores and tcMMEP response latencies were not different from those of controls. In contrast, kainic acid injections into L2 resulted in paraplegia with BBB scores similar to those following contusion injuries at either T9 or L2, without affecting tcMMEP response latencies. These observations demonstrate that gray matter loss can result in significant functional deficits, including paraplegia, in the absence of a disruption of major descending pathways.  相似文献   

8.
Morphometric analyses were carried out on rat spinal cords which were injured by a weight drop technique. A 10-g weight was dropped 0.0, 2.5, 5.0, 7.5, 10.0, or 17.5 cm onto the dura which was exposed at the T8 vertebral level. Four weeks after injury, lesion volume, lesion length, and the dimensions of the tissue at the epicenter (lesion area, area of gray matter, and area of white matter) were measured and correlated with the height from which the weight was dropped and the results from tests of motor and sensory functional deficit. The results, based on linear regression analyses, indicated significant correlations between certain morphologic parameters (lesion volume, lesion length, and the area of gray and white matter at the epicenter) and both the height from which the weight was dropped and behavioral scores. Because the area of white matter at the epicenter is a very simple measurement which correlates well (r = 0.91) with behavioral outcome, this morphologic feature is a useful quantitative measure of the histopathologic consequences of spinal cord injury.  相似文献   

9.
Products of inflammatory phagocytes are potential contributors to secondary pathology following spinal cord trauma. In the present study we quantified the levels of the neurotoxin and product of activated macrophages, quinolinic acid (QUIN), in the lower thoracic spinal cord of adult guinea pigs 5 days after brief compression injury. At the injured site (T13), elevations in tissue QUIN levels (> 10-fold) accompanied proportional increases in the activity of indoleamine-2,3 dioxygenase (> 2-fold) and the concentrations of l-kynurenine (> 2.5-fold). In contrast, no significant changes occured in two uninjured regions examined compared to controls, namely cervical spinal cord (C2) and the somatosensory cortex. Further studies of QUIN as a potential contributor to spinal cord injury are warranted.  相似文献   

10.
<正>Central nervous system injuries,such as spinal cord injury(SCI),are a leading cause of disability in young adults.SCIs generally have severe clinical consequences and often lead to loss of motor or sensory input below the segment of injury.  相似文献   

11.
12.
13.
Preclinical studies for spinal cord injury (SCI) have utilized transection and contusion injury paradigms even though human SCIs occur by a spectrum of primary injury mechanisms such as spinal cord contusion from vertebral burst fracture, shearing from fracture-dislocation, and stretching from distraction injuries. We contrasted the neuropathology in animal models mimicking these clinically relevant injuries at an early 3-hour time-point in order to relate patterns of secondary pathology to the primary injury mechanism. Axolemma compromise, detected by the intracellular penetration of dextran-conjugated fluorophores, was localized to the contusion epicentre but extended rostrally following dislocation and distraction injuries. Dextran infused post-trauma revealed extensive axolemma resealing whereas only modest membrane recovery was detected in neuronal somata. Fracture-dislocations produced greater axonal degeneration than either contusion or distraction injuries as evidenced by reduced neurofilament immunostaining in ventral tracts, increased β-amyloid precursor protein accumulation in lateral funiculi, and a longer lesion in the dorsal corticospinal tract. In the gray matter, cytochrome c release from neuronal mitochondria, indicative of early apoptosis, was detected within the penumbrae of the contusion and dislocation injuries only. Neurons positive for the oxidative stress marker 3-nitrotyrosine were most numerous rostral to the dislocation epicentre. Microglial activation was localized to the contusion epicentre, extended rostro-caudally following dislocation, but was similar to surgical controls after distraction injuries. Reactive astrocytes extended rostro-caudally only following dislocation injuries. Hence, the primary injury mechanism alters the pattern of secondary degeneration indicating that different neuroprotective strategies may ultimately be required for treating distinct clinically relevant SCIs.  相似文献   

14.
Rosenberg LJ  Zai LJ  Wrathall JR 《Glia》2005,49(1):107-120
Spinal cord injury (SCI) involves the loss of neurons and glia due to initial mechanical and secondary biochemical mechanisms. Treatment with the sodium channel blocker tetrodotoxin (TTX) reduces acute white matter pathology and increases both axon density and hindlimb function chronically at 6 weeks after injury. We investigated the cellular composition of residual white matter chronically to determine whether TTX also has a significant effect on the numbers and types of cells present. Rats received an incomplete thoracic contusion injury, in the presence or absence of TTX (0.15 nmole) injected focally, beginning at 15 min prior to injury. Six weeks later, cell density was significantly increased in the residual white matter of the dorsal, lateral, and ventral funiculi, both rostral and caudal to the injury site in both TTX-treated and injury control groups. Oligodendrocyte and astrocyte density was similar to normal but large numbers of cells expressing microglia/macrophage markers were present. Labeling with the progenitor markers nestin and NG2 showed that precursor cell density had also doubled or tripled as compared with uninjured controls. Some of these cells were also labeled for antigens that indicate their possible progression along an oligodendrocyte or astrocyte lineage. Our results support the hypothesis that the beneficial effect of TTX in SCI is related to its preservation of axons per se; no effect on chronic white matter cell composition was detected. They highlight the profound changes in cellular composition in preserved white matter chronically at 6 weeks after injury, including the accumulation of endogenous progenitor cells and the persistence of activated macrophages/microglia. The manipulation of these endogenous cells may be used in the future to enhance recovery after SCI.  相似文献   

15.
Locations of cells responsive to microiontophoretically applied angiotensin II (AII) were compared to distributions of AII receptor binding sites identified by autoradiography in the lumbar enlargement region of the rat spinal cord. Angiotensin II receptor binding sites were densely concentrated in the superficial layers of the dorsal horn. Considerably lower densities of binding sites were present in the remaining gray matter. Effects of microiontophoretically applied AII on lumbar spinal cord cells did not vary with location within the gray matter. AII facilitated firing of most cells in the lumbar cord whether the cells were in superficial or deeper laminae of the dorsal horn or in the ventral horn. The distribution of AII binding sites and the distribution of cells that were responsive to AII suggest that AII may play a role in modulating both sensory and motor functions of the spinal cord.  相似文献   

16.
Postnatal development and properties of N-methyl-d-aspartate (NMDA) receptors were studied with whole-cell and outside-out patch-clamp techniques in interneurons and fluorescence-labelled motoneurons in rat spinal cord slices. Both the absolute amplitude of NMDA-induced currents and currents normalized with respect to the motoneuron capacitance increased significantly at postnatal days 10-13 when compared to the responses evoked at postnatal days 2-3. The mean amplitude of the responses to kainate also increased in motoneurons of postnatal days 10-13. Single-channel currents induced by low concentrations of glutamate, exhibited four distinct amplitude levels corresponding to 19.2 +/- 2.4 pS, 38.4 +/- 3.5 pS, 56.3 +/- 2. 4 pS and 69.6 +/- 3.7 pS. In contrast, the conductance of single channels, recorded under identical conditions, in rat spinal cord interneurons was less, 15.3 +/- 3.2 pS, 29.9 +/- 5.4 pS, 46.7 +/- 4. 8 pS and 62.4 +/- 3.9 pS. The high (56/70 pS) conductance single-channel openings in motoneuron patches were sensitive to NMDA receptor inhibitors D-2-amino-5-phosphonovalerate, 7-chlorokynurenic acid and ifenprodil. Whole-cell NMDA-evoked currents were blocked in a voltage-dependent manner by extracellular Mg2+ with an apparent dissociation constant for Mg2+ binding at 0 mV of 1.8 +/- 0.5 mm. The conductance and relative distribution of NMDA receptor channel openings induced by 1 micrometer glutamate in patches isolated from the motoneurons were independent of age from postnatal day 4 to 14. The results suggest that the properties of NMDA receptor channels in motoneurons differ from those in spinal cord interneurons and cells transfected with NR1/NR2 subunits.  相似文献   

17.
Spinal cord injury (SCI) leads to a complex sequence of cellular responses, including astrocyte activation, oligodendrocyte death, and ependymal cell proliferation. Inhibitors of DNA binding (Id1, Id2, Id3) belong to a helix-loop-helix (HLH) gene family. Id genes have been implicated in playing a vital role in the proliferation of many cell types, including astrocytes and myoblasts. In the present study, the expression of Id family members in spinal cord after contusion injury was investigated by in situ hybridization. Id1, Id2, and Id3 mRNA expression was upregulated 5 mm rostral and caudal to the lesion center, and reached maximal levels 3 days after SCI. In addition, cell populations expressing Id1, Id2, and Id3 mRNA were maximally increased 3 days after SCI. The increase in Id2 and Id3 mRNA expression and Id2 and Id3 mRNA+ cells was still observed at 8 days. The Id mRNA expressing cells were phenotyped by combining immunostaining of cell-specific markers with in situ hybridization. Glial fibrillary acidic protein (GFAP)+ astrocytes were found to express all three Id mRNA, whereas S-100alpha+ astrocytes only expressed high levels of Id2 and Id3 mRNA. Cells having a neural progenitor morphology and the marker nestin appeared after SCI and they expressed Id1, Id2, and Id3 mRNA. Interestingly, some Rip+ oligodendrocytes located in the areas close to the central canal expressed Id3 mRNA after injury. In conclusion, Id genes are upregulated in a time-dependent manner in astrocytes, oligodendrocytes, and neural progenitor subpopulations after SCI, suggesting that they play major roles in cellular responses following SCI.  相似文献   

18.
Injury of the spinal cord leads to an inflammatory tissue response, probably mediated in part by cytokines. Because a common therapy for acute spinal cord injury is the use of an antiinflammatory synthetic glucocorticoid (methylprednisolone), we sought to determine mechanisms contributing to inflammation shortly after acute injury. Cytokine mRNAs [interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-alpha, and IL-6] were increased during the first 2 hr following weight-drop compression injury by RNase protection assay, prior to the reported appearance of circulating lymphocytes. This immediate pattern of cytokine mRNA induction could be replicated in cultured, explanted spinal cord slices but not in whole blood of injured animals, which is consistent with a tissue source of cytokine mRNAs. Western blotting detected IL-1beta-like immunoreactivity released into culture medium following explantation and pro-IL-1beta-like immunoreactivity in freshly dissected spinal cord tissue. Pharmacologically blocking IL-1 and TNF-alpha receptors significantly reduced expression of IL-1alpha, IL-1beta, and TNF-alpha mRNAs. Finally, mice lacking both IL-1 and TNF-alpha receptors exhibited diminished induction of TNF-alpha, IL-6, and IL-1ra mRNAs following injury. Therefore, we conclude that contusion injury induces an immediate release of cytokines, which then contributes to the induction of cytokine mRNAs.  相似文献   

19.
Spinal cord injury produced by mechanical contusion causes the onset of acute and chronic degradative events. These include blood brain barrier disruption, edema, demyelination, axonal damage and neuronal cell death. Posttraumatic inflammation after spinal cord injury has been implicated in the secondary injury that ultimately leads to neurologic dysfunction. Studies after spinal cord contusion have shown expression of several chemokines early after injury and suggested a role for them in the ordered recruitment of inflammatory cells at the lesion site (McTigue et al. [1998] J. Neurosci. Res. 53:368-376; Lee et al., [2000] Neurochem Int). We have demonstrated previously that infusion of the broad-spectrum chemokine receptor antagonist (vMIPII) in the contused spinal cord initially attenuates leukocyte infiltration, suppresses' gliotic reaction and reduces neuronal damage after injury. These changes are accompanied by increased expression of bcl-2, the endogenous apoptosis inhibitor, and reduced neuronal apoptosis (Ghirnikar et al. [2000] J. Neurosci. Res. 59:63-73). We demonstrate that 2 and 4 weeks of vMIPII infusion in the contusion-injured spinal cord also results in decreased hematogenous infiltration and is accompanied by reduced axonal degeneration in the gray matter. Luxol fast blue and MBP immunoreactivity indicated reduced myelin breakdown in the dorsal and ventral funiculi. Increased neuronal survival in the ventral horns of vMIPII infused cords was seen along with increased bcl-2 staining in them. Immunohistochemical identification of fiber phenotypes showed increased presence of calcitonin gene related peptide, choline acetyl transferase and tyrosine hydroxylase positive fibers as well as increased GAP43 staining in treated cords. These results suggest that sustained reduction in posttraumatic cellular infiltration is beneficial for tissue survival. A preliminary report of this study has been published (Eng et al. [2000] J. Neurochem. 74(Suppl):S67B). In contrast to vMIPII, infusion of MCP-1 (9-76), a N-terminal analog of the MCP-1 chemokine showed only a modest reduction in cellular infiltration at 14 and 21 dpi without significant tissue survival after spinal cord contusion injury. Comparing data on tissue survival obtained with vMIPII and MCP-1 (9-76) further validate the importance of the use of broad-spectrum antagonists in the treatment of spinal cord injury. Controlling the inflammatory reaction and providing a growth permissive environment would enhance regeneration and ultimately lead to neurological recovery after spinal cord injury. J. Neurosci. Res. 64:582-589, 2001. Published 2001 Wiley-Liss, Inc.  相似文献   

20.
Cultured Schwann cells were transplanted at various delays into a spinal cord contusion injury performed at low thoracic level in adult female rats. The Schwann cells were purified from the dorsal root ganglia of adult syngeneic animals. The transplants were well tolerated, and the transplanted Schwann cells invaded the injured spinal cord. As quantified using video image analysis, the survival and growth of the transplanted cells were poor when the grafting procedure was performed 3–4 days after injury and very good when performed immediately or 10 days after injury, in which cases post-traumatic micro- and macrocavitation were strongly reduced. In animals grafted immediately after injury but not in animals grafted after 10 days, post-traumatic astrogliosis was much reduced. The Schwann cells transplanted area was invaded by numerous regenerating axons, the vast majority of which were, based on the neurotransmitter (CGRP and SP) profile, originating from dorsal root ganglion. No regeneration of the cortico-spinal tract as assessed after anterograde tracing or of descending aminergic fibers could be demonstrated. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号