首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the potential role of autophagy in amyotrophic lateral sclerosis (ALS), lumbar spinal cords in a total of 19 sporadic ALS cases and 27 age-matched controls were investigated. Immunohistochemical analysis using antibodies to the markers of autophagy microtubule-associated protein light chain 3 (LC3) and p62 was performed on samples from 12 ALS and 15 controls. Electron microscopy was performed on samples from 16 ALS and 15 controls, including overlapping cases. In the ALS cases, the somata of normal-appearing and degenerated motor neurons and round bodies were occasionally immunostained for LC3; round bodies and skein-like inclusions were immunostained for p62. By electron microscopy, all 16 ALS patients showed features of autophagy in the cytoplasm of normal-appearing motor neurons and, more frequently, in degenerated motor neurons. Autophagosomes surrounded by a double-membrane and autolysosomes isolated by a single membrane contained sequestered cytoplasmic organelles, such as mitochondria and ribosome-like structures. These autophagy features were also found in close association with the characteristic inclusions of ALS(i.e. round bodies, skein-like inclusions, and Bunina bodies); honeycomb-like structures also occasionally showed autophagy-associated features. Normal-appearing anterior horn neurons in control patients showed no autophagy features. Thus, autophagy seems to be activated and upregulated in the cytoplasm of motor neurons and may be involved in the mechanisms of neurodegeneration of motor neurons in sporadic ALS.  相似文献   

2.
3.
Shaw  Pamela  Eggett  C. J. 《Journal of neurology》2000,247(1):I17-I27

Current research evidence suggests that genetic factors, oxidative stress and glutamatergic toxicity, with damage to critical target proteins and organelles, may be important contributory factors to motor neuron injury in amyotrophic lateral sclerosis (ALS). Various molecular and neurochemical features of human motor neurons may render this cell group differentially vulnerable to such insults. Motor neurons are large cells with long axonal processes which lead to requirements for a high level of mitochondrial activity and a high neurofilament content compared to other neuronal groups. The lack of calcium buffering proteins parvalbum in and calbindin D28k and the low expression of the GluR2 AMPA receptor subunit may render human motor neurons particularly vulnerable to calcium toxicity following glutamate receptor activation. Motor neurons also have a high perisomatic expression of the glutamate transporter protein EAAT2 and a very high expression of the cytosolic free radical scavenging enzyme Cu/Zn superoxide dismutase (SOD1) which may render this cell group vulnerable in the face of genetic or post-translational alterations interfering with the function of these proteins. More detailed characterisation of the molecular features of human motor neurons in the future may allow the strategic development of better neuroprotective therapies for the benefit of patients afflicted by ALS.

  相似文献   

4.
Accumulating evidence indicates that alterations in glial activation and disturbances in glial glutamate metabolism may contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). Metabotropic glutamate receptors (mGluRs) are involved in glutamate homeostasis as well as in glial proliferation. Using in situ hybridization and immunohistochemistry we found a strong upregulation of group I and group II mGluR mRNA and protein in ALS spinal cord as compared to controls (mGluR5 > mGluR1 > mGluR2/3). In vitro, the mGluR group I agonist 3,5-dihydroxyphenylglycine induced proliferation in chick spinal cord astroglial cultures. Moreover, addition of cerebrospinal fluid (CSF) from ALS patients resulted in significantly higher proliferation rates than control CSF. In both cases, the effect could be blocked by addition of the mGluR group I antagonist 1-aminoindan-1,5-dicarboxylic acid. Taken together, our data suggest that stimulation of glial mGluRs through mediators present in the CSF may contribute to glial proliferation and astrogliosis in ALS.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of large motor neurons in the brain and spinal cord. Amyloid precursor protein (APP), the transmembrane precursor of beta-amyloid (A beta), accumulates in the anterior horn motor neurons of ALS patients with mild lesions. APP undergoes an alternative proteolysis mediated by caspase-3, which is activated in motor neurons in a mouse model of ALS. The ALS spinal cord motor neurons also show evidence of increased oxidative damage, which is thought to alter APP processing. We sought to determine whether A beta42, the more pathogenic A beta species, accumulates in the postmortem lumbar spinal cord of ALS patients. While there was little or no A beta42 labeling in control spinal cord tissues, elevated A beta42 immunoreactivity occurred in ALS motor neuronal perikarya and axonal swellings in the anterior horn. A few A beta42-positive neurons exhibited thioflavine S staining. No extracellular A beta42 deposits were found. A beta42 coexisted with the oxidative damage markers malondialdehyde, 8-hydroxydeoxyguanosine, heme oxygenase-1, and nitrotyrosine in abnormal neurons. The neurons with intracellular A beta42 accumulation also displayed robust cleaved caspase-3 immunoreactivity. Very little A beta40 immunoreactivity occurred in motor neurons of both control and ALS. These results suggest that aberrant accumulation of A beta42 in ALS spinal cord motor neurons is associated with oxidative stress, and may play a role in the pathogenesis of neurodegeneration in ALS.  相似文献   

6.
Little is known concerning the changes of amino acid composition in different regions of the spinal cord in patients with amyotrophic lateral sclerosis (ALS). We performed quantitative amino acid analyses in the posterior funiculus, the lateral corticospinal tract, and the anterior horn of cervical enlargement of the spinal cord from seven ALS patients, and the results were compared with those of seven patients with other neurologic diseases (control A) and seven patients without neurologic diseases (control B). The levels of collagen-associated amino acids, hydroxyproline, proline, glycine, and hydroxylysine, were markedly lower in the lateral corticospinal tract and the anterior horn of ALS patients than in controls A and B. The contents of the acidic amino acids glutamate and aspartate were also significantly decreased in the lateral corticospinal tract and the anterior horn of ALS patients as compared with those of controls A and B. These data suggest that decreased contents of collagen-associated amino acids and excitatory amino acids are related to the degeneration of the upper and lower motor neurons in the spinal cord in ALS.  相似文献   

7.
8.
Transmitter receptor binding was estimated in the spinal cord of 6 subjects with amyotrophic lateral sclerosis (ALS) and 4 control subjects in assays using 3H-quinuclidinyl benzilate for muscarinic cholinergic receptors, 3H-strychnine for glycinergic receptors, 3H-spiroperidol for dopaminergic receptors, 3H-muscimol for GABAergic receptors, and 3H-dihydroalprenolol for beta-adrenergic receptors. In ALS, glycinergic receptor binding was greatly reduced in the anterior gray matter. This finding may be attributed to loss of large neurons in the anterior gray matter, known to be characteristic of ALS.  相似文献   

9.
Ciliary neurotrophic factor (CNTF) was originally identified as a potent survival factor for a variety of neuronal cell types in vitro and in vivo and in particular in spinal motor neurons of embryonic chick and rat. Using a monoclonal antibody against CNTF (clone 4–68) we analysed the expression of CNTF in paraffin sections of seven human brains and spinal cords immunocytochemically using the ABC method and compared these results with sections of the spinal cords of patients suffering from amyotrophic lateral sclerosis (ALS). In normal human tissue of the central nervous system CNTF immunoreactivity was found in most of the motor neurons of the motor cortex and ventral horn, neurons of the nucleus oculomotorius, intermediolateralis, thoracicus, ependymal cells as well as in smooth muscle cells and endothelial cells of small arteries. A reduced number of astrocytes showed a positive immunocytochemical reaction. In peripheral nerves and nerve roots of the spinal cord we also found a positive staining of Schwann cells and some axons. These immunoreactions could be confirmed by Western blot analyses. Next we analysed postmortem paraffin sections of the spinal cord of seven patients suffering from ALS (age range 30–76 years, median age 46 years, female/male = 4:3). We found CNTF immunoreactivity in most of the motor neurons of the ventral horn in 5 cases. In two cases the number of positively stained motor neurons was less. From these results we conclude that CNTF is expressed in a high number of upper and lower motor neurons in the human CNS and that its expression is maintained in ALS patients.  相似文献   

10.
One of the primary neurodegenerative events occurring in amyotrophic lateral sclerosis (ALS) is the selective loss of spinal cord α motor neurons. To study the potential role of apoptosis in the degeneration of these motor neurons, in situ hybridization was used to measure the expression of two apoptotic cell death genes, bcl-2 and bax, in control and ALS lumbar spinal cord sections. The strongest hybridization signal for bcl-2 mRNA in neurological and nonneurological control spinal cords was found primarily in lamina IX α motor neurons, while a weaker hybridization signal was found in neurons of Clarke's nucleus and the proper sensory nucleus of the dorsal horn. Surviving lamina IX motor neurons in ALS spinal cord sections also expressed bcl-2 mRNA, but at levels that were significantly and selectively decreased (4.7-fold) compared with control. bax mRNA hybridization signal was detected in several cells throughout the gray matter in control and ALS lumbar spinal cord, but was significantly and selectively increased (2.8-fold) in ALS motor neurons. Given the proposed interactive roles of these genes in apoptosis, the present findings favor a scenario in which this mode of cell death would contribute to spinal cord motor neuron degeneration in ALS.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of somatic, but not autonomic, motoneurons. The reason for this selective vulnerability is unknown. The pathogenesis of ALS is thought to involve glutamatergic excitotoxic mechanisms. While overactivation of ionotropic glutamate receptors may trigger excitotoxicity, we have previously shown that stimulation of group I metabotropic glutamate receptors (mGluRs) can exert neuroprotective effects on cultured motoneurons. Using in situ hybridization, we found a differential expression of group I mGluRs (mGluR1 and 5) in rat spinal cord. Autonomic motoneurons from the sacral parasympathetic Onuf's nucleus and thoracic sympathetic neurons, which are spared in ALS, express high levels of mGluR5, while somatic motoneurons do not. In addition, mGluR1 mRNA is found only in smaller somatic motoneurons, which seem to be less vulnerable in ALS. Thus, differential mGluR expression might provide a possible clue to the selective vulnerability of different motoneuronal subpopulations in ALS.  相似文献   

12.
Evidence is accumulating that excessive glutamate concentration in the extracellular space is neurotoxic and plays a role in amyotrophic lateral sclerosis (ALS). However, the published results on glutamate levels in cerebrospinal fluid (CSF) and on glutamate-mediated toxicity of CSF in ALS disease remain controversial. In this report, we studied CSF from patients with sporadic ALS and controls to determine glutamate concentrations, and then analyzed the neurotoxic effect of glutamate at the concentrations present in CSF from ALS patients on cultured cortical neuronal cells. Our study shows that glutamate, at the concentrations found in CSF from ALS patients (5.8 microM), diminished cell viability and increased apoptosis determined by the fluorescent DNA-binding dye Hoechst 33342 as well as by Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End-Labeling (TUNEL) reaction in cultured neuronal cells. However, glutamate concentrations as those found in CSF from controls (2.8 microM or below) did not induce any effect. Both significant glutamate-induced effects were inhibited in the presence of NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2,3-dione), an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate-sensitive glutamate receptor antagonist. These results demonstrate that AMPA/kainate receptors are involved in the glutamate-mediated neurotoxic effects on cultured neurons, according to reports that implicate these receptors in ALS disease. We conclude that the glutamate-mediated neuronal apoptosis through AMPA/kainate receptors could occur in ALS patients who have elevated CSF glutamate concentration.  相似文献   

13.
14.
The spinal cord and motor cortex of patients with amyotrophic lateral sclerosis (ALS) were examined with immunohistochemical methods for the presence of IgG. In 13 of 15 spinal cords, a population of motoneurons stained positively for IgG in a granular pattern, characteristic of binding to the rough endoplasmic reticulum. In 6 of 11 motor cortices, a proportion of pyramidal cells also stained positively for IgG. No such reactivity was noted in motoneurons of control human tissues, although positive IgG staining was present in astrocytes of ALS and control specimens. Reactive microglia and/or macrophages were detected in the territory of degenerating pyramidal tracts and ventral horns. The surface of most of these cells stained positively for IgG, and 50% stained positively for HLA-DR. The accumulation of IgG in motoneurons and the presence of immunologically active macrophages provide additional evidence for the participation of immunologic factors in the pathogenesis of ALS.  相似文献   

15.
This report concerns a comparative immunocytochemical, ultrastructural and morphometric investigation on heterotopic neurons in the white matter of the spinal cords of 19 patients with amyotrophic lateral sclerosis (ALS) and 18 age-matched neurologically normal individuals. The study revealed that the heterotopic neurons were scattered in the white matter, often adjacent to gray matter, that they immunoreacted with the antibody to synaptophysin, and that there were synaptic apparatuses on the surface of their somata and their neuronal processes. Bunina bodies and ubiquitin-positive inclusions such as Lewy body-like inclusions and skein-like inclusions, characteristic of anterior horn neurons of ALS, were present in the cytoplasm of the patients’ heterotopic neurons in the anterior or lateral column of the white matter. These findings suggest that heterotopic neurons in the anterior or lateral column have the characteristics of alpha motor neurons. The average number of heterotopic neurons observed in ALS patients was generally less than in normal subjects. This reduction was correlated with the severity of neuronal loss. The heterotopic neurons in ALS were less susceptible to the degenerative process as compared with spinal cord anterior horn cells. We assume that in this disease the heterotopic neurons may be degenerated and their number diminished after or concomitantly with the depletion of anterior horn neurons. Received: 18 August 1997 / Revised, accepted: 20 October 1997  相似文献   

16.
The mechanisms of neuronal death in amyotrophic lateral sclerosis (ALS) are not known. A pathological aggregation of cytoplasmic constituents in the form of variety of inclusions may play a role in the pathogenesis of neuronal death. Cytoplasmic basophilic inclusions (BIs) in motor neurons are commonly found in sporadic juvenile ALS. The functional significance of these inclusions is not known, i.e., whether they represent a protective reaction for the isolation of abnormal products from the cytoplasm, or a sign of irreversible neuronal damage. To gain insights on the significance of BIs we asked whether neurons with BIs had an intact or fragmented Golgi apparatus (GA), a sign of neuronal degeneration reported not only in sporadic and familial ALS with mutations of the Cu/Zn superoxide dismutase gene (SOD1), but also in transgenic mice expressing the G93A mutation of SOD1. In these mice fragmentation of the GA of spinal cord motor neurons was found months before the onset of paralysis. We report here that all neurons bearing the inclusions showed fragmentation and reduced number of GA. These results suggest that common pathogenetic mechanisms are involved in the production of BIs and in the fragmentation of the GA.  相似文献   

17.
The expression of protein kinase C (PKC), a calcium- and phospholipid-dependent signaling molecule, was studied immunohistochemically in the spinal motor neurons of cases of sporadic amyotrophic lateral sclerosis (SALS). In the normal spinal cord, intense PKC immunoreactivity was found in subsets of large motor neurons. PKC immunoreactivity was markedly decreased in the spinal motor neurons of SALS. The result suggests that down-regulation of PKC is associated with the degeneration of spinal motor neurons in SALS. Received: 7 April 1997 /Revised, accepted: 18 December 1997  相似文献   

18.
The distribution of substance P receptors was examined by autoradiography at all levels of the human postmortem spinal cord using the ligand [125I]Bolton-Hunter substance P. Adjacent sections were used to localize substance P-like immunoreactivity by a radioimmunohistochemical technique. In the control spinal cord substance P-like immunoreactivity was found to be highly concentrated in the superficial layers of the dorsal horn, intermediolateral cell columns and lamina X, while lower levels of immunoreactivity were observed in other areas of the grey matter of the spinal cord. In contrast, high densities of substance P binding sites were localized not only to the substantia gelatinosa of the dorsal horn but also to other regions of the grey matter of the spinal cord, particularly in the area of the preganglionic sympathetic neurons in the intermediolateral cell column and in the region of the somatic motor neurons of the ventral horn. In 5 cases of amyotrophic lateral sclerosis we found a marked reduction of substance P binding, especially in the ventral horn associated with the loss of motor neurons. These results suggest a postsynaptic localization of substance P receptors to the motor neurons of the ventral horn in the human spinal cord and a role for substance P in the function of motor neurons.  相似文献   

19.
20.
L. M. Murray, K. Talbot and T. H. Gillingwater (2010) Neuropathology and Applied Neurobiology 36, 133–156
Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy Amid the great diversity of neurodegenerative conditions, there is a growing body of evidence that non‐somatic (that is, synaptic and distal axonal) compartments of neurones are early and important subcellular sites of pathological change. In this review we discuss experimental data from human patients, animal models and in vitro systems showing that neuromuscular synapses are targeted in different forms of motor neurone disease (MND), including amyotrophic lateral sclerosis and spinal muscular atrophy. We highlight important developments revealing the heterogeneous nature of vulnerability in populations of lower motor units in MND and examine how progress in our understanding of the molecular pathways underlying MND may provide insights into the regulation of synaptic vulnerability and pathology. We conclude that future experiments developing therapeutic approaches specifically targeting neuromuscular synaptic vulnerability are likely to be required to prevent or delay disease onset and progression in human MND patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号