首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in the epileptic brain and serves as a mechanism for synchronization of granule cell epileptiform activity. It has been suggested that this pathway also promotes epileptiform activity by inhibiting GABA(A) receptor function through release of zinc. Hippocampal slices from pilocarpine-treated rats were used to evaluate this hypothesis. The rats had developed status epilepticus after pilocarpine administration, followed by robust recurrent mossy fiber growth. The ability of exogenously applied zinc to depress GABA(A) receptor function in dentate granule cells depended on removal of polyvalent anions from the superfusion medium. Under these conditions, 200 microM zinc reduced the amplitude of the current evoked by applying muscimol to the proximal portion of the granule cell dendrite (23%). It also reduced the mean amplitude (31%) and frequency (36%) of miniature inhibitory postsynaptic currents. Nevertheless, repetitive mossy fiber stimulation (10 Hz for 1 s, 100 Hz for 1 s, or 10 Hz for 5 min) at maximal intensity did not affect GABA(A) receptor-mediated currents evoked by photorelease of GABA onto the proximal portion of the dendrite, where recurrent mossy fiber synapses were located. These results could not be explained by stimulation-induced depletion of zinc from the recurrent mossy fiber boutons. Negative results were obtained even during exposure to conditions that promoted transmitter release and synchronized granule cell activity (6 mM [K(+)](o), nominally Mg(2+)-free medium, 33 degrees C). These results suggest that zinc released from the recurrent mossy fiber pathway did not reach a concentration at postsynaptic GABA(A) receptors sufficient to inhibit agonist-evoked activation.  相似文献   

2.
A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in approximately 74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4-6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.  相似文献   

3.
We have investigated the propagation of epileptiform discharges induced by 4-aminopyridine (4-AP, 50 microM) in adult mouse hippocampus-entorhinal cortex slices, before and after Schaffer collateral cut. 4-AP application induced 1) ictal epileptiform activity that disappeared over time and 2) interictal epileptiform discharges, which continued throughout the experiment. Using simultaneous field potential and [K(+)](o) recordings, we found that entorhinal and dentate ictal epileptiform discharges were accompanied by comparable elevations in [K(+)](o) (up to 12 mM from a baseline value of 3.2 mM), whereas smaller rises in [K(+)](o) (up to 6 mM) were associated with ictal activity in CA3. Cutting the Schaffer collaterals disclosed the occurrence of ictal discharges that were associated with larger rises in [K(+)](o) as compared with the intact slice. Further lesion of the perforant path blocked ictal activity and the associated [K(+)](o) increases in the dentate gyrus, indicating synaptic propagation to this area. Time delay measurements demonstrated that ictal epileptiform activity in the intact hippocampal-entorhinal cortex slice propagated via the trisynaptic path. However, after Schaffer collateral cut, ictal discharges continued to occur in CA1 and subiculum and spread to these areas directly from the entorhinal cortex. Thus our data indicate that the increased epileptogenicity of the dentate gyrus (a prominent feature of temporal lobe epilepsy as well), may depend on perforant path propagation of entorhinal ictal discharges, irrespective of mossy fiber reorganization. Moreover, hippocampal neuronal damage that is acutely mimicked in our model by Schaffer collateral cut, may contribute to "short-circuit" propagation of activity by pathways that are masked when the hippocampus is intact.  相似文献   

4.
Repeated seizures induce mossy fiber axon sprouting, which reorganizes synaptic connectivity in the dentate gyrus. To examine the possibility that sprouted mossy fiber axons may form recurrent excitatory circuits, connectivity between granule cells in the dentate gyrus was examined in transverse hippocampal slices from normal rats and epileptic rats that experienced seizures induced by kindling and kainic acid. The experiments were designed to functionally assess seizure-induced development of recurrent circuitry by exploiting information available about the time course of seizure-induced synaptic reorganization in the kindling model and detailed anatomic characterization of sprouted fibers in the kainic acid model. When recurrent inhibitory circuits were blocked by the GABA(A) receptor antagonist bicuculline, focal application of glutamate microdrops at locations in the granule cell layer remote from the recorded granule cell evoked trains of excitatory postsynaptic potentials (EPSPs) and population burst discharges in epileptic rats, which were never observed in slices from normal rats. The EPSPs and burst discharges were blocked by bath application of 1 microM tetrodotoxin and were therefore dependent on network-driven synaptic events. Excitatory connections were detected between blades of the dentate gyrus in hippocampal slices from rats that experienced kainic acid-induced status epilepticus. Trains of EPSPs and burst discharges were also evoked in granule cells from kindled rats obtained after > or = 1 wk of kindled seizures, but were not evoked in slices examined 24 h after a single afterdischarge, before the development of sprouting. Excitatory connectivity between blades of the dentate gyrus was also assessed in slices deafferented by transection of the perforant path, and bathed in artificial cerebrospinal fluid (ACSF) containing bicuculline to block GABA(A) receptor-dependent recurrent inhibitory circuits and 10 mM [Ca(2+)](o) to suppress polysynaptic activity. Low-intensity electrical stimulation of the infrapyramidal blade under these conditions failed to evoke a response in suprapyramidal granule cells from normal rats (n = 15), but in slices from epileptic rats evoked an EPSP at a short latency (2.59 +/- 0.36 ms) in 5 of 18 suprapyramidal granule cells. The results are consistent with formation of monosynaptic excitatory connections between blades of the dentate gyrus. Recurrent excitatory circuits developed in the dentate gyrus of epileptic rats in a time course that corresponded to the development of mossy fiber sprouting and demonstrated patterns of functional connectivity corresponding to anatomic features of the sprouted mossy fiber pathway.  相似文献   

5.
Cesium has been widely used to study the roles of the hyperpolarization-activated (I(h)) and inwardly rectifying potassium (K(IR)) channels in many neuronal and nonneuronal cell types. Recently, extracellular application of cesium has been shown to produce epileptiform activity in brain slices, but the mechanisms for this are not known. It has been proposed that cesium blocks the K(IR) in glia, resulting in an abnormal accumulation of potassium in the extracellular space and inducing epileptiform activity. This hypothesis has been tested in hippocampal slices and cultured hippocampal neurons using potassium-sensitive microelectrodes. In the present study, application of cesium produced spontaneous epileptiform discharges at physiological extracellular potassium concentration ([K(+)](o)) in the CA1 and CA3 regions of hippocampal slices. This epileptiform activity was not mimicked by increasing the [K(+)](o). The epileptiform discharges induced by cesium were not blocked by the N-methyl-D- aspartate (NMDA) receptor antagonist AP-5, but were blocked by the non-NMDA receptor antagonist CNQX. In the dentate gyrus, cesium induced the appearance of spontaneous nonsynaptic field bursts in 0 added calcium and 3 mM potassium. Moreover, cesium increased the frequency of field bursts already present. In contrast, ZD-7288, a specific I(h) blocker, did not cause spontaneous epileptiform activity in CA1 and CA3, nor did it affect the field bursts in the dentate gyrus, suggesting that cesium induced epileptiform activity is not directly related to blockade of the I(h). When potassium-sensitive microelectrodes were used to measure [K(+)](o), there was no significant increase in [K(+)](o) in CA1 and CA3 after cesium application. In the dentate gyrus, cesium did not change the baseline level of [K(+)](o) or the rate of [K(+)](o) clearance after the field bursts. In cultured hippocampal neurons, which have a large and relatively unrestricted extracellular space, cesium also produced cellular burst activity without significantly changing the resting membrane potential, which might indicate an increase in [K(+)](o). Our results suggest that cesium causes epileptiform activity by a mechanism unrelated to an alteration in [K(+)](o) regulation.  相似文献   

6.
Dentate granule cells become synaptically interconnected in the hippocampus of persons with temporal lobe epilepsy, forming a recurrent mossy fiber pathway. This pathway may contribute to the development and propagation of seizures. The physiology of mossy fiber-granule cell synapses is difficult to characterize unambiguously, because electrical stimulation may activate other pathways and because there is a low probability of granule cell interconnection. These problems were addressed by the use of scanning laser photostimulation in slices of the caudal hippocampal formation. Glutamate was released from a caged precursor with highly focused ultraviolet light to evoke action potentials in a small population of granule cells. Excitatory synaptic currents were recorded in the presence of bicuculline. Minimal laser photostimulation evoked an apparently unitary excitatory postsynaptic current (EPSC) in 61% of granule cells from rats that had experienced pilocarpine-induced status epilepticus followed by recurrent mossy fiber growth. An EPSC was also evoked in 13-16% of granule cells from the control groups. EPSCs from status epilepticus and control groups had similar peak amplitudes ( approximately 30 pA), 20-80% rise times (approximately 1.2 ms), decay time constants ( approximately 10 ms), and half-widths (approximately 8 ms). The mean failure rate was high (approximately 70%) in both groups, and in both groups activation of N-methyl-D-aspartate receptors contributed a small component to the EPSC. The strong similarity between responses from the status epilepticus and control groups suggests that they resulted from activation of a similar synaptic population. No EPSC was recorded when the laser beam was focused in the dentate hilus, suggesting that indirect activation of hilar mossy cells contributed little, if at all, to these results. Recurrent mossy fiber growth increases the density of mossy fiber-granule cell synapses in the caudal dentate gyrus by perhaps sixfold, but the new synapses appear to operate very similarly to preexisting mossy fiber-granule cell synapses.  相似文献   

7.
A number of mechanisms have been proposed to play a role in the regulation of activity-dependent variations in extracellular potassium concentration ([K(+)](o)). We tested possible regulatory mechanisms for [K(+)](o) during spontaneous recurrent epileptiform activity induced in the dentate gyrus of hippocampal slices from adult rats by perfusion with 8 mM potassium and 0-added calcium medium in an interface chamber. Local application of tetrodotoxin blocked local [K(+)](o) changes, suggesting that potassium is released and taken up locally. Perfusion with barium or cesium, blockers of the inward rectifying potassium channel, did not alter the baseline [K(+)](o), the ceiling level of [K(+)](o) reached during the burst, or the rate of [K(+)](o) recovery after termination of the bursts. Decreasing gap junctional conductance did not change the baseline [K(+)](o) or the half-time of recovery of the [K(+)](o) after the bursts but did cause a decrease in the ceiling level of [K(+)](o). Perfusion with furosemide, which will block cation/chloride cotransporters, or perfusion with low chloride did not change the baseline [K(+)](o) or the half-time of recovery of the [K(+)](o) after the bursts but did increase the ceiling level of [K(+)](o). Bath or local application of ouabain, a Na(+)/K(+)-ATPase inhibitor, increased the baseline [K(+)](o), slowed the rate of [K(+)](o) recovery, and induced spreading depression. These findings suggest that potassium redistribution by glia only plays a minor role in the regulation of [K(+)](o) in this model. The major regulator of [K(+)](o) in this model appears to be uptake via a Na(+)/K(+)-ATPase, most likely neuronal.  相似文献   

8.
Axonal sprouting like that of the mossy fibers is commonly associated with temporal lobe epilepsy, but its significance remains uncertain. To investigate the functional consequences of sprouting of mossy fibers and alternative pathways, kainic acid (KA) was used to induce robust mossy fiber sprouting in hippocampal slice cultures. Physiological comparisons documented many similarities in granule cell responses between KA- and vehicle-treated cultures, including: seizures, epileptiform bursts, and spontaneous excitatory postsynaptic currents (sEPSCs) >600 pA. GABAergic control and contribution of glutamatergic synaptic transmission were similar. Analyses of neurobiotin-filled CA1 pyramidal cells revealed robust axonal sprouting in both vehicle- and KA-treated cultures, which was significantly greater in KA-treated cultures. Hilar stimulation evoked an antidromic population spike followed by variable numbers of postsynaptic potentials (PSPs) and population spikes in both vehicle- and KA-treated cultures. Despite robust mossy fiber sprouting, knife cuts separating CA1 from dentate gyrus virtually abolished EPSPs evoked by hilar stimulation in KA-treated but not vehicle-treated cultures, suggesting a pivotal role of functional afferents from CA1 to dentate gyrus in KA-treated cultures. Together, these findings demonstrate striking hyperexcitability of dentate granule cells in long-term hippocampal slice cultures after treatment with either vehicle or KA. The contribution to hilar-evoked hyperexcitability of granule cells by the unexpected axonal projection from CA1 to dentate in KA-treated cultures reinforces the idea that axonal sprouting may contribute to pathologic hyperexcitability of granule cells.  相似文献   

9.
Tu B  Jiao Y  Herzog H  Nadler JV 《Neuroscience》2006,143(4):1085-1094
A unique feature of temporal lobe epilepsy is the formation of recurrent excitatory connections among granule cells of the dentate gyrus as a result of mossy fiber sprouting. This novel circuit contributes to a reduced threshold for granule cell synchronization. In the rat, activity of the recurrent mossy fiber pathway is restrained by the neoexpression and spontaneous release of neuropeptide Y (NPY). NPY inhibits glutamate release tonically through activation of presynaptic Y2 receptors. In the present study, the effects of endogenous and applied NPY were investigated in C57Bl/6 mice that had experienced pilocarpine-induced status epilepticus and subsequently developed a robust recurrent mossy fiber pathway. Whole cell patch clamp recordings made from dentate granule cells in hippocampal slices demonstrated that, as in rats, applied NPY inhibits recurrent mossy fiber synaptic transmission, the Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide (BIIE0246) blocks its action and BIIE0246 enhances synaptic transmission when applied by itself. Y5 receptor agonists had no significant effect. Thus spontaneous release of NPY tonically inhibits synaptic transmission in mice and its effects are mediated by Y2 receptor activation. However, both NPY and BIIE0246 were much less effective in mice than in rats, despite apparently equivalent expression of NPY in the recurrent mossy fibers. Immunohistochemistry indicated greater expression of Y2 receptors in the mossy fiber pathway of normal mice than of normal rats. Pilocarpine-induced status epilepticus markedly reduced the immunoreactivity of mouse mossy fibers, but increased the immunoreactivity of rat mossy fibers. Mossy fiber growth into the inner portion of the dentate molecular layer was associated with increased Y2 receptor immunoreactivity in rat, but not in mouse. These contrasting receptor changes can explain the quantitatively different effects of endogenously released and applied NPY on recurrent mossy fiber transmission in mice and rats.  相似文献   

10.
Picrotoxin-(PTX) induced epileptiform activity was studied in guinea pig hippocampal slices maintained in vitro, using intra- and extracellular recording techniques. The observed pattern of spontaneous and evoked epileptiform activity was quite complex. Spontaneous epileptiform events originated in the CA3 region and subsequently spread or propagated to CA1. Activation of CA1 could then reactivate CA3. This reverberation of activity was seen also following stimulation of the mossy fiber afferents from the dentate gyrus to CA3. Stimulation of fibers in the stratum radiatum of the CA1 region could trigger, at short latency, epileptiform activity that either was localized in CA1 or also occurred in CA3, with a late secondary discharge in CA1. This is attributed to a backfiring of the Schaffer collaterals and illustrates the ability of a variety of CA3 inputs to trigger epileptiform activity. Bath-applied PTX, at concentrations of 50-200 microM, had no apparent effect on the resting membrane potential or input resistance of the CA3 cells tested. Depolarizing current pulses elicited characteristic endogenous-burst responses that were not altered by PTX. Synaptic activity evoked by mossy fiber stimulation was altered markedly by PTX. The pattern of observed changes indicated that PTX reduced inhibitory postsynaptic potential (IPSP) amplitudes, resulting in the appearance of repetitive (presumably recurrent) excitatory inputs. Paroxysmal depolarizing shifts ( PDSs ) were generated by the coalescence of these excitatory inputs. Two types of spontaneous bursting were observed after PTX application. The first type was nonepileptiform , all or none in nature, and its frequency was voltage dependent. The second type of spontaneous burst was the PDS. It was epileptiform in character because it was associated with the synchronous discharge of many neurons. It was graded in nature, and its frequency was voltage independent. The graded nature of the PDS was demonstrated by varying the duration and intensity of the orthodromic stimulation. Trains of stimulation could produce PDSs that lasted 500-800 ms. A refractory period was observed following a PDS. By varying the strength of the orthodromic stimulation, it was possible to demonstrate that for the intervals tested this was a relative, not absolute, refractory period. Intracellular recordings in CA3 neurons indicated that each spontaneous PDS was followed by an afterhyperpolarization (AHP).  相似文献   

11.
Sharp wave-ripple complexes (SPW-Rs) in the intact rodent hippocampus are characterized by slow field potential transients superimposed by close to 200-Hz ripple oscillations. Similar events have been recorded in hippocampal slices where SPW-Rs occur spontaneously or can be induced by repeated application of high-frequency stimulation, a standard protocol for induction of long-lasting long-term potentiation. Such stimulation is reminiscent of protocols used to induce kindling epilepsy and ripple oscillations may be predictive of the epileptogenic zone in temporal lobe epilepsy. In the present study, we investigated the relation between recurrent epileptiform discharges (REDs) and SPW-Rs by studying effects of partial removal of inhibition. In particular, we compared the effects of nicotine, low-dose bicuculline methiodide (BMI), and elevated extracellular potassium concentration ([K(+)](o)) on induced SPW-Rs. We show that nicotine dose-dependently transformed SPW-Rs into REDs. This transition was associated with reduced inhibitory conductance in CA3 pyramidal cells. Similar results were obtained from slices where the GABAergic conductance was reduced by application of low concentrations of BMI (1-2 μM). In contrast, sharp waves were diminished by phenobarbital. Elevating [K(+)](o) from 3 to 8.5 mM did not transform SPW-Rs into REDs but significantly increased their incidence and amplitude. Under these conditions, the equilibrium potential for inhibition was shifted in depolarizing direction, whereas inhibitory conductance was significantly increased. Interestingly, the propensity of elevated [K(+)](o) to induce seizure-like events was reduced in slices where SPW-Rs had been induced. In conclusion, recruitment of inhibitory cells during SPW-Rs may serve as a mechanism by which hyperexcitation and eventually seizure generation might be prevented.  相似文献   

12.
In the epileptic hippocampus, newly sprouted mossy fibers are considered to form recurrent excitatory connections to granule cells in the dentate gyrus and thereby increase seizure susceptibility. To study the effects of mossy fiber sprouting on neural activity in individual lamellae of the dentate gyrus, we used high-speed optical recording to record signals from voltage-sensitive dye in hippocampal slices prepared from kainate-treated epileptic rats (KA rats). In 14 of 24 slices from KA rats, hilar stimulation evoked a large depolarization in almost the entire molecular layer in which granule cell apical dendrites are located. The signals were identified as postsynaptic responses because of their dependence on extracellular Ca(2+). The depolarization amplitude was largest in the inner molecular layer (the target area of sprouted mossy fibers) and declined with increasing distance from the granule cell layer. In the inner molecular layer, a good correlation was obtained between depolarization size and the density of mossy fiber terminals detected by Timm staining methods. Blockade of GABAergic inhibition by bicuculline enlarged the depolarization in granule cell dendrites. Our data indicate that mossy fiber sprouting results in a large and prolonged synaptic depolarization in an extensive dendritic area and that the enhanced GABAergic inhibition partly masks the synaptic depolarization. However, despite the large dendritic excitation induced by the sprouted mossy fibers, seizure-like activity of granule cells was never observed, even when GABAergic inhibition was blocked. Therefore, mossy fiber sprouting may not play a critical role in epileptogenesis.  相似文献   

13.
Partial reduction of [Mg2+]o from 2 to 1 mM markedly enhanced neuronal responses evoked by Schaffer collateral-commissural fiber stimulation in the CA1-region of rat hippocampal slices. The amplitude of extracellular population potentials recorded in the CA1-pyramidal cell layer and maximum dV/dt of extracellular population EPSP's recorded in the CA1-pyramidal apical dendritic layer were both increased. However, unlike findings from slices where Mg2+ was completely removed from the bathing medium, there was no spontaneous or evoked epileptiform activity, and the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (2-APV) did not antagonize the enhancement of evoked responses. These results indicate that, in addition to the participation of NMDA receptors in the epileptiform activity observed when Mg2+ is completely removed from the bathing medium, there is also an NMDA receptor-independent excitatory action of partial reduction of [Mg2+]o in hippocampal slices.  相似文献   

14.
Extracellularly recorded field potentials, evoked by stimulation of cortico-nucleus accumbens border, were recorded in the nucleus accumbens (NAcc) in horizontal slices of rat ventral forebrain. The field excitatory postsynaptic potential (EPSP) event (N2) was calcium dependent, blocked by tetrodotoxin (1 microM), and reduced by over 70% by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM), the antagonist of AMPA-type glutamate receptors. The EPSP amplitude was enhanced by either of the GABA(A) receptor antagonists, picrotoxin (10 microM; by 252+/-33%, n=18) and bicuculline methiodide (20 microM; by 216+/-34%, n=4). Additionally, picrotoxin (3-50 microM) and bicuculline methiodide (20 microM) promoted epileptiform activity within the NAcc, manifest as the emergence of additional late components, N3, N4 and N5, in the evoked synaptic waveform. In slices with the frontal cortex removed, picrotoxin (10-50 microM) and bicuculline methiodide (20 microM) were unable to promote epileptiform activity within the NAcc, although a smaller increase in the peak amplitude of the field EPSP (163+/-18%, n=6) was observed at the highest concentrations of picrotoxin (50 microM). Histological examination of the slice demonstrated that in such decorticated slices, the piriform cortex (PC) had been removed. We propose that stimulation of the cortico-NAcc border not only evokes an orthodromic EPSP in the NAcc, but also causes antidromic activation of cortical tissue. Disinhibition by GABA(A) antagonists of circuits intrinsic to the cortex, possibly the piriform cortex, is the principal cause of the facilitation of the EPSP and of regenerative epileptiform activity in NAcc evoked by stimulation of cortical input.  相似文献   

15.
During physiological activity neurons may experience localised energy demands which require intracellular signals for stimulation of mitochondrial NADH generation and subsequent delivery of ATP. To elucidate these mechanisms, we applied microfluorimetric monitoring of cytoplasmic (Fluo-3) and mitochondrial (Rhod-2) calcium concentration ([Ca(2+)](c), [Ca(2+)](m)), as well as of mitochondrial oxidative metabolism (NAD(P)H), whilst simultaneously measuring changes in extracellular potassium concentration ([K(+)](o)), as an indicator of neuronal activity in hippocampal slice cultures. Changes in neuronal activity were induced by repetitive stimulation at different frequencies (5, 20, 100 Hz) and intensities. Stimulation parameters were chosen to elicit rises in [K(+)](o) of less than 3 mM which is comparable to physiologically occurring rises in [K(+)](o).The mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) reduced stimulus-induced changes in Rhod-2 fluorescence by 79%, indicating that Rhod-2 signals were primarily of mitochondrial origin. Repetitive stimulation at 20 Hz applied to areas CA1 or CA3 resulted in moderate rises in [K(+)](o) which were associated with stimulus-dependent elevations in [Ca(2+)](c) and [Ca(2+)](m) of up to 15%. The same stimuli also elicited biphasic changes in NAD(P)H fluorescence characterised by an initial decline and a subsequent prolonged elevation of up to 10%. Variation of stimulus parameters revealed close correlations between rises in [K(+)](o), in [Ca(2+)](m) and changes in NAD(P)H fluorescence. To elucidate the role of intracellular Ca(2+) accumulation in induction of NAD(P)H fluorescence signals, the effect of application of Ca(2+)-free solution on these signals evoked by repetitive antidromic stimulation of the alveus during recordings in area CA1 was studied. Lowering extracellular Ca(2+) led to complete blockade of postsynaptic field potential components as well as of rises in [Ca(2+)](c) and [Ca(2+)](m). Amplitudes of NAD(P)H signals were reduced by 59%, though rises in [K(+)](o) were comparable in presence and absence of extracellular Ca(2+).The results suggest i) that mitochondrial oxidative metabolism is fine-tuned to graded physiological activity in neurons and ii) that rapid mitochondrial Ca(2+) signalling represents one of the main determinants for stimulation of oxidative metabolism under physiological conditions.  相似文献   

16.
Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. Treatment with low-[Cl(-)](o) medium led to cessation of spontaneous synchronized bursting in CA1 >/=5-10 min before its disappearance from CA3. During the time that CA3 continued to burst spontaneously but CA1 was silent, electrical stimulation of the Schaffer collaterals showed that hyperexcited CA1 synaptic responses were maintained. Paired intracellular recordings from CA1 pyramidal cells showed that during low-[Cl(-)](o) treatment, the timing of action potential discharges became desynchronized; desynchronization was identified with phase lags in firing times of action potentials between pairs of neurons as well as a with a broadening and diminution of the CA1 field amplitude. Continued exposure to low-[Cl(-)](o) medium increased the degree of the firing-time phase shifts between pairs of CA1 pyramidal cells until the epileptiform CA1 field potential was abolished completely. Intracellular recordings during 4-aminopyridine (4-AP) treatment showed that prolonged low-[Cl(-)](o) exposure did not diminish the frequency or amplitude of spontaneous postsynaptic potentials. CA3 antidromic responses to Schaffer collateral stimulation were not significantly affected by prolonged low-[Cl(-)](o) exposure. In contrast to CA1, paired intracellular recordings from CA3 pyramidal cells showed that chloride-cotransport blockade did not cause a significant desynchronization of action potential firing times in the CA3 subregion at the time that CA1 synchronous discharge was blocked but did reduce the number of action potentials associated with CA3 burst discharges. These data support our hypothesis that the anti-epileptic effects of chloride-cotransport antagonism in CA1 are mediated through the desynchronization of population activity. We hypothesize that interference with Na(+),K(+),2Cl(-) cotransport results in an increase in extracellular potassium ([K(+)](o)) that reduces the number of action potentials that are able to invade axonal arborizations and varicosities in all hippocampal subregions. This reduced efficacy of presynaptic action potential propagation ultimately leads to a reduction of synaptic drive and a desynchronization of the firing of CA1 pyramidal cells.  相似文献   

17.
The glutamatergic granule cells of the dentate gyrus transiently express GABAergic markers after seizures. Here we show that when this occurs, their activation produces (i) GABAA receptor-mediated synaptic field responses in CA3, with the physiological and pharmacological characteristics of mossy fibre transmission, and (ii) GABAA receptor-mediated collateral inhibition. Control hippocampal slices present, on stimulation of the dentate gyrus, population responses in stratum lucidum, which are blocked by ionotropic glutamate receptor antagonists. By contrast, in slices from rats subjected to seizures in vivo , dentate activation additionally produces GABAA receptor-mediated field synaptic responses in the presence of glutamate receptor antagonists. One-dimensional current source density analysis confirmed the spatial coincidence of the glutamatergic and GABAergic dendritic currents. The GABAA receptor-mediated field responses show frequency-dependent facilitation and strong inhibition during activation of metabotropic glutamate receptors. In the presence of glutamate receptor blockers, a conditioning pulse delivered to one site of the dentate gyrus inhibits the population synaptic response and the afferent volley provoked by the activation of a second site, in a bicuculline-sensitive manner. In accordance with this, antidromic responses evoked by mossy fibre activation were enhanced by perfusion of bicuculline. Our results suggest that, for GABA receptor-dependent field potentials to be detected, a considerable number of boutons of a well-defined GABAergic pathway should simultaneously release GABA to act on a large number of receptors. Therefore, putative GABA release from the mossy fibres acts on pre- and postsynaptic sites to affect hippocampal activity at the network level after seizures.  相似文献   

18.
Putative mechanisms of induction and maintenance of seizure-like activity (SLA) in the low Mg(2+) model of seizures are: facilitation of NMDA receptors and decreased surface charge screening near voltage-gated channels. We have estimated the role of such screening in the early stages of SLA development at both physiological and room temperatures. External Ca(2+) and Mg(2+) promote a depolarization shift of the sodium channel voltage sensitivity; when examined in hippocampal pyramidal neurons, the effect of Ca(2+) was 1.4 times stronger than of Mg(2+). Removing Mg(2+) from the extracellular solution containing 2 mM Ca(2+) induced recurrent SLA in hippocampal CA1 pyramidal layer in 67% of slices. Reduction of [Ca(2+)](o) to 1 mM resulted in 100% appearance of recurrent SLA or continuous SLA. Both delay before seizure activity and the inter-SLA time were significantly reduced. Characteristics of seizures evoked in low Mg(2+)/1 mM Ca(2+)/3.5 K(+) were similar to those obtained in low Mg(2+)/2 Ca(2+)/5mM K(+), suggesting that reduction of [Ca(2+)](o) to 1 mM is identical to the increase in [K(+)](o) to 5 mM in terms of changes in cellular excitability and seizure threshold. An increase of [Ca(2+)](o) to 3 mM completely abolished SLA generation even in the presence of 5 mM [K(+)](o). A large variation in the ability of [Ca(2+)](o) to stop epileptic discharges in initial stage of SLA was found. Our results indicate that surface charge of the neuronal membrane plays a crucial role in the initiation of low Mg(2+)-induced seizures. Furthermore, our study suggests that Ca(2+) and Mg(2+), through screening of surface charge, have important anti-seizure and antiepileptic properties.  相似文献   

19.
The actions of the neurotoxic amino acids folate and kainate have been compared on ortho-and antidromic responses evoked in CA1, CA3 and the dentate gyrus of slices of rat hippocampus maintained in vitro. Both in CA1 and the dentate gyrus superfusion of these acids caused an increase in amplitude of the population spike discharging from an excitatory postsynaptic potential which either remained unaffected or was reduced. In the CA3 region kainate and folate had broadly similar actions to enhance the probability of cell firing to synaptic excitation, and also caused epileptiform discharges to occur spontaneously or in response to electrical stimulation. Spontaneous and evoked population bursts in CA3 did not persist in low calcium/high magnesium medium indicating their dependence on intact synaptic transmission; spontaneously occurring bursts in CA1 were eliminated with the latter treatment or when the axonal connections between it and CA3 were cut. Following folate superfusion the commissural-evoked response in CA3 showed large and variable shifts of the latency which were dependent on the stimulus intensity and its timing after a spontaneous population discharge. Although all of the effects of folate were reproduced by bicuculline, no evidence for a decreased recurrent inhibition in CA1 was obtained although this was observed with kainate. The finding that folate and kainate produced their effects in the absence of a detectable effect on the antidromic population spike suggests a mechanism of action other than neuronal depolarization. The implications of these data for the neurotoxic mechanism(s) and the receptor homologies of folate and kainate are discussed.  相似文献   

20.
Zinc is found throughout the CNS in synaptic vesicles of glutamatergic neurons and has been suggested to have a modulatory role in the brain because of its interaction with voltage- and ligand-gated ion channels. We took advantage of zinc transporter 3 knockout mice, which lack vesicular zinc, to study the possible physiological role of this heavy metal in hippocampal mossy fiber neurotransmission. We examined postsynaptic responses evoked by mossy fiber activation, recorded in CA3 pyramidal cells in hippocampal slices prepared from zinc transporter 3 knockout and wild-type mice. Field-potential response threshold and amplitude, input-output curves, and paired-pulse evoked responses were the same in slices from zinc transporter 3 knockout and wild-type mice. Furthermore, neither amplitude nor duration of pharmacologically isolated N-methyl-D-aspartate, non-N-methyl-D-aspartate, GABA(A), and GABA(B) receptor-mediated postsynaptic potentials differed between zinc transporter 3 knockout and wild-type mice. There was no difference in the magnitude of epileptiform discharges evoked by repetitive stimulation or kainic acid application. However, in slices from zinc transporter 3 knockout mice, there was greater attenuation of GABA(A)-mediated inhibitory postsynaptic potentials during tetanic stimulation compared with slices from wild-type animals. We conclude that lack of vesicular zinc in mossy fibers does not significantly affect the mossy fiber-associated synaptic excitability of CA3 pyramidal cells; however, zinc may modulate GABAergic synaptic transmission under conditions of intensive activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号