首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The origins of the cholinergic and other afferents of several thalamic nuclei were investigated in the rat by using the retrograde transport of wheat germ agglutinin conjugated-horseradish peroxidase in combination with the immunohistochemical localization of choline acetyltransferase immunoreactivity. Small injections placed into the reticular, ventral, laterodorsal, lateroposterior, posterior, mediodorsal, geniculate, and intralaminar nuclei resulted in several distinct patterns of retrograde labelling. As expected, the appropriate specific sensory and motor-related subcortical structures were retrogradely labelled after injections into the principal thalamic nuclei. In addition, other basal forebrain and brainstem structures were also labelled, with their distribution dependent on the site of injection. A large percentage of these latter projections was cholinergic. In the brainstem, the cholinergic pedunculopontine tegmental nucleus was retrogradely labelled after all thalamic injections, suggesting that it provides a widespread innervation to the thalamus. Neurons of the cholinergic laterodorsal tegmental nucleus were retrogradely labelled after injections into the anterior, laterodorsal, central medial, and mediodorsal nuclei, suggesting that it provides a projection to limbic components of the thalamus. Significant basal forebrain labelling occurred only with injections into the reticular and mediodorsal nuclei. Only injections into the reticular nucleus resulted in retrograde labelling of the cholinergic neurons in the nucleus basalis of Meynert. The results provide evidence for an organized system of thalamic afferents arising from cholinergic and noncholinergic structures in the brainstem and basal forebrain. The brainstem structures, especially the cholinergic pedunculopontine tegmental nucleus, appear to project directly to principal thalamic nuclei, thereby providing a possible anatomical substrate for mediating the well-known facilitory effects of brainstem stimulation upon thalamocortical transmission.  相似文献   

2.
The anatomical organization of cholinergic markers such as acetylcholinesterase, choline acetyltransferase, and nerve growth factor receptors was investigated in the basal ganglia of the human brain. The distribution of choline acetyltransferase-immunoreactive axons and varicosities and their relationship to regional perikarya showed that the caudate, putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, red nucleus, and subthalamic nucleus of the human brain receive widespread cholinergic innervation. Components of the striatum (i.e., the putamen, caudate, olfactory tubercle, and nucleus accumbens) displayed the highest density of cholinergic varicosities. The next highest density of cholinergic innervation was detected in the red nucleus and subthalamic nucleus. The level of cholinergic innervation was of intermediate density in the globus pallidus and the ventral tegmental area and low in the pars compacta of the substantia nigra. Immunoreactivity for nerve growth factor receptors (NGFr) was confined to the cholinergic neurons of the basal forebrain and their processes. Axonal immunoreactivity for NGFr was therefore used as a marker for cholinergic projections originating from the basal forebrain (Woolf et al., '89: Neuroscience 30:143-152). Although the vast majority of striatal cholinergic innervation was NGFr-negative and, therefore, intrinsic, the striatum also contained NGFr-positive axons, indicating the existence of an additional cholinergic input from the basal forebrain. This basal forebrain cholinergic innervation was more pronounced in the putamen than in the caudate. The distribution of NGFr-positive axons suggested that the basal forebrain may also project to the globus pallidus but probably not to the subthalamic nucleus, substantia nigra, or red nucleus. The great majority of cholinergic innervation to these latter three structures and to parts of the globus pallidus appeared to come from cholinergic neurons outside the basal forebrain, most of which are probably located in the upper brainstem. These observations indicate that cholinergic neurotransmission originating from multiple sources is likely to play an important role in the diverse motor and behavioral affiliations that have been attributed to the human basal ganglia.  相似文献   

3.
The cholinergic innervation of the mediodorsal (MD) nucleus of the thalamus was visualized immunohistochemically in human brain postmortem, using an antibody against human choline acetyltransferase (ChAT). The ChAT staining of the MD nucleus was more intense than in the surrounding thalamic nuclei but weaker than that of the striatum. No ChAT-positive cell bodies were detected. The ChAT-positive neuropil was unevenly distributed, with patches of dense immunoreactivity contrasting with a weaker surrounding matrix. In adjoining sections stained for ChAT immunoreactivity and for acetylcholinesterase (AChE) activity, the zones enriched in ChAT-immunostained neuropil corresponded to AChE-rich regions. The three-dimensional reconstruction of the richest zone in AChE/ChAT activity evidenced a cylindrical organization throughout the rostrocaudal axis of the MD nucleus. Counts of ChAT-positive varicosities confirmed an inhomogeneous distribution; the density of varicosities was 30% higher in ChAT-rich regions than in surrounding matrix. These findings suggest that the activity of intrinsic neurons within the nucleus may be differentially regulated by cholinergic systems.  相似文献   

4.
Little is known of the serotoninergic innervation of the thalamus in primates; therefore, we undertook a detailed study of the distribution of 5-hydroxytryptamine (5-HT)-immunoreactive neuronal profiles in the thalamus of the squirrel monkey (Saimiri sciureus) with a specific antibody directly raised against 5-HT. All thalamic nuclei in the squirrel monkey displayed 5-HT-immunoreactive fibers, but none contained immunopositive cell bodies. The 5-HT innervation of the thalamus derived from extrinsic fibers arising mostly from the midbrain raphe nuclei and forming the transtegmental system. Most of the fibers destined to the thalamus collected into a major bundle that swept dorsoventrally within the midbrain tegmentum and coursed beneath the thalamus along its entire caudorostral extent. Several fiber fascicles broke off from this main bundle at different levels and ascended dorsally to innervate the various thalamic nuclei. Overall, the 5-HT innervation of the thalamus in the squirrel monkey was more massive than would have been expected from earlier studies in nonprimate species. Marked differences in the regional density of innervation were noted both between the various nuclei and within single nuclei. The most densely innervated nuclei were those delineating the principal subdivisions of the thalamic mass, that is, the midline, rostral intralaminar, limitans, and reticular nuclei, where very dense fields of isolated axonal varicosities occurred. In contrast to the rostral intralaminar nuclei, which were rather uniformly innervated, the centre médian/parafascicular complex contained immunoreactive fibers and isolated varicosities distributed according to a mediolateral gradient. The habenula and the ventral anterior nucleus were among the most weakly innervated nuclei. In the latter nucleus, as well as in more densely innervated nuclei, thin varicose fibers formed numerous pericellular contacts on cell bodies and proximal dendrites of thalamic neurons. The 5-HT innervation of the lateral nuclear group as well as that of the medial and lateral geniculate nuclei ranged from very weak to dense. The mediodorsal nucleus displayed a highly heterogeneous 5-HT innervation that varied from weak in its central portion to moderate or dense in its medial and lateral borders. A moderate 5-HT innervation was observed in the anterior nuclear group. The surprisingly dense and heterogeneous 5-HT innervation of the thalamus noted in the present study suggests that serotonin may be involved in several specific functions of the thalamus in primates.  相似文献   

5.
The cholecystokinin (CCK) gene is expressed in thalamocortical and thalamo-striatal neurons of the rat. In the cat, this peptide is found in some intralaminar and midline nuclei, whereas somatostatin (SRIF) is expressed in the reticular nucleus of the cat but not in rat. Since the putative neurotransmitters used by thalamic neurons are still incompletely known, especially in humans, we investigated the expression of the CCK and SRIF genes in the human thalamus by using hybridization histochemistry. CCK mRNA was found in many neurons, located in several nuclei of the dorsal thalamus. They were especially numerous and widespread in the nuclei associated with the internal thalamic lamina. They formed a continuum in the basal medial thalamus, from the central-medial nucleus, through the centre median/parafascicular complex to the limitans and suprageniculate nuclei. In addition, neurons with CCK mRNA were found medially and laterally to the mediodorsal nucleus, in the midline and intralaminar nuclei. Only rare neurons with CCK mRNA were found in other nuclei (e.g., in the ventral group of nuclei). SRIF mRNA was found in many neurons of the reticular nucleus, but not in the dorsal thalamus. Neurochemical features of the human thalamus, for the genes studied here, resemble those found in the cat. SRIF may play a role in modulating dorsal thalamic impulses, which may be conveyed through CCK innervation to the striatum and, partly, to the cortex.  相似文献   

6.
Recent development of histochemical techniques has demonstrated a significant cholinergic projection from the basal forebrain to the mediodorsal and reticular thalamic nuclei. To determine whether the regional distribution of senile plaques is related to the pattern of cholinergic innervation, we studied the distribution of plaques and changes in acetylcholinesterase (AChE) reactivity in the thalamus of patients with dementia of Alzheimer type (DAT). Brains from 2 age-matched patients without neurologic or psychiatric diseases were used as controls. Eight patients with DAT could be divided to 3 groups according to the distributional pattern of plaques; scarcely distributed, localized and diffusely distributed groups. In general, plaques were preferentially distributed in such subnuclei closely related to the cerebral cortex as anterior, intralaminar, mediodorsal nuclei and posterolateral-pulvinar nuclear complex, rather than in the region that receives projections from the basal forebrain. In addition, the majority of plaques exhibited AChE reactivity, while plaques were less common in the region showing the most prominent AChE reactivity in the thalamus of control cases. The present results provide an evidence against the cholinergic hypothesis of plaque formation and indicate an active involvement of AChE in plaque formation.  相似文献   

7.
Kainic acid was injected bilaterally (4.8 micrograms in 1.2 microliter each side) into the dorsolateral pontomesencephalic tegmentum of cats in order to destroy cholinergic cells which are located within the pedunculopontine tegmental (PPT), laterodorsal tegmental (LDT), parabrachial (PB), and locus ceruleus (LC) nuclei in this species. The neurotoxic lesions resulted in the destruction of the majority (approximately 60%) of choline acetyltransferase (ChAT)-immunoreactive neurons and a minority (approximately 35%) of tyrosine hydroxylase (TH)-immunoreactive neurons, as well as in the destruction of other chemically unidentified neurons, in the region. The effects of these lesions upon the cholinergic innervation of the brain were investigated by comparison of brains with and without lesions which were processed for acetylcholinesterase (AChE) silver, copper thiocholine histochemistry and ChAT radio-immunohistochemistry. In the forebrain, a major and significant decrease in AChE staining, measured by microdensitometry, and associated with a decrease in ChAT immunoreactivity was found in certain thalamic nuclei, including the dorsal lateral geniculate, lateral posterior, pulvinar, intralaminar, mediodorsal and reticular nuclei. All of these nuclei receive a rich cholinergic innervation evident in both AChE histochemistry and ChAT immunohistochemistry. No significant difference in AChE staining or ChAT immunoreactivity was detected in other thalamic nuclei or in the subthalamus, hypothalamus or basal forebrain. In the brainstem, a significant decrease of AChE staining and ChAT immunoreactivity was found in the superior colliculus and the medullary reticular formation, where ChAT-immunoreactive fibers were moderately dense in the normal animal. These results indicate that the pontomesencephalic cholinergic neurons may influence the forebrain by major projections to the thalamus, involving both relay and non-specific thalamocortical projection systems, and thus act as an integral component of the ascending reticular system. They may influence the brainstem by projections onto deep tectal neurons and other reticular neurons, notably those in the medullary reticular formation, and thus also affect bulbar and bulbospinal systems.  相似文献   

8.
The cholinergic projections to the limbic telecephalon in the rat were investigated by use of fluorescent tracer histology in combination with choline-O-acetyltransferase (ChAT) immunohistochemistry and acetylcholinesterase (AChE) histochemistry (pharmacohistochemical regimen). Propidium iodide or Evans Blue was infused into the olfactory bulb, hippocampus, dorsal retrohippocampal region, amygdala, and the entorhinal, perirhinal, pyriform, insular, and cingular cortices. Retrogradely transported fluorescent labels and ChAT and/or AChE were microscopically analyzed on the same brain section. Virtually all of the cholinergic projections to the limbic telencephalon derived from the basal forebrain cholinergic system composed of neurons associated with the medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band, the magnocellular preoptic area, the subpallidal substantia innominata and its rostral extension into the regions of the ventral pallidum laterally and the lateral preoptic area medially, and the nucleus basalis. The cingulate cortex received a small cholinergic projection from the dorsolateral tegmental nucleus in the brainstem. All of the presumed cholinergic innervation of the olfactory bulb, hippocampus, and dorsal retrohippocampal area and the majority of cholinergic afferents to posterior cingulate and entorhinal cortices derived from the medial septal nucleus, vertical and horizontal limbs of the diagonal band, magnocellular preoptic area, and rostral substantia innominata. Putative cholinergic afferents to the amygdala and to pyriform, insular, perirhinal, and anterior cingulate cortices orginated from ChAT-positive cells concentrated more caudally in the basal forebrain cholinergic system. Within the basal forebrain, no simple topographic pattern emerged to explain the cholinergic innervation of the limbic telencephalon, although an essentially reverse rostrocaudal organization was observed for afferents to the cingular region. It was noted, however, that most regions of the limbic telencephalon received cholinergic input from rostral portions of the basal forebrain cholinergic system, an observation inviting speculation that anterior aspects of the basal forebrain provide cholinergic afferents primarily to limbic structures in the telencephalon whereas more caudal portions are the source of cholinergic fibers preferentially innervating non-limbic regions. Of the total number of projection neurons innervating a given region of the limbic telencephalon, a greater proportion was ChAT-positive if phylogenetically newer target structures were innervated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The projections of basal forebrain neurons to the thalamus and the brainstem were investigated in cats and primates by using retrograde transport techniques and choline acetyltransferase (ChAT) immunohistochemistry. In a first series of experiments, the lectin wheat germ-agglutinin conjugated with horseradish peroxidase (WGA-HRP) was injected into all major sensory, motor, intralaminar, and reticular (RE) thalamic nuclei of cats and into the mediodorsal (MD) and pulvinar-lateroposterior thalamic nuclei of macaque monkeys. In cats numerous neurons of the vertical and horizontal limbs of the diagonal band nucleus and the substantia innominata (SI), including its rostromedial portion termed the ventral pallidum (VP), were retrogradely labeled after WGA-HRP injections in the rostral pole of the RE complex, the MD, and anteroventral/anteromedial (AV/AM) thalamic nuclei. Fewer retrogradely labeled cells were observed in the same areas after injections in the ventromedial (VM) thalamic nucleus, and none or very few after other thalamic injections. After RE, MD, and AV/AM injections, 7-20% of all retrogradely labeled cells in the basal forebrain were also ChAT positive, while none of the retrogradely labeled neurons following VM injections displayed ChAT immunoreactivity. The basal forebrain projection to the MD nucleus was shown to arise principally from VP in both cats and macaque monkeys. In a second series of experiments performed in cats, injections of WGA-HRP in the brainstem peribrachial (PB) area comprising the pedunculopontine nucleus led to retrograde labeling of a moderate number of neurons in the lateral part of the VP, SI, and preoptic area (POA), only a few of which displayed ChAT immunoreactivity. In addition, a large number of retrogradely labeled cells were observed in the bed nuclei of the anterior commissure and stria terminalis after PB injections. In a third series of experiments, the use of the retrograde double-labeling method with fluorescent tracers in squirrel monkeys allowed us to identify a significant number of basal forebrain neurons sending axon collaterals to both the RE thalamic nucleus and PB brainstem area, while no double-labeled neurons were disclosed after injections confined to the ventral anterior/ventral lateral (VA/VL) thalamic nuclei and PB area or following injections in the cerebral cortex and PB area. Our findings reveal the existence of cholinergic and noncholinergic basal forebrain projections to the thalamus and the brainstem in both cats and macaque monkeys. We suggest that these projections may play a crucial role in the control of thalamic functions in mammals.  相似文献   

10.
The regional distribution of neurons containing a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor (GluR1-4) subunit immunoreactivity, relative to the distribution of cholinergic neurons within the basal forebrain of rats, was assessed using single- and dual-antigen immunocytochemistry. Analysis of serial sections stained with antibodies to nerve growth factor receptor (NGFr) and antibodies against each of the AMPA receptor subunits, GluR1-4, revealed a regional codistribution between NGFr- and GluR1- and GluR4-immunoreactive neurons in the medial septum, diagonal band nuclei and nucleus basalis magnocellularis. Quantitative dual-labelling immunocytochemistry using NGFr in combination with each of the GluR antibodies revealed >65% colocalization between NGFr and GluR4 in each of the major cholinergic nuclei in the basal forebrain and 10–15% colocalization between NGFr, GluR1 and GluR2-3. The reticular nucleus of the thalamus, a structure known to be highly susceptible to AMPA-induced neurotoxicity, expressed GluR4 immunoreactivity exclusively. The observation that cholinergic neurons of the basal forebrain are also highly sensitive to AMPA and express the GluR4 subunit suggests that GluR4 may be important in AMPA receptor-mediated excitotoxicity.  相似文献   

11.
The periaqueductal gray matter (PAG) projections to the intralaminar and midline thalamic nuclei were examined in rats. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in discrete regions of the PAG, and axonal labeling was examined in the thalamus. PHA-L was also placed into the dorsal raphe nuclei or nucleus of Darkschewitsch and interstitial nucleus of Cajal as controls. In a separate group of rats, the retrograde tracer cholera toxin beta-subunit (CTb) was injected into one of the intralaminar thalamic nuclei-lateral parafascicular, medial parafascicular, central lateral (CL), paracentral (PC), or central medial nucleus-or one of the midline thalamic nuclei-paraventricular (PVT), intermediodorsal (IMD), mediodorsal, paratenial, rhomboid (Rh), reuniens (Re), or caudal ventral medial (VMc) nucleus. The distribution of CTb labeled neurons in the PAG was then mapped. All PAG regions (the four columns of the caudal two-thirds of the PAG plus rostral PAG) and the precommissural nucleus projected to the rostral PVT, IMD, and CL. The ventrolateral, lateral, and rostral PAG provided additional inputs to most of the other intralaminar and midline thalamic nuclei. PAG inputs to the VMc originated from the rostral and ventrolateral PAG areas. In addition, the lateral and rostral PAG projected to the zona incerta. No evidence was found for a PAG input to the ventroposterior lateral parvicellular, ventroposterior medial parvicellular, caudal PC, oval paracentral, and reticular thalamic nuclei. PAG --> thalamic circuits may modulate autonomic-, nociceptive-, and behavior-related forebrain circuits associated with defense and emotional responses.  相似文献   

12.
The goal of this study was to support the hypothesis that visceral signals may integrate and influence behavior by way of direct pathways from the nucleus tractus solitarii (NTS) to the olfactory tubercle and the midline/intralaminar thalamus. An anterograde tracer, biotinylated dextran amine (BDA) was iontophoresed bilaterally into the caudal NTS to optimize terminal labeling. NTS-cortical projections traversed both limbs of the diagonal bands providing heavy innervation, and terminated lightly within layer 3 of the olfactory tubercle. NTS-thalamic projections terminated within anterior and, as previously shown, posterior divisions of nucleus paraventricularis thalami and avoided the adjoining mediodorsal thalamic nucleus. Heretofore unrecognized projections were traced to the parafascicular and reuniens thalamic nuclei, and the peripeduncular nucleus. Control experiments identified the nucleus gracilis as the principal source of ascending projections to ventroposterior lateral, posterior and intralaminar thalamic nuclei. Our data corroborate the supposition that olfactory signals may integrate with visceral stimuli in the striatal compartment of olfactory tubercle. NTS projections encompass thalamic nuclei that project topographically to the prefrontal cortex, hippocampus and ventral (limbic) striatum, regions activated by visceral stimulation. Structural data support the idea that compartments of the non-discriminative thalamus may contribute to perception and behavioral responses to visceral stimulation.  相似文献   

13.
The thalamic reticular nucleus has been shown to receive cholinergic innervation from both the nucleus basalis of Meynert in the forebrain and the pedunculopontine and laterodorsal tegmental nuclei in the brainstem (Steriade et al.: Brain Res. 408:372-376, '87; Levey et al.: Neurosci. Lett. 74:7-13, '87). Relatively dense populations of choline acetyltransferase-(ChAT) immunoreactive axons and terminallike varicosities have been shown to be distributed throughout this nucleus (Levey et al.: J. Comp. Neurol. 257:317-332, '87). In this study, the ultrastructure of ChAT-immunoreactive axons and of their synaptic terminals in the reticular nucleus was examined in the electron microscope. All ChAT-immunoreactive axonal profiles in the reticular nucleus were presynaptic; the postsynaptic elements were exclusively dendritic profiles; and no axo-axonic or axosomatic contacts from labelled axons were observed. Most ChAT-immunoreactive synaptic contacts were made by profiles less than 0.25 micron in minor diameter. Single ChAT-immunoreactive axons made synaptic contact with several dendritic profiles as the axons were followed through serial sections. These results suggest that the cholinergic innervation of the reticular nucleus will modulate the function of reticular neurons by synapsing onto the dendrites of its neurons without direct effect on the corticothalamic and thalamocortical terminals which also innervate the reticular nucleus.  相似文献   

14.
The γ-aminobutyric acid-ergic thalamic reticular nucleus (Rt), which carries matching topographical maps of both the thalamus and cortex and in which constituent cells can synaptically communicate between each other, is the major extrinsic source of thalamic inhibitions and disinhibitions. Whether all the Rt axonal projections into the thalamus are similarly organized and have common projection and innervation patterns are questions of great interest to further our knowledge of the functioning of the Rt. The present study provides architectural and morphometric data of individual, anterogradely labeled axonal arbors that arose from distinct parts of the Rt. One hundred twenty-seven Rt neurons from all regions of Rt were marked juxtacellularly with biocytin or Neurobiotin in urethane-anesthetized adult rats. Eighteen two-dimensional and 14 three-dimensional reconstructions of single tracer-filled Rt neurons were made from serial, frontal, horizontal, or sagittal sections. Both the somatodendritic and axonal fields of tracer-filled Rt cells were mapped in three dimensions and illustrated to provide a complementary stereotaxic reference for future studies. Most marked units projected to a single nucleus of the anterior, dorsal, intralaminar, posterior, or ventral thalamus. Axons emerging from cells in distinct sectors of the Rt projected to distinct nuclei. Within a sector, neurons with separate dendritic fields innervated separate regions either in a single nucleus or into different but functionally related thalamic nuclei. Neurons with an overlap of their dendritic fields gave rise either to overlapping axonal arborizations or, more rarely, to distinct axonal arbors within two different thalamic nuclei implicated in the same function. In rare instances, an Rt axon could project within these two nuclei. Thalamic reticular axons commonly displayed a single well-circumscribed arbor containing a total of about 4,000 ± 1,000 boutons. Every arbor was composed of a dense central core, which encompassed a thalamic volume of 5–63 × 106 μm3 and was made up of patches of maximal innervation density (10 ± 4 boutons/tissue cube of 25 μm each side), surrounded by a sparse component. The metric relationships between the Rt axonal arbors and the dendrites of their target thalamocortical neurons were determined. Both the size and maximal innervation density of the axonal patches were found to fit in with the somatodendritic architecture of the target cells. The Rt axonal projections of adult rats are thus characterized by their (1) well-focused terminal field with a patchy distribution of boutons and (2) parallel organization with a certain degree of divergence. The role of the Rt-mediated thalamic inhibition and disinhibition may be to contrast significant with nonrelevant ongoing thalamocortical information. J. Comp. Neurol. 391:180–203, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
The topography of the projections from the reticular nucleus of the thalamus (RT) to the intralaminar and medial thalamic nuclei were studied in the cat by the method of retrograde transport of horseradish peroxidase (HRP). Single small injections of the enzyme were made in the different intralaminar nuclei--mediodorsal, ventromedial, midline, and habenular--and in anterior group nuclei. The location and density of the neuronal labeling in the different parts of the RT were studied in each case. Our results show that 1) after injections located in all the nuclei here studied, a consistent number of labeled neurons were found in the RT, except for the injections in the lateral habenula and the anterior thalamic nuclear complex, both of which did not label neurons in the RT. 2) Among the other thalamic nuclei here studied, the most medially situated receive less numerous RT projections than those most laterally located. 3) Injections in all the nuclei studied gave rise to a cellular labeling in the anterior sectors of the RT, except for the anterior nuclear group and the lateral habenula. The projections from the rostral pole of the RT were topographically mediolaterally organized. 4) The anterodorsal part of the pregeniculate sector of the RT projects upon the large-celled part of the lateral central nucleus and to a lesser extent upon the paracentral, centromedian, and ventromedial nuclei, the anterior part of the lateral central nucleus, and the lateral band of the mediodorsal nucleus. The posterodorsal part of the RT pregeniculate sector only projects to the large-celled part of the lateral central nucleus. The dorsal portion of the posteroventral part of the RT pregeniculate sector also projects upon the large-celled part of the lateral central nucleus; its ventral portion projects to the ventromedial nucleus, the posterior part of the paracentral nucleus, the lateral band of the mediodorsal nucleus, and the centromedian nucleus. 5) The infrageniculate sector of the RT projects to the posterior part of the ventromedial nucleus. A weaker projection to the large-celled part of the lateral central nucleus, the centromedian nucleus, and the lateral band of the mediodorsal nucleus was also observed. 6) The ventral lateral geniculate nucleus projects upon the large-celled part of the lateral central nucleus, the lateral band of the mediodorsal nucleus, and the ventromedial nucleus. All these findings suggest an important modulatory action of the RT on the activity of the thalamic nuclei considered here.  相似文献   

16.
17.
In order to investigate the existence of anatomical subdivisions within the thalamic reticular nucleus (Rt), the distribution of reticular neurons expressing the calcium binding protein calretinin was investigated in the rat by means of immunocytochemistry. Calretinin immunoreactive (Cr-ir) neurons were mainly distributed in the lateral and ventral regions, and along the medial border of the Rt rostral pole. Caudal to the rostral pole, many neurons were Cr-ir in the more dorsal part of the rostral two-thirds (the “dorsal cap”) of the Rt. Fewer Cr-ir neurons were present more caudally along the lateral and medial borders, and in the caudalmost part of the nucleus, related to the acoustic thalamus. The distribution of Cr-ir neurons in the rostral Rt was compared with that of neurons projecting to the ipsilateral and contralateral anterior, intralaminar, midline, and mediodorsal nuclei, or to the contralateral rostral Rt. The retrograde transport of Fluorogold revealed a remarkably precise topography of the rostral Rt: different reticular areas were found to project to different thalamic nuclei, or to different rostrocaudal or mediolateral portions of the same thalamic nucleus, with a limited degree of overlap. The double-labeling experiments demonstrated that the reticular neurons projecting to the ipsilateral anterodorsal, midline, mediodorsal, and anterior intralaminar nuclei frequently expressed calretinin; by contrast, the majority of the reticular commissural neurons did not express the protein, with the exception of neurons projecting to the contralateral mediodorsal and midline nuclei. The ipsilaterally projecting calretinin-positive neurons were frequently located along the medial edge of the rostral pole and in the dorsal cap of the nucleus, segregated from the commissural calretinin-negative neurons. The combined analysis of calretinin expression patterns and tract tracing data provided further insight in the anatomical organization of the thalamic reticular nucleus, suggesting a different neurophysiological role for the ipsilaterally vs. the contralaterally projecting reticular neurons in the modulation of the synaptic activity of the dorsal thalamus. J. Comp. Neurol. 377:217–233, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Subcortical afferent projections to the medial limbic cortex were examined in the rat by the use of retrograde axonal transport of horseradish peroxidase. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the dorsal and ventral cingulate areas, the dorsal agranular and ventral granular divisions of the retrosplenial cortex and the presubiculum. Somata of afferent neurons in the thalamus and basal forebrain were identified by retrograde labeling. Each of the anterior thalamic nuclei was found to project to several limbic cortical areas, although not with equal density. The anterior dorsal nucleus projects primarily to the presubiculum and ventral retrosplenial cortex; the anterior ventral nucleus projects to the retrosplenial cortex and the presubiculum with apparently similar densities; and the anterior medial nucleus projects primarily to the cingulate areas. The projections from the lateral dorsal nucleus to these limbic cortical areas are organized in a loose topographic fashion. The projection to the presubiculum originates in the most dorsal portion of the lateral dorsal nucleus. The projection to the ventral retrosplenial cortex originates in rostral and medial portions of the nucleus, whereas afferents to the dorsal retrosplenial cortex originate in caudal portions of the lateral dorsal nucleus. The projection to the cingulate originates in the ventral portion of the lateral dorsal nucleus. Other projections from the thalamus originate in the intralaminar and midline nuclei, including the central lateral, central dorsal, central medial, paracentral, reuniens, and paraventricular nuclei, and the ventral medial and ventral anterior nuclei. In addition, projections to the medial limbic cortex from the basal forebrain originate in cells of the nucleus of the diagonal band. Projections to the presubiculum also originate in the medial septum. These results are discussed in regard to convergence of sensory and nonsensory information projecting to the limbic cortex and the types of visual and other sensory information that may be relayed to the limbic cortex by these projections.  相似文献   

19.
The projections from the brainstem to the midline and intralaminar thalamic nuclei were examined in the rat. Stereotaxic injections of the retrograde tracer cholera toxin beta -subunit (CTb) were made in each of the intralaminar nuclei of the dorsal thalamus: the lateral parafascicular, medial parafascicular, central lateral, paracentral, oval paracentral, and central medial nuclei; in the midline thalamic nuclei-the paraventricular, intermediodorsal, mediodorsal, paratenial, rhomboid, reuniens, and submedius nuclei; and, in the anteroventral, parvicellular part of the ventral posterior, and caudal ventral medial nuclei. The retrograde cell body labeling pattern within the brainstem nuclei was then analyzed. Nearly every thalamic site received a projection from the deep mesencephalic reticular, pedunculopontine tegmental, dorsal raphe, median raphe, laterodorsal tegmental, and locus coeruleus nuclei. Most intralaminar thalamic sites were also innervated by unique combinations of medullary and pontine reticular formation nuclei such as the subnucleus reticularis dorsalis, gigantocellular, dorsal paragigantocellular, lateral, parvicellular, caudal pontine, ventral pontine, and oral pontine reticular nuclei; the dorsomedial tegmental, subpeduncular tegmental, and ventral tegmental areas; and, the central tegmental field. In addition, most intralaminar injections resulted in retrograde cell body labeling in the substantia nigra, nucleus Darkschewitsch, interstitial nucleus of Cajal, and cuneiform nucleus. Details concerning the pathways from the spinal trigeminal, nucleus tractus solitarius, raphe magnus, raphe pallidus, and the rostral and caudal linear raphe nuclei to subsets of midline and intralaminar thalamic sites are discussed in the text. The discussion focuses on brainstem-thalamic pathways that are likely involved in arousal, somatosensory, and visceral functions.  相似文献   

20.
Anatomical methods which depend upon the anterograde axonal transport of isotopically labeled neuronal proteins or the retrograde axonal transport of the enzyme, horseradish peroxidase, have been used to elucidate the relationships between the reticular complex and the dorsal thalamus and cerebral cortex. Injections of tritiated amino acids in the dorsal thalamus or cerebral cortex in rats, cats and monkeys, show that as the bundles of thalamo-cortical and cortico-thalamic fibers joining a particular dorsal thalamic nucleus to its associated area of the cerebral cortex traverse the reticular complex, they each give rise to a dense zone of terminals occupying a sector of the reticular complex which is relatively constant for that dorsal thalamic nucleus and cortical area. However, because of the wide extent of the dendritic fields of the reticular cells and the degree of overlap between the sectors of the complex subtended by adjacent dorsal thalamic nuclei and adjacent cortical areas, it is likely that the reticular complex samples thalamo-cortical and cortico-thalamic activity in a somewhat unspecific manner. Fibers passing to the reticular complex from the intralaminar nuclei of the thalamus appear to be associated with the projection from the intralaminar nuclei to the striatum. Injections of tritiated amino acids in the reticular complex itself and injections of horseradish peroxidase in various other parts of the brain show that the only efferent pathway from the reticular complex terminates in the nuclei of the dorsal thalamus. The reticular complex does not appear to send fibers to other components of the ventral thalamus nor to the cerebral cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号