首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals carrying BRCA mutations are predisposed to breast cancer. The BRCA1 and BRCA2 proteins are required for homologous recombination and DNA break repair, leading to the suggestion that they act in concert. However, direct evidence of a stable BRCA1/BRCA2 complex has not been demonstrated. Rather, the two proteins have been found as constituents of discrete, but perhaps nonexclusive complexes that are critical for repair. We discuss the interaction of BRCA1 with the BACH1 and BARD1 proteins, and suggest that the pleiotropic nature of mutations in BRCA1 may be associated with defects in protein--protein interactions. In contrast, the role of BRCA2 in DNA repair may be more defined by its direct interaction with the RAD51 recombinase.  相似文献   

2.
Individuals carrying BRCA mutations are predisposed to breast cancer. The BRCA1 and BRCA2 proteins are required for homologous recombination and DNA break repair, leading to the suggestion that they act in concert. However, direct evidence of a stable BRCA1/BRCA2 complex has not been demonstrated. Rather, the two proteins have been found as constituents of discrete, but perhaps nonexclusive complexes that are critical for repair. We discuss the interaction of BRCA1 with the BACH1 and BARD1 proteins, and suggest that the pleiotropic nature of mutations in BRCA1 may be associated with defects in protein–protein interactions. In contrast, the role of BRCA2 in DNA repair may be more defined by its direct interaction with the RAD51 recombinase.  相似文献   

3.
BACH1 is a DNA repair protein supporting BRCA1 damage response   总被引:5,自引:0,他引:5  
Peng M  Litman R  Jin Z  Fong G  Cantor SB 《Oncogene》2006,25(15):2245-2253
The link between defects in BRCA1 and breast cancer development may be best understood by deciphering the role of associated proteins. BRCA1 associated C-terminal helicase (BACH1) interacts directly with the BRCA1 C-terminal BRCT repeats, which are important for BRCA1 DNA repair and are mutated in the majority of BRCA1 familial cancers. Thus, BACH1 is a likely candidate for mediating BRCA1 DNA repair and tumor suppression functions. Although previous evidence using overexpression of a dominant negative BACH1 has suggested that BACH1 is involved in BRCA1-DNA repair function, our results using BACH1 deficient cells provide direct evidence for involvement of BACH1 in DNA repair as well as for localizing BRCA1. Following DNA damage BACH1 is modified by phosphorylation, displays a BRCA1-like nuclear foci pattern and colocalizes with gamma-H2AX. Given that the BACH1/BRCA1 complex is unaltered by DNA damage and the intensity of BRCA1 foci is diminished in BACH1 deficient cells, BACH1 may serve to not only facilitate DNA repair, but also maintain BRCA1 in DNA damage foci.  相似文献   

4.
The ataxia-telangiectasia-mutated (ATM) kinase is a key transducer of DNA damage signals within the genome maintenance machinery and a tumour suppressor whose germline mutations predispose to familial breast cancer. ATM signalling is constitutively activated in early stages of diverse types of human malignancies and cell culture models in response to oncogene-induced DNA damage providing a barrier against tumour progression. As BRCA1 and BRCA2 are also components of the genome maintenance network and their mutations predispose to breast cancer, we have examined the ATM expression in human breast carcinomas of BRCA1/2 mutation carriers, sporadic cases and familial non-BRCA1/2 patients. Our results show that ATM protein expression is aberrantly reduced more frequently among BRCA1 (33%; P=0.0003) and BRCA2 (30%; P=0.0009) tumours than in non-BRCA1/2 tumours (10.7%). Furthermore, the non-BRCA1/2 tumours with reduced ATM expression were more often estrogen receptor (ER) negative (P=0.0002), progesterone receptor (PR) negative (P=0.004) and were of higher grade (P=0.0004). In our series of 1013 non-BRCA1/2 cases, ATM was more commonly deficient (20%; P=0.0006) and p53 was overabundant (47%; P<0.0000000001) among the difficult-to-treat ER/PR/ERBB2-triple-negative subset of tumours compared with cases that expressed at least one of these receptors (10 and 16% of aberrant ATM and p53, respectively). We propose a model of 'conditional haploinsufficiency' for BRCA1/2 under conditions of enhanced DNA damage in precancerous lesions resulting in more robust activation and hence increased selection for inactivation or loss of ATM in tumours of BRCA1/2 mutation carriers, with implications for genomic instability and curability of diverse subsets of human breast cancer.  相似文献   

5.
Doublecortin like kinase 1 (DCLK1) plays a crucial role in several cancers including colon and pancreatic adenocarcinomas. However, its role in squamous cell carcinoma (SCC) remains unknown. To this end, we examined DCLK1 expression in head and neck SCC (HNSCC) and anal SCC (ASCC). We found that DCLK1 is elevated in patient SCC tissue, which correlated with cancer progression and poorer overall survival. Furthermore, DCLK1 expression is significantly elevated in human papilloma virus negative HNSCC, which are typically aggressive with poor responses to therapy. To understand the role of DCLK1 in tumorigenesis, we used specific shRNA to suppress DCLK1 expression. This significantly reduced tumor growth, spheroid formation, and migration of HNSCC cancer cells. To further the translational relevance of our studies, we sought to identify a selective DCLK1 inhibitor. Current attempts to target DCLK1 using pharmacologic approaches have relied on nonspecific suppression of DCLK1 kinase activity. Here, we demonstrate that DiFiD (3,5-bis [2,4-difluorobenzylidene]−4-piperidone) binds to DCLK1 with high selectivity. Moreover, DiFiD mediated suppression of DCLK1 led to G2/M arrest and apoptosis and significantly suppressed tumor growth of HNSCC xenografts and ASCC patient derived xenografts, supporting that DCLK1 is critical for SCC growth.  相似文献   

6.
The prognosis and clinical management of patients with cancer is commonly determined by traditional clinical and pathological factors. Nevertheless, patients may present with significantly different clinical outcomes despite similar clinicopathological features. This has prompted intense research to find biological markers that may closely reflect tumor biology and thereby clinical outcome. This article presents the current knowledge on the prognostic significance of p27 expression in cancer and its potential role as a target for future therapy.  相似文献   

7.
CCNE1 gene amplification is present in 15-20% ovary tumor specimens. Here, we showed that Cyclin E1 (CCNE1) was overexpressed in 30% of established ovarian cancer cell lines. We also showed that CCNE1 was stained positive in over 40% of primary ovary tumor specimens regardless of their histological types while CCNE1 staining was either negative or low in normal ovary and benign ovary tumor tissues. However, the status of CCNE1 overexpression was not associated with the tumorigenic potential of ovarian cancer cell lines and also did not correlate with pathological grades of ovary tumor specimens. Subsequent experiments with CCNE1 siRNAs showed that knockdown of CCNE1 reduced cell growth only in cells with inherent CCNE1 overexpression, indicating that these cells may have developed an addiction to CCNE1 for growth/survival. As CCNE1 is a regulatory factor of cyclin-dependent kinase 2 (Cdk2), we investigated the effect of Cdk2 inhibitor on ovary tumorigenecity. Ovarian cancer cells with elevated CCNE1 expression were 40 times more sensitive to Cdk2 inhibitorSNS-032 than those without inherent CCNE1 overexpression. Moreover, SNS-032 greatly prolonged the survival of mice bearing ovary tumors with inherent CCNE1 overexpression. This study suggests that ovary tumors with elevated CCNE1 expression may be staged for Cdk2-targeted therapy.  相似文献   

8.
9.
10.
Lung cancers with neuroendocrine features are usually aggressive, although the underlying molecular mechanisms largely remain to be determined. The basic helix-loop-helix protein, achaete-scute complex-like 1/achaete-scute homologue 1 (ASH1), is expressed in normal fetal pulmonary neuroendocrine cells and lung cancers with neuroendocrine elements and is suggested to be involved in lung carcinogenesis. In the present study, we show inhibition of ASH1 expression by plasmid-based RNA interference (RNAi) to significantly suppress growth of lung cancer cells with ASH1 expression through G2-M cell cycle arrest and accumulation of sub-G1 populations, possibly linked to cleavage of caspase-9 and caspase-7. However, lung cancer cell lines without ASH1 expression and immortalized normal BEAS2B bronchial epithelial cells were not affected. The RNAi-resistant mutant ASH1 clearly induced rescue from G2-M arrest, suggesting a target-specific effect of RNAi. An ASH1-RNAi adenovirus was also established and significantly inhibited not only in vitro cell proliferation but also in vivo xenograft growth of ASH1-positive NCI-H460 cells. Elevated levels of apoptosis were also observed in NCI-H460 xenografts with the ASH1-RNAi adenovirus. The present study therefore suggests that ASH1 plays a crucial role in lung cancer development and may be an effective therapeutic target in lung cancers with neuroendocrine features.  相似文献   

11.
12.
13.
The function of BRCA1 and BRCA2 in DNA repair could affect the sensitivity of cells to cytotoxic agents, and would therefore be an important component of planning therapy for breast and ovarian cancers. Previously, both BRCA1- and BRCA2-deficient tumors were shown to be sensitive to mitomycin C, and the mechanism was presumed to be a defect in the repair of interstrand crosslinks by homologous recombination. Here, we show that both BRCA1 and BRCA2 determine the sensitivity to the cytotoxic drug, etoposide, using genetic complementation of BRCA-deficient cells. Etoposide is known to bind to topoisomerase II and prevent the resolution of the "cleavable complex," in which one DNA duplex is passed through a second duplex. The specificity of this BRCA-dependent sensitivity was confirmed by the use of aclarubicin, which is a catalytic inhibitor of topoisomerase II and prevents the formation of the cleavable complex. In the presence of aclarubicin, the differential sensitivity of BRCA-proficient and BRCA-deficient cells was lost. Thus, etoposide requires the presence of topoisomerase II to show specific sensitization in the absence of the function of BRCA1 or BRCA2. We conclude that homologous recombination is used in the repair of DNA damage caused by topoisomerase II poisons. Overall, these results suggest that etoposide is a potentially useful drug in the treatment of BRCA-deficient human cancers.  相似文献   

14.
The breast cancer susceptibility gene BRCA1 encodes a large protein thought to contribute to a variety of cellular processes, although the critical determinants of BRCA1-deficient tumorigenesis remain unclear. Given that BRCA1 is required for cell proliferation, suppressor mutations are believed to modify BRCA1 phenotypes and contribute to the etiology of BRCA1-deficient tumors. Here, we show that overexpression of the homologous recombinase RAD51 in a DT40 BRCA1Delta/Delta mutant rescues defects in proliferation, DNA damage survival, and homologous recombination (HR). In addition, epistasis analysis with BRCA1 and the DNA end-joining factor KU70 indicates that these factors operate independently of one another to repair double-strand breaks. Consistent with this genetic finding, cell synchronization studies show that the ability of BRCA1 to promote radioresistance is restricted to the late S and G2 phases of the cell cycle, as predicted for genes whose function is specific to homology-mediated repair rather than nonhomologous end-joining. Notably, retrospective analyses of microarray expression data reveal elevated expression of RAD51 and two of its late-acting cofactors, RAD54 and RAD51AP1, in BRCA1-deficient versus sporadic breast tumors. Taken together, our results indicate that up-regulation of HR provides a permissive genetic context for cells lacking BRCA1 function by circumventing its requirement in RAD51 subnuclear assembly. Furthermore, the data support a model in which enhanced HR activity contributes to the etiology of BRCA1-deficient tumors.  相似文献   

15.
Cyclin-dependent kinase 2 (CDK2) has been proposed to function as a master regulator of centrosome duplication. Using mouse embryonic fibroblasts (MEFs) in which Cdk2 has been genetically deleted, we show here that CDK2 is not required for normal centrosome duplication, maturation and bipolar mitotic spindle formation. In contrast, Cdk2 deficiency completely abrogates aberrant centrosome duplication induced by a viral oncogene. Mechanistically, centrosome overduplication in MEFs wild-type for Cdk2 involves the formation of supernumerary immature centrosomes. These results indicate that normal and abnormal centrosome duplication have significantly different requirements for CDK2 activity and point to a role of CDK2 in licensing centrosomes for aberrant duplication. Furthermore, our findings suggest that CDK2 may be a suitable therapeutic target to inhibit centrosome-mediated chromosomal instability in tumor cells.  相似文献   

16.
miRNA deregulation has been found to promote carcinogenesis. Little is known about miRNA deregulation in hereditary breast tumors as no miRNA expression profiling studies have been performed in normal breast tissue of BRCA1 and BRCA2 mutation carriers. miRNA profiles of 17 BRCA1- and 9 BRCA2-associated breast carcinomas were analyzed using microarrays. Normal breast tissues from BRCA1 and BRCA2 mutation carriers (both n = 5) and non-mutation carriers (n = 10) were also included. Candidate miRNAs were validated by qRT-PCR. Breast carcinomas showed extensive miRNA alteration compared to normal breast tissues in BRCA1 and BRCA2 mutation carriers. Moreover, normal breast tissue from BRCA1 mutation carriers already showed miRNA alterations compared to non-mutation carriers. Chromosomal distribution analysis showed several hotspots containing down- or up-regulated miRNAs. Pathway analysis yielded many similarities between the BRCA1 and BRCA2 axes with miRNAs involved in cell cycle regulation, proliferation and apoptosis. Lesser known pathways were also affected, including cellular movement and protein trafficking. This study provides a comprehensive insight into the potential role of miRNA deregulation in BRCA1/2-associated breast carcinogenesis. The observed extensive miRNA deregulation is likely the result of genome-wide effects of chromosomal instability caused by impaired BRCA1 or BRCA2 function. This study''s results also suggest the existence of common pathways driving breast carcinogenesis in both BRCA1 and BRCA2 germ-line mutation carriers.  相似文献   

17.
18.
CD133/prominin-1 is a pentaspan transmembrane glycoprotein overexpressed in various solid tumours including colorectal and glioblastomas. CD133 was found here to be highly expressed in >or=50% of pancreatic, gastric and intrahepatic cholangiocarcinomas. Quantitative flow cytometric analysis showed that a panel of established hepatocellular, pancreatic and gastric cancer cell lines expressed CD133 at levels higher than normal epithelial cells or bone marrow progenitor cells. A murine anti-human CD133 antibody (AC133) conjugated to a potent cytotoxic drug, monomethyl auristatin F (MMAF), effectively inhibited the growth of Hep3B hepatocellular and KATO III gastric cancer cells in vitro with IC(50) values of 2-7 ng ml(-1). MMAF induced apoptosis in the cancer cells as measured by caspase activation. The anti-CD133-drug conjugate (AC133-vcMMAF) was shown to internalise and colocalised with the lysosomal marker CD107a in the sensitive cell lines. In contrast, in the resistant cell line Su.86.86, the conjugate internalised and colocalised with the caveolae marker, Cav-1. Addition of ammonium chloride, an inhibitor of lysosomal trafficking and processing, suppressed the cytotoxic effect of AC133-vcMMAF in both Hep3B and KATO III. Anti-CD133-drug conjugate treatment resulted in significant delay of Hep3B tumour growth in SCID mice. Anti-CD133 antibody-drug conjugates warrant further evaluation as a therapeutic strategy to eradicate CD133+ tumours.  相似文献   

19.
Abstract: BRCA1 mutation carriers have a greater risk of developing cancers in hormone-responsive tissues like breasts and ovaries. However, this tissue-specific incidence of BRCA1 related cancers remains elusive. The majority of the BRCA1 mutated breast cancers exhibit typical histopathological features of high-grade tumors, with basal epithelial phenotype, classified as triple-negative molecular subtype and have a higher percentage of DNA damage and chromosomal abnormality. Though there are many studies relating BRCA1 with ER-α (Estrogen receptor-α), it has not been reported whether E2 (Estrogen) -ER-α signaling can modulate the DNA repair activities of BRCA1. The present study analyzes whether deregulation of ER-α signaling, arising as a result of E2/ER-α deficiency, could impact the BRCA1 dependent DDR (DNA Damage Response) pathways, predominantly those of DNA-DSB (Double Strand break) repair and oxidative damage response. We demonstrate that E2/E2-stimulated ER-α can augment BRCA1 mediated high fidelity repairs like HRR (Homologous Recombination Repair) and BER (Base Excision Repair) in breast cancer cells. Conversely, a condition of ER-α deficiency itself or any interruption in ligand-dependent ER-α transactivation resulted in delayed DNA damage repair, leading to persistent activation of γH2AX and retention of unrepaired DNA lesions, thereby triggering tumor progression. ER-α deficiency not only limited the HRR in cells but also facilitated the DSB repair through error prone pathways like NHEJ (Non Homologous End Joining). ER-α deficiency associated persistence of DNA lesions and reduced expression of DDR proteins were validated in human mammary tumors.  相似文献   

20.
PURPOSE: Germ-line mutations in the BRCA1 tumor suppressor gene predispose to early onset breast cancers with a distinct phenotype characterized by high tumor grade, aneuploidy, high proliferation rate, and estrogen receptor-negativity. The molecular mechanisms and cooperative oncogenes contributing to multistep tumor progression in cells lacking BRCA1 are not well defined. To examine whether C-MYC (MYC), a transforming oncogene associated with genetic instability, contributes to multistep tumor progression in BRCA1-associated breast cancer, we have analyzed tumors from women with hereditary BRCA1-mutated and sporadic breast cancers. EXPERIMENTAL DESIGN: We performed fluorescence in situ hybridization using a MYC:CEP8 assay on formalin-fixed paraffin-embedded tumor tissues from 40 women with known deleterious germ-line BRCA1 mutations and 62 sporadic cases, including 20 cases with hypermethylation of the BRCA1 gene promoter. RESULTS: We observed a MYC:CEP8 amplification ratio >/=2 in 21 of 40 (53%) BRCA1-mutated tumors compared with 14 of 62 (23%) sporadic tumors (P = 0.003). Of the 14 sporadic cases with MYC amplification, 8 (57%) were BRCA1-methylated. In total, MYC amplification was found in a significantly higher proportion of tumors with BRCA1 dysfunction (29 of 60, 48% versus 6 of 42, 14%; P = 0.0003). In a multivariable regression model controlling for age, tumor size, and estrogen receptor status, BRCA1-mutated tumors demonstrated significantly greater mean MYC:CEP8 ratio than sporadic tumors (P = 0.02). CONCLUSIONS: Our data indicate that MYC oncogene amplification contributes to tumor progression in BRCA1-associated breast cancers. Thus, we conclude that the aggressive histopathological features of BRCA1-associated tumors are in part due to dysregulated MYC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号