首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The predicted mutability profile (MUTPRED) of the phenylalanine hydroxylase (PAH) gene shows that the 48 CpG sites (template and atemplate strands) are either empty of known mutations (7 sites), harbour “PKU” alleles involving CpG doublets (16 sites), or contain mutations that do not involve a C→ T or G→ A substitution in the doublet. These hypermutable sites harbour 32 different mutations in association with at least 66 different haplotypes and hyperphenylalaninemia. The E280K mutation in exon 7 of the PAH gene is a cause of phenylketonuria. It occurs on four different haplotypes in Europeans and on haplotypes 1 and 2 in Quebec. Whereas a single recombination event could explain the two haplotype associations in Quebec, the mutation does involve a CpG dinucleotide. By analyzing multiallelic markers 5′ (STR) and 3′ (VNTR) to the E280K allele on 12 mutant and 30 normal chromosomes, we conclude that recurrent mutation is the likely origin of E280K in Quebec. The PAH mutation databse shows that the allele accounts for 1.5% of PKU chromosomes worlwide. Hum Mutat 9:316–321, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Glycogen storage disease type III (GSD III) is an inborn error of glycogen metabolism caused by a deficiency of glycogen debranching enzyme (AGL). Here, we investigate two unrelated Hong Kong Chinese GSD III patients and identify a novel 5-base pair deletional mutation, 2715_2719delTCAGAin exon 22, in one patient and a nonsense mutation, 1222C>T (R408X) in exon 11, in another patient. Since GSD IIIb is only caused by mutation in exon 3 of the AGL gene, we diagnose our patients to have GSD IIIa, which is consistent with the clinical diagnosis. Until now, R408X has only been reported in Faroe Islands GSDIII patients and was thought to demonstrate a founder effect. In this study, haplotyping of the disease-bearing chromosomes in the AGL locus by 19 intragenic single nucleotide polymorphisms shows that R408X is linked with IVS16+8T and IVS23-21T in our patient while R408X is linked with IVS16+8C and IVS23-21A in the Faroe Islands. The different haplotypes of R408X in Chinese and Faroese indicated that R408X is a recurrent mutation.  相似文献   

3.
The R408W mutation in the phenylalanine hydroxylase gene (PAH)of phenylketonurla patients occurs on haplotypes 2.3 and 1.8in Europeans. The mutation involves a CpG dinucleotide; nonetheless,a single recombination event might also explain the two haplotypeassociations. By analysis of an STR in the PAH gene 5' to the408 codon and of the VNTR system in the 3' UTR, we identifiedunique features of the haplotype 1.8 chromosome harbouring theR408W mutation which are not accounted for by recombination.We conclude that recurrent mutation is the origin of R408W ondifferent PAH haplotypes in Europeans.  相似文献   

4.
Mutations at the phenylalanine hydroxylase (PAH) locus are the major cause of hyperphenylalaninemia. We have previously described four mutations (M1V, IVS12nt1, R408W, and S349P) at the PAH locus in French Canadians with ancestry in eastern Quebec. Here we report (1) identification of another mutation, on a haplotype 9 chromosome, which converts codon 65 from isoleucine (ATT) to threonine (ACT), (2) expression analysis of the I65T mutation in COS cells demonstrating 75% loss of both immunoreactive protein and enzyme activity, and (3) expression analysis of the most prevalent PKU allele (M1V) in eastern Quebec, showing nondetectable levels of PAH protein and activity, a finding compatible with a mutation in the translation initiation codon. Homozygosity for M1V and codominant inheritance of I65T/R408W were both associated with classical phenylketonuria.  相似文献   

5.
Mutations, haplotypes, and other polymorphic markers in the phenylalanine hydroxylase (PAH) gene were analysed in 133 unrelated Czech families with classical phenylketonuria (PKU). Almost 95% of all mutant alleles were identified, using a combination of PCR and restriction analysis, denaturing gradient gel electrophoresis (DGGE), and sequencing. A total of 30 different mutations, 16 various RFLP/VNTR haplotypes, and four polymorphisms were detected on 266 independent mutant chromosomes. The most common molecular defect observed in the Czech population was R408W (54.9%). Each of the other 29 mutations was present in no more than 5% of alleles and 13 mutations were found in only one PKU allele each (0.4%). Four novel mutations G239A, R270fsdel5bp, A342P, and IVS11nt-8g-->a were identified. In 14 (5.1%) alleles, linked to four different RFLP/VNTR haplotypes, the sequence alterations still remain unknown. Our results confirm that PKU is a heterogeneous disorder at the molecular level. Since there is evidence for the gene flow coming from northern, western, and southern parts of Europe into our Slavic population, it is clear that human migration has been the most important factor in the spread of PKU alleles in Europe.  相似文献   

6.
Characterization of the molecular basis of phenylketonuria (PKU) in Latvia has been accomplished through the analysis of 96 unrelated chromosomes from 50 Latvian PKU patients. Phenylalanine hydroxylase (PAH) gene mutations have been analyzed through a combined approach in which R158Q, R252W, R261Q, G272X, IVS10-11G>A and R408W mutations were first screened for by PCR or restriction generating PCR amplification of PAH gene exons 5, 7, 11 and 12 followed by digestion with the appropriate diagnostic enzyme. Subsequently 'broad range' denaturing gradient gel electrophoresis analysis of the 13 PAH gene exons has been used to study uncharacterized PKU chromosomes. A mutation detection rate of 98% was achieved. 12 different mutations were found, with the most frequent mutation, R408W, accounting for 76% of Latvian PKU alleles. Six mutations (R408W, E280K, R158Q, A104D, R261Q and P281L) represent 92% of PKU chromosomes. PAH VNTR and STR alleles have been also identified and minihaplotype associations with PKU mutations were also determined.  相似文献   

7.
The mutation spectrum and polymorphic haplotype background in 22 Romanian families have been analysed in this study using the restriction digestion of phenylalanine hydroxylase (PAH) regions specifically amplified or the DGGE/direct sequencing methods. Eleven PAH mutations specifically associated with six mutant haplotypes were detected. In spite of the relative heterogeneity of the molecular defects in the PAH gene, three mutations covered almost 70% of all alleles: R408W, 47.72%, 21/44; K363fsdelG 13.63%, 6/44; and P225T 6.81%, 3/44. Among these, R408W, the most frequent mutation in our population, represented 50% of all the phenylketonuric (PKU) chromosomes. Splice mutation IVS12nt1g→a affected two PAH alleles (4.54%); the remaining seven mutations were rare, each having an effect on just one chromosome (1/44), resulting in a relative frequency of 2.27%. A high frequency was observed in our PKU samples for the relatively uncommon mutations, K363fsdelG and P225T mutation, suggesting a possible founder effect at origin. Within the investigated panel, these mutations, both very rare among other Caucasians were exclusively linked to haplotype 5.8 and 1.7, respectively. These results provide a basis for the development of a routine molecular analysis of Romanian PKU families. Hum Mutat 12:314–319, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

8.
We analyzed the data regarding six Japanese ataxia-telangiectasia (A-T) patients from four unrelated families, at the DNA level, to search for possible common mutations in the Japanese population. Among eight mutant alleles in the four families, c. 4612del165 (exon 33 skipping) was identified in two alleles, and c. 5749A to T (R1917X), c. 7471T to C (W2491R), c.7883del5, and c. 8725A to G (R2909G) were identified in one allele each. We found no mutations in the other two alleles. The IVS33+2T→A mutation was identified at the genomic level as the cause of exon 33 skipping. We also identified the IVS33+2T→A mutation in a Japanese patient ATL105 who was previously found to be a homozygote of c. 4612del165. W2491R and R2909G mutations were not detected in more than 100 control Japanese alleles. The latter is located in a highly conserved PI-3 kinase domain and is a completely conserved residue among ATM-related proteins. Taken together with previously documented mutations in five other Japanese A-T patients, IVS33+2T→A and 7883del5 were identified in four and five alleles, respectively, in a total of 18 mutant alleles of Japanese A-T patients. These results suggest that these two mutations are relatively common mutations in the Japanese population. Hum Mutat 12:338–343, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

9.
Homocystinuria is most frequently due to deficiency of cystathionine beta-synthase (CBS). We identified IVS12 as a polymorphism hot spot of the human CBS gene and report five novel single nucleotide polymorphisms (SNPs): g.13514G>A, g.13617A>G, g.13715C>T, g.13800G>A, and g.13904C>T. Analyzing 50 control DNA samples of unaffected and unrelated subjects of German origin the observed frequencies of heterozygosity were 0.02, 0.36, 0.18, 0.36, and 0.36, respectively. These polymorphic markers were combined into four distinct IVS12-haplotypes A1, A2, B1, and B2, revealing frequencies of 0.75, 0.01, 0.15, and 0.09, respectively, with an observed overall frequency of heterozygosity at 0.38. This haplotype system and the SNP c.699 were employed in the analysis of ten alleles affected by the most prevalent CBS mutation, c.833T>C (exon 8; I278T). We found that the I278T alleles segregate with at least two distinct haplotypes characterized by upstream and downstream polymorphic sites instead of sharing a common ancestral haplotype. This was a remarkable finding even in patients with very similar ethnic background. The novel haplotype system may facilitate future studies on the evolution of the CBS gene and might be suited for genotyping of families affected by homocystinuria.  相似文献   

10.
To better characterize Niemann-Pick type C (NPC) in Spain and improve genetic counselling, molecular analyses were carried out in 40 unrelated Spanish patients. The search identified 70/80 alleles (88%) involving 38 different NPC1 mutations, 26 of which are described for the first time. No patient with NPC2 mutations was identified. The novel NPC1 mutations include 14 amino acid substitutions [R372W (c.1114C>T), P434L (c.1301C>T), C479Y (c.1436G>A), K576R (c.1727G>A), V727F (c.2179G>T), M754K (c.2261T>A), S865L (c.2594C>T), A926T (c.2776G>A), D948H (c.2842G>C), V959E (c.2876T>A), T1036K (c.3107C>A), T1066N (c.3197C>A), N1156I (c.3467A>T) and F1224L (c.3672C>G)], four stop codon [W260X (c.780G>A), S425X (c.1274C>A), C645X (c.1935T>A) and R1059X (c.3175C>T)], two donor splice-site mutations [IVS7+1G>A (g.31432G>A) and IVS21+2insG (g.51871insG)], one in-frame mutation [N961_F966delinsS (c.2882del16bpins1bp)] and five frameshift mutations [V299fsX8 (c.895insT), A558fsX11 (c.1673insG), C778fsX10 (c.2334insT), G993fsX3 (c.2973_78delG) and F1221fsX20 (c.3662delT)]. We also identified three novel changes [V562V (c.1686G>A), A580A (c.1740C>G) and A1187A (c.3561G>T)] in three independent NPC patients and five polymorphisms that have been described previously. The combination of these polymorphisms gave rise to the establishment of different haplotypes. Linkage disequilibrium was detected between mutations C177Y and G993fsX3 and specific haplotypes, suggesting a unique origin for these mutations. In contrast, I1061T mutation showed at least two different origins. The most prevalent mutations in Spanish patients were I1061T, Q775P, C177Y and P1007A (10, 7, 7 and 5% of alleles, respectively). Our data in homozygous patients indicate that the Q775P mutation correlates with a severe infantile neurological form and the C177Y mutation with a late infantile clinical phenotype.  相似文献   

11.
The genetic defects responsible for most phenylketonuria (PKU) and hyperphenylalaninemia (HPA) cases are located in the phenylalanine hydroxylase (PAH) gene. Approximately 50-60 mutations have been reported in Caucasians and are reflected in a wide range of clinical severities. Most mutations are linked to specific haplotypes, as defined by eight polymorphic restriction sites in the PAH gene. We hypothesized that there is at least one mild mutation linked to haplotype 12 in the Swedish PKU/HPA population, since 7 of 8 patients carrying haplotype 12 had mild HPA. Sequence analysis revealed a C-to-G transversion at the second base of codon 322, resulting in a substitution of glycine for alanine, in four mutant haplotype 12 genes, and a G-to-A transition at the second base of codon 408, resulting in a substitution of glutamine for arginine, in another three mutant haplotype 12 genes. These mutations segregated with mutant haplotype 12 alleles in nuclear families but were not present on normal or other mutant alleles. Both mutations were tested in a eukaryotic expression system in which enzyme activities of different mutant PAH enzymes reflect the relative severities of the mutations, although these in vitro activities cannot be translated directly into in vivo hepatic activities. The A322G mutant PAH had about 75% and the R408Q mutant PAH about 55% of the wild-type PAH enzyme activity. These in vitro activities are the highest reported for mutant PAH enzymes produced in the same expression system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The R408W phenylketonuria mutation in Europe has arisen by recurrent mutation in the human phenylalanine hydroxylase (PAH) locus and is associated with two major PAH haplotypes. R408W-2.3 exhibits a west-to-east cline of relative frequency reaching its maximum in the Balto-Slavic region, while R408W-1.8 exhibits an east-to-west cline peaking in Connacht, the most westerly province of Ireland. Spatial autocorrelation analysis has demonstrated that the R408W-2.3 cline, like that of R408W-1.8, is consistent with a pattern likely to have been established by human dispersal. Genetic diversity within wild-type and R408W chromosomes in Europe was assessed through variable number tandem repeat (VNTR) nucleotide sequence variation and tetranucleotide short tandem repeat (STR) allelic associations. Wild-type VNTR-8 chromosomes exhibited two major cassette sequence organizations: (a1)5-b3-b2-c1 and (a1)5-b5-b2-c1. R408W-1.8 was predominantly associated with (a1)5-B5-B2-C1. Both wild-type vntr-3 and r408w-2.3 chromosomes exhibited a single invariant cassette sequence organization, a2-b2-c1. STR allele distributions associated with the cassette variants were consistent with greater diversity in the wild-type VNTR-8 lineage and were suggestive of different levels of diversity between R408W-1.8 and R408W-2.3. The finding of greater genetic diversity within the wild-type VNTR-8 lineage compared to VNTR-3 suggests that VNTR-8 may be older within the European population. However, in the absence of a more extensive STR data-set, no such conclusions are possible for the respective R408W mutant lineages.  相似文献   

13.
Glutaric aciduria type 1 (GA1), resulting from the genetic deficiency of glutaryl-CoA dehydrogenase (GDH), is a relatively common cause of acute metabolic brain damage in infants. Encephalopathic crises may be prevented by carnitine supplementation and diet, but diagnosis can be difficult as some patients do not show the typical excretion of large amounts of glutaric and 3-hydroxyglutaric acids in the urine. We present a rapid and efficient denaturing gradient gel electrophoresis (DGGE) method for the identification of mutations in the glutaryl-CoA dehydrogenase (GCDH) gene that may be used for the molecular diagnosis of GA1 in a routine setting. Using this technique, we identified mutations on both alleles in 48 patients with confirmed GDH deficiency, while no mutations were detected in other patients with clinical suspicion of GA1 but normal enzyme studies. There was a total of 38 different mutations; 27 mutations were found in single patients only, and 21 mutations have not been previously reported. Fourteen mutations involved hypermutable CpG sites. The commonest GA1 mutation in Europeans is R402W, which accounts for almost 40% of alleles in patients of German origin. GCDH gene haplotypes were determined through the analysis of polymorphic markers in all families, and three CpG mutations were associated with different haplotypes, possibly reflecting independent recurrence. The high sensitivity of the DGGE method allows the rapid and cost efficient diagnosis of GA1 in instances where enzyme analyses are not available or feasible, despite the marked heterogeneity of the disease.  相似文献   

14.
N-acetyltransferase (NAT2) is an enzyme involved in detoxification of various carcinogens. The gene is highly polymorphic with a number of alleles, and is also known as acetylator phenotypes: the fast, intermediate and slow acetylators. In this report, we describe a novel NAT2 allele, which was found in the allele typing with 109 Japanese individuals using conventional restriction fragment length polymorphism (RFLP) method. The sequence analyses of the entire amino acid coding region of the novel allele showed that it possessed a 190C>T variation leading to an amino acid substitution from arginine to tryptophan at position 64 (R64W). Consequently, the novel allele we found has been given the name of NAT2*19 by the arylamine N-acetyltransferase nomenclature committee.  相似文献   

15.
This allele is characterized by a nucleotide substitution (C>T) in exon 4 at position nt 672, codon 200 (ACC>ACT), no coding change.  相似文献   

16.
一例HLA-A新等位基因A*3308的测序分析   总被引:1,自引:0,他引:1  
目的研究HLA新的等位基因HLA-A*3308的分子机制。方法样本DNA抽提采用PEL-FREEZ抽提试剂盒,应用PCR方法扩增先证者HLA-A基因的第1~8外显子,PCR产物直接经TOPO转染克隆到质粒载体中获得等位基因的单链,对所得克隆进行第2、3、4外显子双向测序分析。结果先证者样本克隆测序得到两个等位基因,其中1个等位基因为A*0201,另一个经BIAST验证其为新的等位基因,新的等位基因序列已递交GenBank(DQ089631,DQ089632,DQ089633)。与最接近的A*3303等位基因序列相比,新的等位基因在第2外显子上有5个核苷酸不同,即第240位A→T,第256位C→G,第259位A→G,第261位C→G和第270位T→A;这导致3个氨基酸改变:第62位Arg→Gly、第63位Asn→Glu和第66位Asn→Lys。结论该等位基因为新的HLA-A等位基因,被世界卫生组织HLA因子命名委员会正式命名为HLA-A*3308.  相似文献   

17.
The novel HLA-Cw*070206 allele differs from the closest allele Cw*07020101 by single nucleotide change at genomic DNA nt 877 C>T (codon 143 ACC > ACT) in exon 3.  相似文献   

18.
In order to elucidate the clinical homogeneity and severity of the hyperphenylalaninaemias in Poland, a total of 71 children with typical phenylketonuria (PKU) originating from western and northern Poland were screened for 13 mutations in the phenylalanine hydroxylase (PAH) gene. Eighty percent of all PKU alleles tested were found to carry an identified mutation. One mutation, namely the R408W mutation, accounted for more than 63% of mutant PAH alleles in Poland, the other 27% being accounted for by six mutations: IVS12nt1 (5%), IVSnt546 (5%), Y414C (4%), R252W (1.5%), R261Q (< 1%), and G272ter (< 1%). The predominance of the R408W mutation resulted in a high rate of homozygotes (35.2%) and compound heterozygotes for this mutation in children from western and northern Poland. The frequency and deleterious nature of this mutation probably accounts for the clinical homogeneity and severity of the hyperphenylalaninaemias in Poland. In addition, the high rate of the R408W mutation and its association with mutant haplotype 2 at the PAH locus in Poland give additional support to the Balto-Slavic origin of this mutant gene.  相似文献   

19.
We have estimated the haplotype distribution of mutant and normal phenylalanine hydroxylase (PAH) alleles for 17 Turkish phenylketonuria (PKU) families: 20 normal and 27 mutated PAH alleles could be identified. Of the latter, the most prevalent were associated with haplotype 6 (29.6%), 1 (18.5%) and 36 (11.1%), while the normal alleles were preferentially associated with haplotype 1 (20%). Of the 19 different haplotypes observed, 5 have not been described previously. The haplotype distribution differed significantly from that of the Northern European population. Two of the eight polymorphic sites were in association with PKU. No deletions of exon sequences were found in the families analysed.  相似文献   

20.
Celiac disease (CD) is a T-cell-mediated chronic inflammatory disease characterized by autoimmune, immunological and environmental components, where genetic factors in addition to the main known risk factors (gliadin and human leukocyte antigen (HLA)-DQ haplotypes) are supposed to be involved. CD14 is a multifunctional receptor involved in the bacterial lipopolysaccharides-dependent signal transduction. The CD14 gene maps on the long arm of chromosome 5 (5q22-q32), a 'hotbed' region for CD; promoter polymorphisms are known to influence its expression. In this study we analyzed three CD14 promoter polymorphisms (c.-1359G>T, c.-1145A>G and c.-159C>T, ) in 938 CD Italian patients and 533 healthy controls, with known HLA-DQ haplotypes, with the aim of evaluating their possible association with the disease. The c.-1145A>G G and c.-159C>T T alleles (as well as the combination of the two alleles in the GT haplotype), were identified as susceptibility factors for CD development, being significantly more frequent in CD patients than in healthy controls. This association was also confirmed when the analysis was restricted to only those subjects characterized by HLA-DQ risk haplotypes. Our results indicate the involvement of CD14 gene polymorphisms in the susceptibility to CD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号