首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
1. Agonists may act at any one of three sites on the N-methyl-D-aspartate (NMDA) receptor-effector complex to promote opening of the associated ion channel. The three sites are activated by i) NMDA, L-glutamate, aspartate, and other dicarboxylic amino acids; ii) glycine, D-serine, D-cycloserine, and others; iii) the polyamines spermine or spermidine, but not cadaverine or putrescine. 2. This opening by exogenous agonists is reflected by an enhanced binding of the phencyclidine-like dissociative anesthetic [3H]MK-801 to rat cortical membranes (well washed to remove endogenous agonists, e.g., L-glutamate, glycine). 3. The effects of adding combinations of agonists yielded stimulation approximately equal to the sum of each agonist's effect, suggesting that in the first approximation the three classes act at independent sites. 4. When the glutamate (E) site was antagonized with D-2-amino-5-phosphonopentanoate (D-AP5), no stimulation in binding could be elicited by agonists at the two other sites. Activation of the E site is therefore necessary but not sufficient for channel opening. 5. When the glycine (G) site was antagonized with 7-chlorokynurenate, no stimulation in binding could be elicited by agonists at the other two sites. Activation of the G site is therefore necessary but not sufficient for channel opening. 6. Of the two putative antagonists for the polyamine (PA) site, ifenprodil fails to completely inhibit the binding of [3H]MK-801, whereas arcaine inhibited [3H]MK-801 binding completely. We present data which question the selectivity of arcaine for the polyamine site, and propose that the polyamine site is merely modulatory, but neither necessary nor sufficient, for channel opening.  相似文献   

2.
R Sircar  S R Zukin 《Brain research》1991,556(2):280-284
Glycine potentiates N-methyl-D-aspartate (NMDA) receptor-mediated responses via its interaction with a strychnine-insensitive glycine recognition site. We have previously shown that the potent glycine receptor antagonist 7-chlorokynurenic acid (7Cl-KYN) dose-dependently inhibits [3H]MK-801 binding to the PCP receptor and that this effect is reversed by glycine. [3H]MK-801 binding to the PCP receptor within the NMDA receptor-gated ion channel is a measure of channel activation. Association of PCP receptor ligands is biexponential with the fast component of binding serving as a marker of activated NMDA channels. In the present study we utilize 7Cl-KYN as a probe of the kinetic mechanism of the glycine effect upon NMDA receptor functioning. In the presence of L-glutamate, incubation with 7Cl-KYN completely abolished the fast component of [3H]MK-801 association in 4 out of 5 experiments. In the fifth experiment where the fast component was detected, it accounted for less than half of that seen in the presence of L-glutamate alone. 7Cl-KYN-induced inhibition of the fast component of [3H]MK-801 association was reversed by the addition of glycine. Since the fast component represents ligand binding to the PCP receptor via the open NMDA channel, selective reduction of this component by 7Cl-KYN indicates that glycine receptor antagonists reduce the probability of channel opening, and also that the selective reduction in the component of [3H]MK-801 binding that manifests fast kinetics can serve as a marker for glycine antagonists.  相似文献   

3.
M Kessler  M Baudry  G Lynch 《Brain research》1989,489(2):377-382
Membranes from rat telencephalon contain strychnine-insensitive glycine binding sites associated with NMDA receptors. Three quinoxaline derivatives, among them the high-affinity AMPA receptor antagonists CNQX and DNQX, were found to inhibit [3H]glycine binding to these sites with micromolar affinities. Binding of these compounds to the glycine site also inhibited glutamate-stimulated association and dissociation of [3H]TCP. This suggests that these AMPA antagonists, like the structurally related compound kynurenate, act as glycine site antagonists.  相似文献   

4.
S A Cohen  W E Müller 《Brain research》1992,584(1-2):174-180
The effect of aging on the properties of N-methyl-D-aspartate (NMDA) receptors in the forebrain of female NMRI mice was investigated using the antagonist [3H]MK-801 as radioligand. Compared to young (3 months) mice, aged (20 months) mice showed changes of the properties of the NMDA receptor at three different levels: (1) the density was reduced by about 35%; (2) the efficacy of L-glutamate and glycine for stimulating specific [3H]MK-801 binding was enhanced, probably because more NMDA receptor-associated ion channels are closed under baseline conditions in the aged brain; (3) the affinity of L-glutamate and glycine to its binding sites at the NMDA receptor complex was also enhanced. Chronic treatment of aged mice with phosphatidylserine (20 mg/kg, i.p., once daily) for three weeks completely normalized enhanced efficacy and affinity of L-glutamate and glycine and elevated NMDA receptor density by approximately 25%. These findings are consistent with the assumptions that deficits of the NMDA receptor are one of the mechanisms of age-related cognitive impairment and that the beneficial effects of phosphatidylserine treatment on cognitive deficits of aged individuals might be partially due to the effects of this drug on age-related NMDA receptor deficits.  相似文献   

5.
Zinc through a zinc binding site is known to modulate the binding of agonists at the NMDA receptor. In the present study, the ability of zinc oxide to alter the specific binding of [3H]CGP-39653, a competitive NMDA receptor antagonist, was determined in homogenate of rat brain tissue. Analysis of saturation experiments indicated that zinc oxide significantly increased the Kd without changing Bmax of [3H]CGP-39653 binding. Furthermore, the effect of ZnO on glutamate and glycine displacement of [3H]CGP-39653 binding was determined. The results of the [3H]CGP-39653 displacement study indicated that ZnO decreases the glutamate and glycine displacement of [3H]CGP-39653 binding.  相似文献   

6.
Polyamines such as spermidine potentiate activation of the N-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. The goal of the present study was to investigate interactions between the putative polyamine binding site and previously described sites for glutamate and glycine. Binding of the high-potency PCP receptor ligand [3H]MK-801 to well-washed rat brain membranes was used as an in vitro probe of NMDA receptor activation. Spermidine concentration-response studies were performed in the absence and presence of both glutamate and glycine, with and without D-(-)-2-amino-5-phosphonovaleric acid (D(-)-AP-5) or 7-chlorokynurenic acid (7Cl-KYN). Incubation in the presence of spermidine alone induced a 20.4-fold increase in [3H]MK-801 binding with an EC50 value of 13.3 microM. The mean concentration of spermidine which induced maximal stimulation of binding was 130 microM (n = 10, S.E.M. = 24.66, range = 25-250 microM). Glutamate (10 microM) decreased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding to 3.4 microM. Glycine (10 microM) did not significantly alter either maximum spermidine-induced [3H]MK-801 binding or the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding. Incubation in the presence of the specific glutamate antagonist D(-)AP-5 attenuated [3H]MK-801 binding in a glutamate-reversible fashion. The competitive glycine antagonist 7Cl-KYN decreased maximum spermidine-induced [3H]MK-801 binding in a glycine-reversible fashion. In addition, 7Cl-KYN increased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding while D(-)AP-5 was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Polyamines such as spermidine potentiate activation of theN-methyl-D-aspartate (NMDA)-type excitatory amino acid receptor. The goal of the present study was to investigate interactions between the putative polyamine binding site and previously described sites for glutamate and glycine. Binding of the high-potency PCP receptor ligand [3H]MK-801 to well-washed rat brain membranes was used as an in vitro probe of NMDA receptor activation. Spermidine concentration-response studies were performed in the absence and presence of both glutamate and glycine, with and withoutD-(−)-2-amino-5-phosphonovaleric acid (D(−)AP-5) or 7-chlorokynurenic acid (7Cl-KYN). Incubation in the presence of spermidine alone induced a 20.4-fold increase in [3H]MK-801 binding with an EC50 value of 13.3 μM. The mean concentration of spermidine which induced maximal stimulation of binding was 130 μM (n = 10,S.E.M.= 24.66,range= 25–250 μM). Glutamate (10 μM) decreased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding to 3.4 μM. Glycine (10 μM) did not significantly alter either maximum spermidine-induced [3H]MK-801 binding or the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding. Incubation in the presence of the specific glutamate antagonistD(−)AP-5 attenuated [3H]MK-801 binding in a glutamate-reversible fashion. The competitive glycine antagonist 7Cl-KYN decreased maximum spermidine-induced [3H]MK-801 binding in a glycine-reversible fashion. In addition, 7Cl-KYN increased the EC50 value for spermidine-induced stimulation of [3H]MK-801 binding whileD(−)AP-5 was without effect. These findings suggest that glutamate and glycine regulate the polyamine binding site differentially. PCP-like agents induce a psychotomimetic state closely resembling schizophrenia by inhibiting NMDA receptor-mediated neurotransmission. The ability of polyamines to modulate NMDA receptor functioning suggests a potential site for pharmacological intervention.  相似文献   

8.
The present study was performed to examine the analgesic effects of the intrathecal administration of agents acting at various sites in the N -methyl- d -aspartic acid (NMDA) receptor complex on the nociceptive responses to s.c. formalin injection in rats. Both the competitive NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV) and the non-competitive NMDA antagonist dizocilpine maleate (MK-801) produced dose-dependent analgesic effects in the late, but not the early, phase of the formalin test. The polyamine antagonist ifenprodil, and the strychnine-insensitive glycine antagonists DCQX and 7-chlorokynurenic acid, failed to produce any analgesic effects in either the early or the late phase of the formalin test. The analgesic effects of APV were enhanced slightly by combined administration with a non-analgesic dose of glycine, and the analgesic effects of MK-801 were dramatically potentiated by combined adminstration of a non-analgesic dose of the polyamine spermine. The results indicate that much more potent analgesia can be produced in the formalin test by a combination of open channel blockers (such as MK-801) with agonists acting at the polyamine site, than by a single treatment with antagonists to either glycine allosteric or polyamine sites within the NMDA receptor complex.  相似文献   

9.
Glycine modulation of the phencyclidine binding site in mammalian brain   总被引:5,自引:0,他引:5  
Neurophysiological studies have shown that glycine potentiates the NMDA response in cultured neurons by a strychnine-insensitive mechanism. Autoradiographic data have demonstrated a correspondence between strychnine-insensitive [3H]glycine binding sites and NMDA-sensitive [3H]glutamate binding sites. Here we report that in synaptic plasma membranes from rat brain, the binding of a PCP analog, [3H]TCP, was enhanced more than 5-fold by 1 microM glycine. This glycine stimulation of binding of [3H]TCP was blocked by the competitive NMDA-receptor antagonist, D-AP7. These data provide support for the hypothesis that a unique amino acid recognition site is associated with the proposed NMDA/PCP receptor complex in brain.  相似文献   

10.
The injection into the rat striatum of the polyamines spermine and spermidine (30-300 nmol) produced, 1 week after injection, a dose related loss of the neuronal markers glutamate decarboxylase and choline acetyltransferase and a decrease in the density of N-methyl-D-aspartate (NMDA) receptors (as labelled with [3H]TCP). In parallel, an increase in peripheral type benzodiazepine (p) binding site density (a marker of the associated glial reaction and macrophage invasion) was observed. Intrastriatal injection of putrescine (300 nmol) did not significantly alter any of these markers. The effect of spermine on these neuronal and glial markers was maximal 3 days after injection, and tended towards control levels at 16 days post injection. The neurotoxic effects of spermine were confirmed by histological analysis demonstrating a massive neuronal loss around the injection site and an accumulation of astrocytes and phagocytes. The neurotoxic effects of spermine (250 nmol) were not antagonised by the previous administration of the NMDA receptor antagonist MK-801 (10 mg/kg, i.p.). Thus polyamine neurotoxicity in vivo does not seem to involve NMDA receptor activation, although it may possibly be related to the multiple effects of these compounds on diverse calcium channels and processes regulating calcium homoeostasis.  相似文献   

11.
The N-methyl-D-aspartate (NMDA) receptor plays an important role in developmental plasticity. Previous studies have reported differences between the NMDA receptor-channel complex in the rat pup brain and the adult brain. In the present study, modulation of the NMDA channel complex as a function of age was measured to determine when the temporal switching of the NMDA receptor from the immature form to the adult mature form takes place. [(3)H]MK-801 binding was measured in the rat forebrain from postnatal day 1 to day 21. Our data suggest the presence of two types of NMDA receptors - an immature type and a mature type. The immature NMDA receptor, seen during the early postnatal period (day 1-day 14) is highly sensitive to spermidine, L-glutamate alone potentiates [(3)H]MK-801 binding, and glycine failed to potentiate an L-glutamate-induced increase in [(3)H]MK-801 binding. During the late postnatal period (after day 14) spermidine alone did not increase [(3)H]MK-801 binding as potently as it did during the early postnatal period, high-affinity [(3)H]MK-801 binding was not seen in the presence of L-glutamate alone, and L-glutamate and glycine or L-glutamate and spermidine or L-glutamate, glycine and spermidine together, significantly increased [(3)H]MK-801 binding in a manner similar to that reported in the adult brain. Together, the pharmacology of the NMDA receptor during the early postnatal period differs from the adult-like receptor seen during the late postnatal period, and that in rats the apparent switching of the NMDA receptor from the immature type to the mature type takes place after the second postnatal week.  相似文献   

12.
Among over 60 polyamine derivatives tested, onlyN-(3-aminopropyl)octanediamine and bis-(3-aminopropyl)nonanediamine (TE393) markedly inhibited [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) binding at equilibrium in the presence of added spermidine (SPD) in “non-washed” rat brain synaptic membranes, without affecting that in the absence of added SPD. Although TE393 significantly potentiated [3H]MK-801 binding before equilibrium in the presence ofl-glutamic acid (Glu) alone or both Glu and glycine (Gly) added in “Triton-treated” membranes, the putative polyamine antagonists 1,10-decanediamine (DA10) and arcaine invariably inhibited binding irrespective of the addition of agonists. In the absence of added SPD, in addition, TE393 markedly enhanced abilities of both Glu and Gly to potentiate [3H]MK-801 binding before equilibrium. However, TE393 induced a rightward shift of the concentration-response curve of SPD for [3H]MK-801 binding before equilibrium. Moreover, TE393 was effective in potentiating binding of an antagonist but not an agonist radioligand to the NMDA domain and in inhibiting binding of an antagonist but not an agonist radioligand to the Gly domain. The potentiation of NMDA antagonist binding by TE393 occurred in a manner sensitive to prevention by arcaine but not by DA10. These results suggest that TE393 may be a novel ligand at the polyamine domain with an ability to interact with both the NMDA and Gly recognition domains in antagonist-preferring forms.  相似文献   

13.
The feeding behaviour of the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) is modulated by a number of molecules acting as neurotransmitters in other nervous systems. Here we present biochemical and functional evidence of the occurrence of putative NMDA receptors in Hydra tissues. Saturation experiments showed the presence of one population of binding sites with nanomolar affinity and low capacity for [3H]MK-801. Before equilibrium, [3H]MK-801 binding was increased by the agonists glutamate and glycine as well as by reduced glutathione (GSH). In vivo the glutamate receptor agonist NMDA markedly decreased the duration of the response to GSH. This effect was linearly related to ligand doses in the nanomolar concentration range and was counteracted by either the NMDAR-specific antagonist D-AP5 or by the d-serine antagonist DCKA. When NMDA concentration was increased to 10 or 100 microm, duration of the response to GSH was no longer affected unless the lectin concanavalin A, which prevents receptor desensitization in other systems, was added to the test medium. Simultaneous administration of ineffective doses of NMDA and strychnine, glycine or d-serine, an agonist at the glycine binding site of the NMDA receptor in vertebrate CNS, resulted in a strong reduction of response duration. Both D-AP5 and DCKA suppressed this effect. These results, together with the decrease in response duration produced by d-serine, support the hypothesis that NMDA-like glutamate receptors may occur in Hydra tissues where they are involved in modulation of the response to GSH with opposite actions to those of GABA and glycine.  相似文献   

14.
Biochemical and electrophysiological studies have demonstrated that phencyclidine (PCP) recognition site exists in the ion channel of the N-methyl-D-aspartate (NMDA) receptor ion channel complex. Using an extensively washed rat cortical membrane preparation, the effects of Mg2+ and guanylylimidodiphosphate (GppNHp) were examined on the binding of [3H]-N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine ([3H]TCP). Low concentrations of Mg2+ (EC50 = 11 microM) stimulated [3H]TCP binding under the basal condition and high concentrations of Mg2+ (IC50 = 1 mM) inhibited it. In the presence of 10 microM L-glutamate and 10 microM glycine, their EC50 values for Mg2+ enhancement of [3H]TCP binding were markedly reduced (to 1.9 microM or 8.4 microM), respectively. By contrast, the IC50 values for Mg2+ inhibition of [3H]TCP binding were reduced in the presence of L-glutamate, but not glycine. Furthermore, a stimulatory effect of Mg2+ on [3H]TCP binding was additional to the [3H]TCP binding stimulated by a maximally effective concentration of L-glutamate (10 microM) or glycine (10 microM). In the kinetic study, 300 microM Mg2+ produced an increase in the rates of both association and dissociation of [3H]TCP. Similar results were obtained with L-glutamate (10 microM) and glycine (10 microM); 10 mM Mg2+ also caused an acceleration of the association rate but strongly decreased [3H]TCP binding at equilibrium. Compared with [3H]TCP binding under the basal condition, K+ (10 mM) alone decreased the maximal binding without producing any change in the association rate; 10 mM K+ also significantly decreased Mg(2+)-stimulated [3H]TCP binding but caused no change in the acceleration of the association rate caused by Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
7-Chlorokynurenic acid (7-Cl KYNA) has been reported to attenuate N-methyl-D-aspartate (NMDA) receptor functioning by a potent and selective inhibitory action mediated at the strychnine-insensitive glycine recognition site of the NMDA complex. Here we report that 7-Cl KYNA dose-dependently inhibits [3H]MK-801 binding to the PCP receptor, and that this effect is reversed by addition of glycine. Since [3H]MK-801 binding is a measure of channel activation, our results are consistent with the hypotheses that 7-Cl KYNA exerts its NMDA receptor antagonism by acting at the glycine site, and that activation of the glycine site is required for NMDA channel activity to occur.  相似文献   

16.
Findings from numerous pharmacological and electrophysiological studies have uniquely implicated the N-methyl-D-aspartate (NMDA) receptor in kindling. Recent findings indicate that this receptor is regulated by ligands acting at both amino acid (NMDA and glycine) and ion (Zn++ and Mg++) binding sites. To examine the role of the NMDA receptor in kindling it will be necessary to understand how ligands for these different binding sites interact to control activation of the NMDA receptor. To this end we examined a biochemical tool for measuring opening of the NMDA receptor-gated ion channel (NMDA channel). [3H]N-(1-[thienyl] cyclohexyl)piperidine (TCP) binding to brain membranes is stimulated by NMDA and glycine receptor agonists. We have shown that NMDA and glycine increase TCP binding by increasing the access of TCP to its site. Moreover, the pharmacology of the NMDA and glycine binding sites regulating TCP binding is identical to that of the sites regulating NMDA evoked currents. These findings strongly suggest that glycine and NMDA regulate TCP binding by increasing the opening of the NMDA channel. That is NMDA and glycine increase the overall time that the channel is open thereby increasing the time available for TCP to diffuse to its binding site. These findings support the use of TCP binding (association rate) as a marker of channel opening and thereby permit measurement of NMDA receptor activation and ligand binding under identical conditions. This will allow direct testing the hypothesis that an alteration in the NMDA receptor/channel complex itself underlies the increased seizure response of kindled animals.  相似文献   

17.
Spermine has been shown to influence NMDA receptor function through an interaction at the coagonist site for glycine in the central nervous system (CNS) and the retina. In order to support a role for spermine as neurotransmitter or neuromodulator in the chick retina, specific stimulated-release of spermine should be demonstrated. Isolated chick retinas, preloaded with [3H]spermine, were stimulated with 1 mM NMDA and other glutamate agonists at ionotropic receptors, in a continuous superfusion system. [3H]spermine was released from the retina by depolarization with 50 mM KCl, in a Ca2+-independent manner. Inhibition of Na+/K+-ATPase by ouabain or digitoxigenin also induced spermine release following 36 min in the presence of the drugs; such effect seems unrelated to changes in Na+ electrochemical gradients, since nigericin and veratrine did not induce release in Na+ containing medium. The lack of effect of glutamate, NMDA and kainate at 1 mM concentration, suggests that release of spermine in the retina is mediated by the reversal of uptake and not necessarily linked to EAA-receptor activation.  相似文献   

18.
Ifenprodil, arcaine and agmatine have all been reported to inhibit the NMDA receptor by actions at polyamine-sites, however the specific sites with which these compounds interact is unknown. Here we used radioligand binding of [3H]MK-801 to a membrane preparation from rat cerebral cortex to investigate the interactions of these compounds with the NMDA receptor complex. In the absence of exogenous polyamines, agmatine reduced [3H]MK-801 binding only at concentrations over 500 micro M, as opposed to the putative polyamine-site antagonists arcaine and ifenprodil which directly reduce ligand binding at much lower concentrations (5 micro M) in the absence of polyamines. In our studies, all three compounds significantly reduced spermidine-potentiated [3H]MK-801 binding, however agmatine was the only compound effective at concentrations below those that produced direct inhibition of [3H]MK-801 binding. Under these conditions, agmatine had a K(i)=14.8 micro M for spermidine-potentiated [3H]MK-801 binding and displayed characteristics of a competitive antagonist. Agmatine, as well as ifenprodil and arcaine, also displaced [3H]spermidine from rat cortical membranes at concentrations similar to those that were effective at reducing spermidine-potentiated [3H]MK-801 binding. In conclusion, these data suggest that agmatine reduces the potentiating effects of polyamines by competitive antagonism at a specific site on the NMDA receptor complex, and that these actions of agmatine differ from those of ifenprodil and arcaine.  相似文献   

19.
The postnatal development of the three receptor binding sites that constitute the N-methyl-D-aspartate (NMDA) receptor channel/complex was examined in six hippocampal regions of rats using quantitative receptor autoradiography. NMDA-sensitive [3H]-glutamate binding, strychnine-insensitive [3H]glycine binding, and [3H]N-(1-[2-thienyl]cyclohexyl)-3,4-piperidine [( 3H]TCP) binding were measured to examine the ontogeny of NMDA recognition sites, glycine modulatory sites, and PCP receptors, respectively. NMDA-sensitive [3H]glutamate binding transiently exceeded adult levels by 50 to 120% in all regions examined, with peak densities generally occurring between postnatal days (PND) 10 and 28. Stratum radiatum CA1 binding increased slowly from 49 to 61% of the adult value between PND 1 and 7, after which, binding rapidly rose to 151% of adult values at PND 14, remained elevated through PND 28, and then decreased to adult levels. The ontogenic profile of NMDA recognition site binding was similar in other hippocampal regions, although the initial age of maximal binding and the period of stabilization varied. The ontogenic profiles of glycine modulatory site binding and PCP receptor binding were very similar to each other. Development was delayed, however, with respect to NMDA recognition site binding. The rapid development of binding observed between PND 7 and 14 with NMDA receptors in stratum radiatum CA1 was contrasted by a much slower increase in glycine and PCP receptor binding. Furthermore, maximal glycine and PCP receptor binding densities were not reached until PND 28 and were lower than NMDA recognition site binding densities. The observed developmental patterns of binding to each of the receptor components of the NMDA receptor channel/complex are consistent with postnatal changes in cytoarchitecture, synaptogenesis, afferent lamination, and functional development of the hippocampus. However, the relative overexpression of NMDA recognition sites with respect to glycine and PCP receptors between PND 7 and 21 suggests that there is differential expression of these binding sites during development.  相似文献   

20.
We have previously shown that spermine, a basic polyamine, and big dynorphin, a basic polypeptide, induce nociceptive behavior if injected intrathecally (i.t.) in mice (see [Pain 86 (2000) 55-61] and [Brain Res. 952 (2002) 7-14]). This suggests that other basic molecules might have the same effects. Here, i.t. administration of poly-L-lysine (12 and 36 pg) to mice was found to produce the same characteristic behavioral response, biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank, which peaked at 0-10 min after injection. The behavior induced by poly-L-lysine (12 pg) was dose-dependently inhibited by intraperitoneal injection of morphine (0.25-4 mg/kg) and also dose-dependently, by i.t. co-administration of D-(-)-2-amino-5-phosphonovaleric acid (D-APV) (1-4 nmol), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,10-imine hydrogen maleate (MK-801) (0.0156-4 nmol), an NMDA ion-channel blocker, and ifenprodil (2-8 nmol), an antagonist of the polyamine recognition site and the NR2B-containing NMDA receptor subtype. On the other hand, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, 7-chlorokynurenic acid, a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex, [D-Phe7, d-His9]-substance P (6-11), a specific antagonist for substance P (NK1) receptors, or MEN-10,376, a tachykinin NK2 receptor antagonist, had no effect. These results confirm the observations obtained with other basic molecules and suggest that the behavior induced by poly-l-lysine is mediated through the activation of the NMDA receptor ion-channel complex acting either on the polyamine recognition site or on the NR2B subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号