首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hildebrand MS, Thorne NP, Bromhead CJ, Kahrizi K, Webster JA, Fattahi Z, Bataejad M, Kimberling WJ, Stephan D, Najmabadi H, Bahlo M, Smith RJH. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation. Myosin VIIA mutations have been associated with non‐syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non‐syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L‐1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non‐syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.  相似文献   

2.
Pattern recognition receptors, such as Toll‐like receptors (TLRs), play an important role in the host defense against invading microbial pathogens. Their activation must be precisely regulated, as inappropriate activation or overactivation of TLR signaling pathways may result in inflammatory disorders, such as septic shock or autoimmune diseases. TMEM106A is a type II transmembrane protein constitutively expressed in macrophages. Our current study demonstrated that TMEM106A levels were increased in macrophages upon lipopolysaccharide (LPS) stimulation, as well as in the peripheral monocytes of patients with sepsis. Tmem106a knockout mice were more sensitive to lipopolysaccharide (LPS)‐induced septic shock than wild‐type mice. Further experiments indicated that Tmem106a ablation enhanced the expression of CD80, CD86 and major histocompatibility complex (MHC)‐II in mouse macrophages upon LPS stimulation, accompanied with up‐regulation of tumor necrosis factor (TNF)‐α, interleukin (IL)‐6, interferon (IFN)‐β and inducible nitric oxide synthase (iNOS), indicating the activation of macrophages and polarization towards the M1 inflammatory phenotype. Moreover, elevated mitogen‐activated protein kinase (MAPK) and nuclear factor kappa B (NF‐κB) signaling were found to be involved in the LPS‐induced inflammatory response in Tmem106a?/? macrophages. However, this effect was largely abrogated by macrophage deletion in Tmem106a?/? mice. Therefore, deficiency of Tmem106a in macrophages may enhance the M1 polarization in mice, resulting in inflammation. This suggests that TMEM106A plays an important regulatory role in maintaining macrophage homeostasis.  相似文献   

3.
Mutations in CDH23 are known to cause autosomal‐recessive nonsyndromic hearing loss (DFNB12). Until now, there was only one study describing its frequency in Indian population. We screened for CDH23 mutations to identify prevalent and recurring mutations among South Indian assortative mating hearing‐impaired individuals who were identified as non‐DFNB1 (GJB2 and GJB6). Whole‐exome sequencing was performed in individuals found to be heterozygous for CDH23 to determine whether there was a second pathogenic allele. In our study, 19 variants including 6 pathogenic missense mutations were identified. The allelic frequency of pathogenic mutations accounts to 4.7% in our cohort, which is higher than that reported previously; three mutations (c.429+4G>A, c.2968G>A, and c.5660C>T) reported in the previous Indian study were found to recur. DFNB12 was found to be the etiology in 3.4% of our cohort, with missense mutation c.2968G>A (p.Asp990Asn) being the most prevalent (2.6%). These results suggest a need to investigate the possibility for higher proportion of CDH23 mutations in the South Indian hearing‐impaired population.  相似文献   

4.
5.
A homozygous missense mutation (c.822G>C) was found in the gene encoding the mitochondrial asparaginyl–tRNA synthetase (NARS2) in two siblings born to consanguineous parents. These siblings presented with different phenotypes: one had mild intellectual disability and epilepsy in childhood, whereas the other had severe myopathy. Biochemical analysis of the oxidative phosphorylation (OXPHOS) complexes in both siblings revealed a combined complex I and IV deficiency in skeletal muscle. In‐gel activity staining after blue native‐polyacrylamide gel electrophoresis confirmed the decreased activity of complex I and IV, and, in addition, showed the presence of complex V subcomplexes. Considering the consanguineous descent, homozygosity mapping and whole‐exome sequencing were combined revealing the presence of one single missense mutation in the shared homozygous region. The c.822G>C variant affects the 3′ splice site of exon 7, leading to skipping of the whole exon 7 and a part of exon 8 in the NARS2 mRNA. In EBV‐transformed lymphoblasts, a specific decrease in the amount of charged mt‐tRNAAsn was demonstrated as compared with controls. This confirmed the pathogenic nature of the variant. To conclude, the reported variant in NARS2 results in a combined OXPHOS complex deficiency involving complex I and IV, making NARS2 a new member of disease‐associated aaRS2.  相似文献   

6.
A heterozygous nonsense variant was identified in dapper, antagonist of beta‐catenin, 1 (DACT1) via whole‐exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419* variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt‐signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind‐ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419* protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes–Brocks syndrome.  相似文献   

7.
In two large Turkish consanguineous families, a locus for autosomal recessive nonsyndromic hearing loss (ARNSHL) was mapped to chromosome 6p21.3 by genome-wide linkage analysis in an interval overlapping with the loci DFNB53 (COL11A2), DFNB66, and DFNB67. Fine mapping excluded DFNB53 and subsequently homozygous mutations were identified in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene, also named tetraspan membrane protein of hair cell stereocilia (TMHS) gene, which was recently shown to be mutated in the "hurry scurry" mouse and in two DFNB67-linked families from Pakistan. In one family, we found a homozygous one-base pair deletion, c.649delG (p.Glu216ArgfsX26) and in the other family we identified a homozygous transition c.494C>T (p.Thr165Met). Further screening of index patients from 96 Turkish ARNSHL families and 90 Dutch ARNSHL patients identified one additional Turkish family carrying the c.649delG mutation. Haplotype analysis revealed that the c.649delG mutation was located on a common haplotype in both families. Mutation screening of the LHFPL5 homologs LHFPL3 and LHFPL4 did not reveal any disease causing mutation. Our findings indicate that LHFPL5 is essential for normal function of the human cochlea.  相似文献   

8.
We previously mapped the DFNB66 locus to an interval overlapping the DFNB67 region. Mutations in the LHFPL5 gene were identified as a cause of DFNB67 hearing loss (HL). However, screening of the coding exons of LHFPL5 did not reveal any mutation in the DFNB66 family. The objective of this study was to check whether DFNB66 and DFNB67 are distinctive loci and determining their contribution to HL. In the DFNB66 family, sequencing showed absence of mutations in the untranslated regions and the predicted promoter sequence of LHFPL5. Analysis of five microsatellites in the 6p21.31–22.3 region and screening of the LHFPL5 gene by DNA heteroduplex analysis in DHPLC revealed a novel mutation (c.89dup) in one out of 129 unrelated Tunisian families with autosomal recessive nonsyndromic (ARNS) HL. Our findings suggest that two distinct genes are responsible for DFNB66 and DFNB67 HL. These loci are likely to be a rare cause of ARNSHL.  相似文献   

9.
Noonan syndrome (NS), the most common of the RASopathies, is a developmental disorder caused by heterozygous germline mutations in genes encoding proteins in the RAS‐MAPK signaling pathway. Noonan‐like syndrome with loose anagen hair (NSLH, including NSLH1, OMIM #607721 and NSLH2, OMIM #617506) is characterized by typical features of NS with additional findings of macrocephaly, loose anagen hair, growth hormone deficiency in some, and a higher incidence of intellectual disability. All NSLH1 reported cases to date have had an SHOC2 c.4A>G, p.Ser2Gly mutation; NSLH2 cases have been reported with a PPP1CB c.146G>C, p.Pro49Arg mutation, or c.166G>C, p.Ala56Pro mutation. True cleft palate does not appear to have been previously reported in individuals with NS or with NSLH. While some patients with NS have had growth hormone deficiency (GHD), other endocrine abnormalities are only rarely documented. We present a female patient with NSLH1 who was born with a posterior cleft palate, micrognathia, and mild hypotonia. Other findings in her childhood and young adulthood years include hearing loss, strabismus, and hypopituitarism with growth hormone, thyroid stimulating hormone (TSH), and gonadotropin deficiencies. The SHOC2 mutation may be responsible for this patient's additional features of cleft palate and hypopituitarism.  相似文献   

10.
Deficiencies in glycosyltransferases, glycosidases or nucleotide‐sugar transporters involved in protein glycosylation lead to congenital disorders of glycosylation (CDG), a group of genetic diseases mostly showing multisystem phenotype. Despite recent advances in the biochemical and molecular knowledge of these diseases, no effective therapy exists for most. Efforts are now being directed toward therapies based on identifying new targets, which would allow to treat specific patients in a personalized way. This work presents proof‐of concept for the antisense RNA rescue of the Golgi‐resident protein TMEM165, a gene involved in a new type of CDG with a characteristic skeletal phenotype. Using a functional in vitro splicing assay based on minigenes, it was found that the deep intronic change c.792+182G>A is responsible for the insertion of an aberrant exon, corresponding to an intronic sequence. Antisense morpholino oligonucleotide therapy targeted toward TMEM165 mRNA recovered normal protein levels in the Golgi apparatus of patient‐derived fibroblasts. This work expands the application of antisense oligonucleotide‐mediated pseudoexon skipping to the treatment of a Golgi‐resident protein, and opens up a promising treatment option for this specific TMEM165‐CDG.  相似文献   

11.
Mutations in the gene encoding the isocitrate dehydrogenase 1 gene (IDH1) occur at a high frequency (up to 80%) in many different subtypes of glioma. In this study, we have screened for IDH1 mutations in a cohort of 496 gliomas. IDH1 mutations were most frequently observed in low grade gliomas with c.395G>A (p.R132H) representing >90% of all IDH1 mutations. Interestingly, non‐p.R132H mutations segregate in distinct histological and molecular subtypes of glioma. Histologically, they occur sporadically in classic oligodendrogliomas and at significantly higher frequency in other grade II and III gliomas. Genetically, non‐p.R132H mutations occur in tumors with TP53 mutation, are virtually absent in tumors with loss of heterozygosity on 1p and 19q and accumulate in distinct (gene‐expression profiling based) intrinsic molecular subtypes. The IDH1 mutation type does not affect patient survival. Our results were validated on an independent sample cohort, indicating that the IDH1 mutation spectrum may aid glioma subtype classification. Functional differences between p.R132H and non‐p.R132H mutated IDH1 may explain the segregation in distinct glioma subtypes. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Lan M‐Y, Fu M‐H, Liu Y‐F, Huang C‐C, Chang Y‐Y, Liu J‐S, Peng C‐H, Chen S‐S. High frequency of ETFDH c.250G>A mutation in Taiwanese patients with late‐onset lipid storage myopathy. Lipid storage myopathies (LSMs) are characterized pathologically by the accumulation of lipid droplets in muscle fibers due to impaired cellular lipid metabolism. The purpose of this study was to determine etiologies and genetic mutations associated with LSMs in ethnic Han Taiwanese. The usefulness of the blood acylcarnitine (AC) profile for diagnosing LSMs in adult patients was also investigated. Nine patients were diagnosed with late‐onset LSMs following a review of muscle biopsies and medical records and were recruited retrospectively. Genetic studies were performed to detect mutations in the SLC22A5 for primary carnitine deficiency, PNPLA2 for neutral lipid storage disease with myopathy, ABHD5 for neutral lipid storage disease with ichthyosis, ETFDH for multiple acyl‐CoA dehydrogenation deficiency (MADD), and CPT2 for carnitine palmitoyltransferase II deficiency. Blood AC levels were measured by tandem mass spectrometry. The mutation c.250G>A in ETFDH was detected in seven (78%) patients, six of whom were homozygous for the variant. Patients with ETFDH mutations had elevated blood levels of ACs ranging from C8 to C16 species, a pattern consistent with MADD. ETFDH c.250G>A mutation is common in Taiwanese patients with late‐onset LSMs. The blood AC profile is a sensitive biochemical marker for diagnosing MADD arising from ETFDH mutations in adults.  相似文献   

15.
Skeletal dysplasias are a heterogeneous group of disorders ranging from mild to lethal skeletal defects. We investigated two unrelated families with individuals presenting with a severe skeletal disorder. In family NMD02, affected individuals had a dysostosis multiplex‐like skeletal dysplasia and severe short stature (<?8.5 SD). They manifested increasingly coarse facial features, protruding abdomens, and progressive skeletal changes, reminiscent of mucopolysaccharidosis. The patients gradually lost mobility and the two oldest affected individuals died in their twenties. The affected child in family ID01 had coarse facial features and severe skeletal dysplasia with clinical features similar to mucopolysaccharidosis. She had short stature, craniosynostosis, kyphoscoliosis, and hip‐joint subluxation. She died at the age of 5 years. Whole‐exome sequencing identified two homozygous variants c.133C>T; p.(Arg45Trp) and c.215dupA; p.(Tyr72Ter), respectively, in the two families, affecting an evolutionary conserved gene TMEM251 (NM_001098621.1). Immunofluorescence and confocal studies using human osteosarcoma cells indicated that TMEM251 is localized to the Golgi complex. However, p.Arg45Trp mutant TMEM251 protein was targeted less efficiently and the localization was punctate. Tmem251 knockdown by small interfering RNA induced dedifferentiation of rat primary chondrocytes. Our work implicates TMEM251 in the pathogenesis of a novel disorder and suggests its potential function in chondrocyte differentiation.  相似文献   

16.
Autosomal recessive non‐syndromic hearing loss (ARNSHL) is a highly heterogeneous genetic condition. PDZD7 has emerged as a new genetic etiology of ARNSHL. Biallelic mutations in the PDZD7 gene have been reported in two German families, four Iranian families, and a Pakistani family with ARNSHL. The effect of PDZD7 on ARNSHL in other population has yet to be elucidated. Two Chinese ARNSHL families, each of which had two affected siblings, were included in this study. The families underwent target region capture and high‐throughput sequencing to analyze the exonic, splice‐site, and intronic sequences of 128 genes. Furthermore, 1751 normal Chinese individuals served as controls, and 122 Chinese families segregating with apparent ARNSHL, who had been previously excluded for variants in the common deafness genes GJB2 and SLC26A4, were subjected to screening for candidate mutations. We identified a novel homozygous missense mutation (p.Arg66Leu) and novel compound heterozygous frameshift mutations (p.Arg56fsTer24 and p.His403fsTer36) in Chinese families with ARNSHL. This is the first report to identify PDZD7 as an ARNSHL‐associated gene in the Chinese population. Our finding could expand the pathogenic spectrum and strengthens the clinical diagnostic role of the PDZD7 gene in ARNSHL patients.  相似文献   

17.
Schuurs‐Hoeijmakers syndrome (SHMS), or Autosomal Dominant Mental Retardation Syndrome type 17 (MRD17) is a rare form of intellectual disability with distinct facial features. A recurrent de novo heterozygous c.607C>T, p.Arg203Trp mutation in the PACS1 gene accounts for all reported cases except for one patient with a de novo heterozygous c.608G>A, p.Arg203Trp mutation. Ethnic background is known to affect the clinical manifestation of dysmorphic syndromes. Here we describe the first Indian patient with Schuurs‐Hoeijmakers syndrome (SHMS) with a de novo heterozygous NM_018026.3 (PACS1):c.607C>T (p.Arg203Trp) variant. He is the only child with SHMS with a cleft lip. Thus our report expands the phenotypic spectrum of SHMS and establishes its occurrence across populations.  相似文献   

18.
19.
The proximate causes of multiple human genetic syndromes (ciliopathies) are disruptions in the formation or function of the cilium, an organelle required for a multitude of developmental processes. We previously identified Tmem107 as a critical regulator of cilia formation and embryonic organ development in the mouse. Here, we describe a patient with a mutation in TMEM107 that developed atypical Orofaciodigital syndrome (OFD), and show that the OFD patient shares several morphological features with the Tmem107 mutant mouse including polydactyly and reduced numbers of ciliated cells. We show that TMEM107 appears to function within cilia to regulate protein content, as key ciliary proteins do not localize normally in cilia derived from the Tmem107 mouse mutant and the human patient. These data indicate that TMEM107 plays a key, conserved role in regulating ciliary protein composition, and is a novel candidate for ciliopathies of unknown etiology.  相似文献   

20.
Charcot‐Marie‐Tooth disease type 4D (CMT4D) is an autosomal‐recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 —c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538‐1G>A, and duplication of exons 6–8—have been described in CMT4D patients. Here, using targeted next‐generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild‐type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1‐knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a‐positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI‐LDL or increase the fraction of low‐density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号