首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DYNC1H1 encodes the heavy chain of cytoplasmic dynein 1, a motor protein complex implicated in retrograde axonal transport, neuronal migration, and other intracellular motility functions. Mutations in DYNC1H1 have been described in autosomal‐dominant Charcot–Marie–Tooth type 2 and in families with distal spinal muscular atrophy (SMA) predominantly affecting the legs (SMA‐LED). Recently, defects of cytoplasmic dynein 1 were also associated with a form of mental retardation and neuronal migration disorders. Here, we describe two unrelated patients presenting a combined phenotype of congenital motor neuron disease associated with focal areas of cortical malformation. In each patient, we identified a novel de novo mutation in DYNC1H1: c.3581A>G (p.Gln1194Arg) in one case and c.9142G>A (p.Glu3048Lys) in the other. The mutations lie in different domains of the dynein heavy chain, and are deleterious to protein function as indicated by assays for Golgi recovery after nocodazole washout in patient fibroblasts. Our results expand the set of pathological mutations in DYNC1H1, reinforce the role of cytoplasmic dynein in disorders of neuronal migration, and provide evidence for a syndrome including spinal nerve degeneration and brain developmental problems.  相似文献   

2.
3.
4.
Methylation profiles of CpG islands within the SLC23A2, CDK2AP1, and DYNC1H1 genes and their association with spinal muscular atrophy (SMA) severity were studied. High clinical heterogeneity of SMA suggests the existence of different factors modifying SMA phenotype with gene methylation as a plausible one. The genes picked up in our earlier genome‐wide methylation studies of SMA patients demonstrated obvious differences in their methylation patterns, thus suggesting the likely involvement of their protein products in SMA development. Significantly decreased methylation of CpG islands within exon 37 of the DYNC1H1 gene was observed in patients with a severe SMA manifestation (type I) compared to mildly affected SMA patients (types III–IV). This finding provides new information on peculiarities of methylation in clinically different types of SMA patients and gives a clue for identification of new SMA modifiers.  相似文献   

5.
Ellis‐van Creveld syndrome (EvC) is a chondral and ectodermal dysplasia caused by biallelic mutations in the EVC, EVC2 and WDR35 genes. A proportion of cases with clinical diagnosis of EvC, however, do not carry mutations in these genes. To identify the genetic cause of EvC in a cohort of mutation‐negative patients, exome sequencing was undertaken in a family with 3 affected members, and mutation scanning of a panel of clinically and functionally relevant genes was performed in 24 additional subjects with features fitting/overlapping EvC. Compound heterozygosity for the c.2T>C (p.Met1?) and c.662C>T (p.Thr221Ile) variants in DYNC2LI1, which encodes a component of the intraflagellar transport‐related dynein‐2 complex previously found mutated in other short‐rib thoracic dysplasias, was identified in the 3 affected members of the first family. Targeted resequencing detected compound heterozygosity for the same missense variant and a truncating change (p.Val141*) in 2 siblings with EvC from a second family, while a newborn with a more severe phenotype carried 2 DYNC2LI1 truncating variants. Our findings indicate that DYNC2LI1 mutations are associated with a wider clinical spectrum than previously appreciated, including EvC, with the severity of the phenotype likely depending on the extent of defective DYNC2LI1 function.  相似文献   

6.
Infantile hereditary lower motor neuron disorders beyond 5q–spinal muscular atrophy (5q‐SMA) are usually caused by mutations other than deletions or mutations in SMN1. In addition to motor neuron degeneration, further neurologic or multisystemic pathologies in non‐5q‐SMAs are not seldom. Some of the non‐5q‐SMA phenotypes, such as pontocerebellar hypoplasia (PCH1), have been classified later as a different disease group due to distinctive primary pathologies. Likewise, a novel phenotype, childhood‐onset neurodegeneration with cerebellar atrophy (CONDCA) has been described recently in individuals with lower motor neuron disorder and cerebellar atrophy due to biallelic loss‐of‐function variants in AGTPBP1 that encodes cytosolic carboxypeptidase 1 (CCP1). Here we present two individuals with CONDCA in whom a biallelic missense AGTPBP1 variant (NM_001330701.1:c.2396G>T, p.Arg799Leu) was identified by whole exome sequencing. Affected individuals in this report correspond to the severe infantile spectrum of the disease and underline the severe pathogenic effect of this missense variant. This report is the second in the literature that delineates the pathogenic effects of biallelic AGTPBP1 variants presenting the recently described CONDCA disease.  相似文献   

7.
8.
Background: Cytoplasmic dynein provides the main motor force for minus‐end‐directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration, and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results: We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions: In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. Developmental Dynamics 244:134–145, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
The most frequent cause of isolated complex III deficits is mutations to the nuclear‐encoded ATPase BCS1L. Disease phenotypes are varied and can be as mild as Björnstad syndrome, characterized by pili torti and sensorineural hearing loss, or as severe as GRACILE syndrome, characterized by growth restriction, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death. BCS1L mutations are also linked to an undefined complex III deficiency, a heterogeneous condition generally involving low birth weight, renal and hepatic pathologies, hypotonia, and developmental delays. We analyzed all published patient cases of mutations to BCS1L and modeled the tertiary and quaternary structure of the BCS1L protein to map the location of disease‐causing BCS1L mutations. We show that higher order structural analysis can be used to understand the phenotype observed in a patient with the novel compound heterozygous c.550C>T(p.Arg184Cys) and c.838C>T(p.Leu280Phe) mutations. More broadly, higher order structural analysis reveals genotype–phenotype relationships within the intermediate complex III deficiency category that help to make sense of the spectrum of observed phenotypes. We propose a change in nomenclature that unifies the intermediate phenotype under “BCS1L Mitopathies”. Patterns in genotype–phenotype correlations within these BCS1L Mitopathies are evident in the context of the tertiary and quaternary structure of BCS1L.  相似文献   

11.
Niemann–Pick disease (NPD) types A and B are autosomal, recessively inherited, lysosomal storage disorders caused by deficient activity of acid sphingomyelinase (E.C. 3.1.4.12) because of mutations in the sphingomyelin phosphodiesterase‐1 (SMPD1) gene. Here, we present the molecular analysis and clinical characteristics of 15 NPD type A and B patients. Sequencing the SMDP1 gene revealed eight previously described mutations and seven novel mutations including four missense [c.682T>C (p.Cys228Arg), c.1159T>C (p.Cys387Arg), c.1474G>A (p.Gly492Ser), and c.1795C>T (p.Leu599Phe)], one frameshift [c.169delG (p.Ala57Leufs*20)] and two splicing (c.316+1G>T and c.1341delG). The most frequent mutations were p.Arg610del (21%) and p.Gly247Ser (12%). Two patients homozygous for p.Arg610del and initially classified as phenotype B showed different clinical manifestations. Patients homozygous for p.Leu599Phe had phenotype B, and those homozygous for c.1341delG or c.316+1G>T presented phenotype A. The present results provide new insight into genotype/phenotype correlations in NPD and emphasize the difficulty of classifying patients into types A and B, supporting the idea of a continuum between these two classic phenotypes.  相似文献   

12.
Hearing loss (HL) is the most common sensory disorder worldwide and genetic factors contribute to approximately half of congenital HL cases. HL is subject to extensive genetic heterogeneity, rendering molecular diagnosis difficult. Mutations of the transmembrane channel‐like 1 (TMC1) gene cause hearing defects in humans and mice. The precise function of TMC1 protein in the inner ear is unknown, although it is predicted to be involved in functional maturation of cochlear hair cells. TMC1 mutations result in autosomal recessive (DFNB7/11) and sometimes dominant (DFNA36) nonsyndromic HL. Mutations in TMC1 are responsible for a significant portion of HL, particularly in consanguineous populations. To evaluate the importance of TMC1 mutations in the Saudi population, we used a combination of autozygome‐guided candidate gene mutation analysis and targeted next generation sequencing in 366 families with HL previously shown to lack mutations in GJB2. We identified 12 families that carried five causative TMC1 mutations; including three novel (c.362+3A > G; c.758C > T [p.Ser253Phe]; c.1396_1398delACC [p.Asn466del]) and two reported mutations (c.100C > T [p.Arg34Ter]; c.1714G > A [p.Asp572Asn]). Each of the identified recessive mutation was classified as severe, by both age of onset and severity of HL. Similarly, consistent with the previously reported dominant variant p.Asp572Asn, the HL phenotype was progressive. Eight families in our cohort were found to share the pathogenic p.Arg34Ter mutation and linkage disequilibrium was observed between p.Arg34Ter and SNPs investigated. Our results indicate that TMC1 mutations account for about 3.3% (12/366) of Saudi HL cases and that the recurrent TMC1 mutation p.Arg34Ter is likely to be a founder mutation.  相似文献   

13.
14.
Inherited defects of coagulation Factor XIII (FXIII) can be categorized into severe and mild forms based on their genotype and phenotype. Heterozygous mutations occurring in F13A1 and F13B genes causing mild FXIII deficiency have been reported only in the last few years primarily because the mild FXIII deficiency patients are often asymptomatic unless exposed to some kind of a physical trauma. However, unlike mutations causing severe FXIII deficiency, many of these mutations have not been comprehensively characterized based on expression studies. In our current article, we have transiently expressed 16 previously reported missense mutations detected in the F13A1 gene of patients with mild FXIII deficiency and analyzed their respective expression phenotype. Complimentary to expression analysis, we have used in silico analysis to understand and explain some of the in vitro findings. The expression phenotype has been evaluated with a number of expression phenotype determining assays. We observe that the mutations influence different aspects of FXIII function and can be functionally categorized on the basis of their expression phenotype. We identified mutations which even in heterozygous form would have strong impact on the functional status of the protein (namely mutations p.Arg716Gly, p.Arg704Gln, p.Gln602Lys, p.Leu530Pro, p.His343Tyr, p.Pro290Arg, and p.Arg172Gln).  相似文献   

15.
Alterations in GLB1, the gene coding for acid β‐D‐galactosidase (β‐Gal), can result in GM1 gangliosidosis (GM1), a neurodegenerative disorder, or in Morquio B disease (MBD), a phenotype with dysostosis multiplex and normal central nervous system (CNS) function. While most MBD patients carry a common allele, c.817TG>CT (p.W273L), only few of the >100 mutations known in GM1 can be related to a certain phenotype. In 25 multiethnic patients with GM1 or MBD, 11 missense mutations were found as well as one novel insertion and a transversion causing aberrant gene products. Except c.602G>A (p.R201H) and two novel alleles, c.592G>T (p.D198Y) and c.1189C>G (p.P397A), all mutants resulted in significantly reduced β‐Gal activities (<10% of normal) upon expression in COS‐1 cells. Although c.997T>C (p.Y333H) expressed 3% of normal activity, the mutant protein was localized in the lysosomal‐endosomal compartment. A homozygous case presented with late infantile GM1, while a heterozygous, juvenile case carried p.Y333H together with p.R201H. This allele, recently found in homozygous MBD, gives rise to rough endoplasmic reticulum (RER)‐located β‐Gal precursors. Thus, unlike classical MBD, the phenotype of heterozygotes carrying p.R201H may rather be determined by poorly active, properly transported products of the counter allele than by the mislocalized p.R201H precursors. Hum Mutat 30, 1–8, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Four private mutations responsible for three forms demyelinating of Charcot‐Marie‐Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN‐Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN‐Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN‐Russe (25%) and HMSN‐Lom (17.86%). The relevant frequency of HMSN‐Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN‐Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN‐Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range.  相似文献   

17.
The cytoplasmic dynein–dynactin genes are attractive candidates for neurodegenerative disorders given their functional role in retrograde transport along neurons. The cytoplasmic dynein heavy chain (DYNC1H1) gene has been implicated in various neurodegenerative disorders, and dynactin 1 (DCTN1) genes have been implicated in a wide spectrum of disorders including motor neuron disease, Parkinson's disease, spinobulbar muscular atrophy and hereditary spastic paraplegia. However, the involvement of other dynactin genes with inherited peripheral neuropathies (IPN) namely, hereditary sensory neuropathy, hereditary motor neuropathy and Charcot–Marie–Tooth disease is under reported. We screened eight genes; DCTN1‐6 and ACTR1A and ACTR1B in 136 IPN patients using whole‐exome sequencing and high‐resolution melt (HRM) analysis. Eight non‐synonymous variants (including one novel variant) and three synonymous variants were identified. Four variants have been reported previously in other studies, however segregation analysis within family members excluded them from causing IPN in these families. No variants of disease significance were identified in this study suggesting the dynactin genes are unlikely to be a common cause of IPNs. However, with the ease of querying gene variants from exome data, these genes remain worthwhile candidates to assess unsolved IPN families for variants that may affect the function of the proteins.  相似文献   

18.
Ververi‐Brady syndrome (VBS, # 617982) is a rare developmental disorder, and loss‐of‐function variants in QRICH1 were implicated in its etiology. Furthermore, a recognizable phenotype was proposed comprising delayed speech, learning difficulties and dysmorphic signs. Here, we present four unrelated individuals with one known nonsense variant (c.1954C > T; p.[Arg652*]) and three novel de novo QRICH1 variants, respectively. These included two frameshift mutations (c.832_833del; p.(Ser278Leufs*25), c.1812_1813delTG; p.(Glu605Glyfs*25)) and interestingly one missense mutation (c.2207G > A; p.[Ser736Asn]), expanding the mutational spectrum. Enlargement of the cohort by these four individuals contributes to the delineation of the VBS phenotype and suggests expressive speech delay, moderate motor delay, learning difficulties/mild ID, mild microcephaly, short stature and notable social behavior deficits as clinical hallmarks. In addition, one patient presented with nephroblastoma. The possible involvement of QRICH1 in pediatric cancer assumes careful surveillance a key priority for outcome of these patients. Further research and enlargement of cohorts are warranted to learn about the genetic architecture and the phenotypic spectrum in more detail.  相似文献   

19.
We describe a consanguineous Iraqi family with Leber congenital amaurosis (LCA), Joubert syndrome (JBTS), and polycystic kidney disease (PKD). Targeted next‐generation sequencing for excluding mutations in known LCA and JBTS genes, homozygosity mapping, and whole‐exome sequencing identified a homozygous missense variant, c.317G>C (p.Arg106Pro), in POC1B, a gene essential for ciliogenesis, basal body, and centrosome integrity. In silico modeling suggested a requirement of p.Arg106 for the formation of the third WD40 repeat and a protein interaction interface. In human and mouse retina, POC1B localized to the basal body and centriole adjacent to the connecting cilium of photoreceptors and in synapses of the outer plexiform layer. Knockdown of Poc1b in zebrafish caused cystic kidneys and retinal degeneration with shortened and reduced photoreceptor connecting cilia, compatible with the human syndromic ciliopathy. A recent study describes homozygosity for p.Arg106ProPOC1B in a family with nonsyndromic cone‐rod dystrophy. The phenotype associated with homozygous p.Arg106ProPOC1B may thus be highly variable, analogous to homozygous p.Leu710Ser in WDR19 causing either isolated retinitis pigmentosa or Jeune syndrome. Our study indicates that POC1B is required for retinal integrity, and we propose POC1B mutations as a probable cause for JBTS with severe PKD.  相似文献   

20.
We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous‐end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS‐like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS‐like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. Hum Mutat 31:1059–1068, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号