首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a wide variety of cell types, including neurons and smooth muscle cells, activation of the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels causes transient membrane hyperpolarization, thereby regulating cellular excitability. Similar to other voltage-gated ion channels, BK channels, a tetramer of alpha-subunits, associate with auxiliary beta-subunits in a tissue-specific manner, modifying the channel's gating properties. The BK beta1-subunit, which is expressed in smooth muscle, increases the apparent Ca(2+) sensitivity (marked by a hyperpolarizing shift in the conductance-voltage relationship at a given Ca(2+) concentration), slows macroscopic activation and deactivation, and is required for channel activation by 17beta-estradiol. The beta1-subunit is essential for normal regulation of vascular smooth muscle contractility and blood pressure. Little is known, however, about the molecular mechanisms of beta1-subunit modulation of alpha-subunits. Here we show that the beta1-subunit's modulation of the Ca(2+) and 17beta-estradiol sensitivities can be dissociated from its effects on gating kinetics by truncation of the alpha-subunit's extracellular N-terminal residues. The BK alpha-subunit N terminus interacts uniquely with the beta1-subunit: beta2 regulation of the alpha-subunit is unaltered by truncation of the N terminus. Although the functional interaction of alpha and beta1 requires the N-terminal tail of alpha, the physical association requires the S1, S2, and S3 transmembrane helices of alpha.  相似文献   

2.
BACKGROUND: Mutations in the gene encoding the human cardiac Na(+) channel alpha-subunit (hH1) are responsible for chromosome 3-linked congenital long-QT syndrome (LQT3) and idiopathic ventricular fibrillation (IVF). An auxiliary beta(1)-subunit, widely expressed in excitable tissues, shifts the voltage dependence of steady-state inactivation toward more negative potentials and restores normal gating kinetics of brain and skeletal muscle Na(+) channels expressed in Xenopus oocytes but has little if any functional effect on the cardiac isoform. Here, we characterize the altered effects of a human beta(1)-subunit (hbeta(1)) on the heterologously expressed hH1 mutation (T1620M) previously associated with IVF. METHODS AND RESULTS: When expressed alone in Xenopus oocytes, T1620M exhibited no persistent currents, in contrast to the LQT3 mutant channels, but the midpoint of steady-state inactivation (V(1/2)) was significantly shifted toward more positive potentials than for wild-type hH1. Coexpression of hbeta(1) did not significantly alter current decay or recovery from inactivation of wild-type hH1; however, it further shifted the V(1/2) and accelerated the recovery from inactivation of T1620M. Oocyte macropatch analysis revealed that the activation kinetics of T1620M were normal. CONCLUSIONS: It is suggested that coexpression of hbeta(1) exposes a more severe functional defect that results in a greater overlap in the relationship between channel inactivation and activation (window current) in T1620M, which is proposed to be a potential pathophysiological mechanism of IVF in vivo. One possible explanation for our finding is an altered alpha-/beta(1)-subunit association in the mutant.  相似文献   

3.
4.
The mechanisms through which pancreatic beta cells recognize and respond to changes in circulating glucose are well understood. Evidence is accumulating that a subpopulation of neurons in the ventromedial hypothalamus (VMH) use similar cellular mechanisms to sense changes in extracellular glucose. In the present study, we used PCR and single-cell calcium imaging techniques to investigate whether glucose-sensing cells in the pancreas and hypothalamus employ a similar set of stimulus-response elements. Dispersed cells from mouse pancreata and hypothalamus were used in conjunction with the insulin-secreting cell line MIN6. We present functional data suggesting that both pancreatic and a subpopulation of hypothalamic cells exhibit glucose- and tolbutamide-evoked changes in cytosolic calcium and consider some clinical implications of different glucose sensors using the same mechanisms.  相似文献   

5.
A 48-kDa beta-N-acetylglucosamine (GlcNAc)-binding protein was isolated from mouse brain by GlcNAc-agarose column chromatography. The N-terminal amino acid residues showed the protein to be a mouse Na(+)/K(+)-ATPase beta1-subunit. When the recombinant FLAG-beta1-subunit expressed in Sf-9 cells was applied to a GlcNAc-agarose column, only the glycosylated 38- and 40-kDa proteins bound to the column. In the absence of KCl, little of the proteins bound to a GlcNAc-agarose column, but the 38- and 40-kDa proteins bound in the presence of KCl at concentrations above 1 mM. Immunohistochemical study showed that the beta1-subunit and GlcNAc-terminating oligosaccharides are at the cell contact sites. Inclusion of anti-beta1-subunit antibody or chitobiose in cell aggregation assays using mouse neural cells resulted in inhibition of cell aggregation. These results indicate that the Na(+)/K(+)-ATPase beta1-subunit is a potassium-dependent lectin that binds to GlcNAc-terminating oligosaccharides: it may be involved in neural cell interactions.  相似文献   

6.
采用低碘饮食建立甲状腺功能减退(甲减)动物模型,观察心肌抗氧化能力及Na+-K+-ATP酶α1亚基mRNA的变化,结果显示甲减大鼠心肌抗氧化能力下降,导致心肌过氧化损伤,心肌细胞萎缩,心脏内膜软骨化生,膜上参与代谢的ATP酶活性降低,Na+-K+-ATP酶α1亚基mRNA的表达下降.  相似文献   

7.
8.
目的探讨不同甲状腺激素(TH)水平对大鼠心肌Na^+,K^+-ATP酶(钠泵)α1亚基mRNA表达的影响。方法Wistar大鼠随机分为甲状腺功能减退(简称甲减)组和对照组,分别摄入含碘量为50、300mg/kg的饲料,并分别饮用去离子水和自来水,喂养24周后放射免疫法测定血清TH水平,RT—PCR法测定心肌组织钠泵α1亚基mRNA的表达水平。结果甲减组血清TH水平明显低于对照组(P〈0.01);心肌钠泵α1亚基mRNA表达水平,甲减组(0.59±0.51)与对照组(0.97±0.27)相比明显降低,差异有统计学意义(t=2.57,P〈0.05)。结论低碘饮食可以诱发大鼠甲状腺功能减退,低TH水平导致心肌钠泵α1亚基mRNA表达下降。  相似文献   

9.
To determine whether the sympathetic nerve plays a role in the regulation of Na+-H+ exchange (NHE) in the kidney of spontaneously hypertensive rats (SHR), we investigated the expression of NHE and NHE regulatory protein family (NHERF) in the denervated kidneys compared with intact kidneys. Twelve-week-old male SHR and age-matched Wistar Kyoto (WKY) rats were used. SHR were randomly assigned to the renal denervated (RDNX, n = 8) or Sham (n = 8) groups. The protein and mRNA expression of NHE1, NHE3, NHERF1 and NHERF2 were assessed in the kidney of the groups. Following the renal denervation, immunohistochemistry and western blot analysis showed that NHE1 and NHE3 protein were signi?cantly decreased in the kidney compared with Sham group. NHERF1 protein expression was signi?cantly increased in RDNX compared with Sham group, whereas NHERF2 protein expression was signi?cantly decreased after renal denervation. Similar results were observed at the mRNA level of NHE1, NHE3, NHERF1 and NHERF2 expression. The present ?ndings suggest that the renal sympathetic nervous system plays a role in the regulation of NHE1 and NHE3 in the kidney of SHR, and NHERF1 may be involved in the expression of NHE3 in the kidney of SHR.  相似文献   

10.
Small arteries play an essential role in the regulation of blood pressure and organ-specific blood flow by contracting in response to increased intraluminal pressure, ie, the myogenic response. The molecular basis of the myogenic response remains to be defined. To achieve incremental changes in arterial diameter, as well as blood pressure or organ-specific blood flow, the depolarizing influence of intravascular pressure on vascular smooth muscle membrane potential that elicits myogenic contraction must be precisely controlled by an opposing hyperpolarizing influence. Here we use a dominant-negative molecular strategy and pressure myography to determine the role of voltage-dependent Kv1 potassium channels in vasoregulation, specifically, whether they act as a negative-feedback control mechanism of the myogenic response. Functional Kv1 channel expression was altered by transfection of endothelium-denuded rat middle cerebral arteries with cDNAs encoding c-myc epitope-tagged, dominant-negative mutant or wild-type rabbit Kv1.5 subunits. Expression of mutant Kv1.5 dramatically enhanced, whereas wild-type subunit expression markedly suppressed, the myogenic response over a wide range of intraluminal pressures. These effects on arterial diameter were associated with enhanced and reduced myogenic depolarization by mutant and wild-type Kv1.5 subunit expression, respectively. Expression of myc-tagged mutant and wild-type Kv1.5 subunit message and protein in transfected but not control arteries was confirmed, and isolated myocytes of transfected but not control arteries exhibited anti-c-myc immunofluorescence. No changes in message encoding other known, non-Kv1 elements of the myogenic response were apparent. These findings provide the first molecular evidence that Kv1-containing delayed rectifier K+ (K(DR)) channels are of fundamental importance for control of arterial diameter and, thereby, peripheral vascular resistance, blood pressure, and organ-specific blood flow.  相似文献   

11.
AIM: To determine if hyperpolarisation-activated nucleotide-gated(HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung's disease.METHODS:We investigated HCN1,HCN2,HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease(HSCR,n=10)using the proximal-most ganglionic segment and distalmost aganglionic segment,as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus(n=10).Fluorescent immunohistochemistry was performed to assess protein distribution,which was then visualized using confocal microscopy.RESULTS:No HCN1 channel expression was observed in any of the tissues studied.Both HCN2 and HCN4proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls.HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls.HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls,and also co-localised to interstitial cells of Cajal in all tissues studied.CONCLUSION:We demonstrate HCN channel expression in human colon for the first time.Reduced HCN3expression in aganglionic bowel suggests its potential role in HSCR pathophysiology.  相似文献   

12.
OBJECTIVES: The aim of this study is to analyze Scn1b mRNA expression levels and protein distribution of Scn1b, a putative modulator of the pore-forming Na(+) channel subunit in the heart, during mouse cardiac development. METHODS: Scn1b mRNA levels were determined by real-time RT-PCR using embryonic hearts ranging from E9.5 to E18.5 as well as in postnatal and adult heart. Scn1b protein distribution and subcellular localization during cardiogenesis were analyzed by immunohistochemistry and confocal microscopy. RESULTS: Scn1b mRNA showed a dynamic expression pattern, peaking at stage E12.5 and decreasing at E15.5. Scn1b mRNA increased at later embryonic and neonatal stages, being maximal in the adult heart. Immunohistochemistry experiments revealed comparable distribution of Scn1b protein between the different cardiac chambers at early embryonic stages. With further development, Scn1b protein showed an enhanced expression in the trabeculated myocardium and the bundle branches. At the subcellular level in later embryonic and postnatal mouse cardiomyocytes, Scn1b was present in T-tubules as identified by immunostaining of alpha-actinin, and in the intercalated disks as identified by immunostaining of connexin 43. CONCLUSION: These results demonstrate that Scn1b is expressed during mouse heart development, suggesting it can play an important role in the action potential configuration of the cardiomyocytes during heart morphogenesis.  相似文献   

13.
Caveolins are key components of caveolae membranes. The calcium-sensing receptor (CaR) resides within caveolin-rich membrane domains in bovine parathyroid (PT) cells. Recent studies reported reduced CaR expression, and abnormal calcium-sensing in PT tumors. To examine this altered CaR signaling, we investigated ERK activation after CaR stimulation in human and bovine PT cells. In freshly prepared bovine PT cells, high extracellular calcium (Ca(2+)(0)) stimulates ERK1/2 phosphorylation, and activated ERK1/2 colocalizes with caveolin-1 at the plasma membrane but fails to translocate to the nucleus, and cell proliferation is low. In cultured bovine PT cells, CaR and caveolin-1 levels are reduced; activated ERK1/2 localizes in the cell periphery at 10 min and in the perinuclear and nuclear regions at 60 min after exposure to high Ca(2+)(0), and cell proliferation is increased. In PT cells from adenomas, there are high levels of caveolin-2, variably reduced caveolin-1, and hyperactivation of ERK1/2, which colocalizes with caveolin-1 in some cells, but localizes in the cytosol and nucleus in others. Finally, caveolin-1 negative human PT cells exhibit reduced suppressibility of PTH secretion by high Ca(2+)(0). Thus, CaR and caveolin-1 colocalize in PT cells, and reduced levels of caveolin-1 could participate in the abnormal cellular function and proliferation of cultured bovine PT cells and PT adenomas.  相似文献   

14.
慢性缺氧改变肺内动脉平滑肌细胞环氧合酶基因的表达   总被引:10,自引:1,他引:10  
目的研究慢性缺氧对肺动脉平滑肌细胞环氧合酶基因表达的影响.方法根据常氧(PaO2152mmHg)及慢性缺氧(PaO240±5nmHg)的不同培养条件,将平滑肌细胞分为常氧组和慢性缺氧组,采用半定量RT-PCR技术检测大鼠肺内动脉平滑肌细胞环氧合酶(COX)基因的表达及其对急性缺氧刺激的反应.结果COX-1mRNA的表达不受缺氧及传代的影响,而COX-2mRNA的表达随慢性缺氧时间延长而增加,在4、6代慢性缺氧培养组均高于同代常氧组水平(P<0.05).急性缺氧后COX-2mRNA增加的幅度在慢性缺氧组均大于同代常氧组,以第四代最为显著.结论慢性缺氧可增强急性缺氧时肺内动脉平滑肌细胞COX-2基因的表达,在慢性缺氧所致肺血管对缺氧的反应性降低中可能起作用.  相似文献   

15.
Correlation of blood pressure (BP) with expression levels of large-conductance, voltage- and Ca2+-activated K+ (BK) channel beta1 subunit in vascular tissues from spontaneously hypertensive rats (SHR), Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD) at different ages was investigated. Systolic BP and BK beta1 expression in mesenteric arteries at either mRNA or protein levels were not different among 4-week-old SHR, WKY, and SD. With hypertension developed at 7 weeks and reached plateau at 12 weeks, expression levels of BK beta1 mRNA in mesenteric arteries and aortae from SHR during this period of time were significantly higher than in age-matched normotensive WKY. The BK beta1 protein expression was significantly higher in mesenteric arteries from 12-week-old but not 7-week-old SHR when compared with age-matched WKY and SD. The BK beta1 protein levels in aortae were not different among 7-week-old SHR, WKY, and SD but were significantly lower in 12-week-old WKY than in age-matched SHR and SD. Captopril treatment normalized BP of 12-week-old SHR. This treatment downregulated BK beta1 protein in mesenteric arteries but upregulated it in aortae. No significant difference in BK alpha subunit expression was detected in mesenteric arteries from three strains of rats as well as the captopril-treated SHR. It appears that expression patterns of BK beta1 in vascular tissues vary depending on tissue types, animal age, and animal strains. Expression of BK beta1 in mesenteric arteries is closely correlated with BP in SHR. Increased BK beta1 expression in mesenteric arteries may represent a compensatory reaction to limit the development of hypertension.  相似文献   

16.
目的研究活动性肺结核患者外周血单个核细胞(PBMCs)Blimp-1的表达及临床意义。方法采集31例活动期肺结核患者和45位健康对照组外周血,纯化PBMCs,用结核分枝杆菌ESAT-6和CFP-10混合性抗原肽库刺激,通过细胞表面标记和细胞内细胞因子染色技术,采用流式技术检测CD+4、CD+8T细胞Blimp-1的表达。结果与对照组比较,肺结核患者PBMCs中的CD+4、CD+8T细胞亚群分布出现显著性下降,且肺结核患者CD+4T细胞中Blimp-1的表达比例(%)下降(肺结核组89.5%(83.8%,95.7%),对照组94.5%(89.8%,98.7%),P0.05),且CD+4、CD+8T细胞中Blimp-1的表达量(平均荧光强度)也显著性下降(CD+4T细胞:肺结核组9.28(7.5,18.9),对照组15.4(11,25.4),P0.05);CD+8T细胞:肺结核组9.01(6.08,14.7),对照组14.2(9.53,23.1),P0.05)。结论活动期肺结核CD+4、CD+8T细胞群内Blimp-1的表达下降可能会使效应性和调节性T细胞的分化出现异常。Blimp-1可能参与结核病的疾病进程,这为研究结核病的诊断和治疗提供了线索。  相似文献   

17.
18.
19.
We studied the structure of the C terminus of the Shaker potassium channel. The 3D structures of the full-length and a C-terminal deletion (Delta C) mutant of Shaker were determined by electron microscopy and single-particle analysis. The difference map between the full-length and the truncated channels clearly shows a compact density, located on the sides of the T1 domain, that corresponds to a large part of the C terminus. We also expressed and purified both WT and Delta C Shaker, assembled with the rat KvBeta2-subunit. By using a difference map between the full-length and truncated Shaker alpha-beta complexes, a conformational change was identified that shifts a large part of the C terminus away from the membrane domain and into close contact with the Beta-subunit. This conformational change, induced by the binding of the KvBeta2-subunit, suggests a possible mechanism for the modulation of the K+ voltage-gated channel function by its Beta-subunit.  相似文献   

20.
The Ca(2+) channel alpha(1A)-subunit is a voltage-gated, pore-forming membrane protein positioned at the intersection of two important lines of research: one exploring the diversity of Ca(2+) channels and their physiological roles, and the other pursuing mechanisms of ataxia, dystonia, epilepsy, and migraine. alpha(1A)-Subunits are thought to support both P- and Q-type Ca(2+) channel currents, but the most direct test, a null mutant, has not been described, nor is it known which changes in neurotransmission might arise from elimination of the predominant Ca(2+) delivery system at excitatory nerve terminals. We generated alpha(1A)-deficient mice (alpha(1A)(-/-)) and found that they developed a rapidly progressive neurological deficit with specific characteristics of ataxia and dystonia before dying approximately 3-4 weeks after birth. P-type currents in Purkinje neurons and P- and Q-type currents in cerebellar granule cells were eliminated completely whereas other Ca(2+) channel types, including those involved in triggering transmitter release, also underwent concomitant changes in density. Synaptic transmission in alpha(1A)(-/-) hippocampal slices persisted despite the lack of P/Q-type channels but showed enhanced reliance on N-type and R-type Ca(2+) entry. The alpha(1A)(-/-) mice provide a starting point for unraveling neuropathological mechanisms of human diseases generated by mutations in alpha(1A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号