首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Large-conductance calcium-activated potassium channels (BK) are potent negative regulators of excitability in neurons and muscle, and increasing BK current is a novel therapeutic strategy for neuro- and cardioprotection, disorders of smooth muscle hyperactivity, and several psychiatric diseases. However, in some neurons, enhanced BK current is linked with seizures and paradoxical increases in excitability, potentially complicating the clinical use of agonists. The mechanisms that switch BK influence from inhibitory to excitatory are not well defined. Here we investigate this dichotomy using a gain-of-function subunit (BKR207Q) to enhance BK currents. Heterologous expression of BKR207Q generated currents that activated at physiologically relevant voltages in lower intracellular Ca2+, activated faster, and deactivated slower than wild-type currents. We then used BKR207Q expression to broadly augment endogenous BK currents in vivo, generating a transgenic mouse from a circadian clock-controlled Period1 gene fragment (Tg-BKR207Q). The specific impact on excitability was assessed in neurons of the suprachiasmatic nucleus (SCN) in the hypothalamus, a cell type where BK currents regulate spontaneous firing under distinct day and night conditions that are defined by different complements of ionic currents. In the SCN, Tg-BKR207Q expression converted the endogenous BK current to fast-activating, while maintaining similar current-voltage properties between day and night. Alteration of BK currents in Tg-BKR207Q SCN neurons increased firing at night but decreased firing during the day, demonstrating that BK currents generate bidirectional effects on neuronal firing under distinct conditions.  相似文献   

3.
We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K+ channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K+ channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.Voltage-gated K+ channels are highly conserved among bilaterian metazoans and play a central role in the regulation of excitation in neurons and muscle. Understanding the functional evolution of these channels may therefore provide important insights into how neuromuscular excitation evolved within the Metazoa. Three major gene families, Shaker, KCNQ, and Ether-a-go-go (EAG) encode all voltage-gated K+ channels in bilaterians (1, 2). In this study, we examine the functional evolution and origins of the Shaker and KCNQ gene families. Shaker family channels can be definitively identified by a unique subunit structure that includes both a voltage-gated K+ channel core and a family-specific cytoplasmic domain within the N terminus known as the T1 domain. T1 mediates assembly of Shaker family subunits into functional tetrameric channels (3, 4). KCNQ channels are also tetrameric but lack a T1 domain and use a distinct coiled-coil assembly domain in the C terminus (5, 6). KCNQ channels can be identified by the presence of this family-specific assembly motif and high amino acid conservation within the K+ channel core. Both channel families are found in cnidarians (1, 7) and thus predate the divergence of cnidarians and bilaterians, but their ultimate evolutionary origins have not yet been defined.Shaker family K+ channels serve diverse roles in the regulation of neuronal firing and can be divided into four gene subfamilies based on function and sequence homology: Shaker, Shab, Shal, and Shaw (8, 9). The T1 assembly domain is only compatible between subunits from the same gene subfamily (4, 10) and thus serves to keep the subfamilies functionally segregated. Shaker subfamily channels activate rapidly near action potential threshold and range from rapidly inactivating to noninactivating. Multiple roles for Shaker channels in neurons and muscles have been described, but their most unique and fundamental role may be that of axonal action potential repolarization. Shaker channels are clustered to the axon initial segment and nodes of Ranvier in vertebrate neurons (1113) and underlie the delayed rectifier in squid giant axons (14). The Shaker subfamily is diverse in cnidarians (15, 16), and the starlet sea anemone Nematostella vectensis has functional orthologs of most identified Shaker current types observed in bilaterians (16).The Shab and Shal gene subfamilies encode somatodendritic delayed rectifiers and A currents, respectively (1720). Shab channels are important for maintaining sustained firing (21, 22), whereas the Kv4-based A current modulates spike threshold and frequency (17). Shab and Shal channels are present in cnidarians, but cnidarian Shab channels have not been functionally characterized, and the only cnidarian Shal channels expressed to date display atypical voltage dependence and kinetics compared with bilaterian channels (23). Shaw channels are rapid, high-threshold channels specialized for sustaining fast firing in vertebrates (24, 25) but have a low activation threshold and may contribute to resting potential in Drosophila (19, 26, 27). A Caenorhabditis elegans Shaw has slow kinetics but a high activation threshold (28), and a single expressed cnidarian Shaw channel has the opposite: a low activation threshold but relatively fast kinetics (29). Thus, the ancestral properties and function of Shaw channels is not yet understood. Further functional characterization of cnidarian Shab, Shal, and Shaw channels would provide a better understanding of the evolutionary status of the Shaker family in early parahoxozoans.KCNQ family channels underlie the M current in vertebrate neurons (30) that regulates subthreshold excitability (31). The M current provides a fundamental mechanism for regulation of firing threshold through the Gq G-protein pathway because KCNQ channels require phosphatidylinositol 4,5-bisphosphate (PIP2) for activation (32, 33). PIP2 hydrolysis and subsequent KCNQ channel closure initiated by Gq-coupled receptors produces slow excitatory postsynaptic potentials, during which the probability of firing is greatly increased (32, 33). The key functional adaptations of KCNQ channels for this physiological role that can be observed in vitro are (i) a requirement for PIP2 to couple voltage-sensor activation to pore opening (34, 35), and (ii) a hyperpolarized voltage–activation curve that allows channels to open below typical action potential thresholds. Both key features are found in vertebrate (30, 34, 3638), Drosophila (39), and C. elegans (40) KCNQ channels, suggesting they may have been present in KCNQ channels in a bilaterian ancestor. Evolution of the M current likely represented a major advance in the ability to modulate the activity of neuronal circuits, but it is not yet clear when PIP2-dependent KCNQ channels first evolved.Here, we examine the origins and functional evolution of the Shaker and KCNQ gene families. If we assume the evolution of neuronal signaling provided a major selective pressure for the functional diversification of voltage-gated K+ channels, then we can hypothesize that the appearance of these gene families might accompany the emergence of the first nervous systems or a major event in nervous system evolution. Recent phylogenies that place the divergence of ctenophores near the root of the metazoan tree suggest that the first nervous systems, or at least the capacity to make neurons, may have been present in a basal metazoan ancestor (4143) (Fig. S1). One hypothesis then is that much of the diversity of metazoan voltage-gated channels should be shared between ctenophores and parahoxozoans [cnidarians, bilaterians, and placozoans (44)]. However, genome analysis indicates that many “typical” neuronal genes are missing in ctenophores and the sponges lack a nervous system, leading to the suggestion that extant nervous systems may have evolved independently in ctenophores and parahoxozoans (42, 45). Thus, a second hypothesis is that important steps in voltage-gated K+ channel evolution might have occurred separately in ctenophores and parahoxozoans. We tested these hypotheses by carefully examining the phylogenetic distribution and functional evolution of Shaker and KCNQ family K+ channels. Our results support a model in which major innovations in neuromuscular excitability occurred specifically within the parahoxozoan lineage.  相似文献   

4.
AIM: To determine the features of Enterococcus that contribute to the development and maintenance of the inflammatory process in patients with inflammatory bowel disease (IBD). METHODS: Multiplex polymerase chain reaction (PCR) was applied to assess the presence of genes that encode virulence factors [surface aggregating protein (asa1), gelatinase (gelE), cytolysin (cylA), extracellular surface protein (esp) and hyaluronidase (hyl)] in the genomic DNA of 28 strains of Enterococcus isolated from the intestinal tissues of children with IBD (n =16) and of children without IBD (controls; n = 12). Additionally, strains with confirmed presence of the gelE gene were tested by PCR for the presence of quorum sensing genes (fsrA, fsrB, fsrC) that control the gelatinase production. Gelatinase activity was tested on agar plates containing 1.6% gelatin. We also analysed the ability of Enterococcus strains to release and decompose hydrogen peroxide (using Analytical Merckoquant peroxide test strips) and tested their ability to adhere to Caco-2 human gut epithelium cells and form biofilms in vitro. RESULTS: A comparison of the genomes of Enterococcus strains isolated from the inflamed mucosa of patients with IBD with those of the control group showed statistically significant differences in the frequency of theasa1 gene and thegelE gene. Furthermore, the cumulative occurrence of different virulence genes in the genome of a single strain ofEnterococcus isolated from the IBD patient group is greater than in a strain from the control group, although no significant difference was found. Statistically significant differences in the decomposition of hydrogen peroxide and adherence to the Caco-2 epithelial cell line between the strains from the patient group and control group were demonstrated. The results also showed that profuse biofilm production was more frequent amongEnterococcus strains isolated from children with IBD than in control strains. CONCLUSION: Enterococcus strains that adhere strongly to the intestinal epithelium, fo  相似文献   

5.
Auditory transduction is mediated by chordotonal (Cho) neurons in Drosophila larvae, but the molecular identity of the mechanotransduction (MET) channel is elusive. Here, we established a whole-cell recording system of Cho neurons and showed that two transient receptor potential vanilloid (TRPV) channels, Nanchung (NAN) and Inactive (IAV), are essential for MET currents in Cho neurons. NAN and IAV form active ion channels when expressed simultaneously in S2 cells. Point mutations in the pore region of NAN-IAV change the reversal potential of the MET currents. Particularly, residues 857 through 990 in the IAV carboxyl terminus regulate the kinetics of MET currents in Cho neurons. In addition, TRPN channel NompC contributes to the adaptation of auditory transduction currents independent of its ion-conduction function. These results indicate that NAN-IAV, rather than NompC, functions as essential pore-forming subunits of the native auditory transduction channel in Drosophila and provide insights into the gating mechanism of MET currents in Cho neurons.

Drosophila is endowed with specialized auditory receptor cells in which sound waves are transduced into electrical signals. However, the key molecules/ion channels mediating this mechanotransduction (MET) process remain obscure. In adult flies, Johnston’s organ neurons (JONs) detect sound and gravity (15). At the tip of the dendrite, each JON bears a cilium, in which the auditory transduction takes place. Two transient receptor potential (TRP) channels, Nanchung (NAN) and Inactive (IAV), are both localized to the proximal cilia (6), while NompC has a restricted distribution in the distal cilia (7). All three molecules are the potential candidates mediating the MET currents in JONs.NAN and IAV are required for sound sensation in JONs (6, 8, 9). Furthermore, NAN and IAV are expressed in auditory receptor neurons and likely function as heteromers (6, 8). In nan or iav null mutants, the compound action potential induced by sound is abolished (6, 8). In addition, NompC is a mechanosensitive channel responsible for touch sensation in Drosophila (7). Importantly, the antennal sound receivers in nompC null allele mutant show no nonlinear amplification to pure tone stimuli. Moreover, self-sustained oscillations of antennal sound receivers are abolished in nompC null mutant (10), but it is still unclear whether NAN, IAV, and NompC amplify subthreshold MET current or mediate the subthreshold MET current themselves in auditory receptor neurons (1, 1013). Therefore, it is necessary to study the following: first, whether NAN, IAV, and NompC are essential for the primary MET current evoked by sound; furthermore, which of them are the pore-forming subunits of the native auditory transduction channel; and finally, the gating mechanism of MET currents.Patch clamp recordings of JONs are not feasible, because these neurons are very small and their cell bodies are embedded in a delicate antenna whose integrity is crucial for their function (13). Thus, we established patch clamp recordings of chordotonal (Cho) neurons of Drosophila larvae and showed that NAN and IAV are essential for the MET current in Cho neurons. We further found that NAN and IAV form active ion channels when coexpressed in heterologous cells. Mutations in the pore lining residues of NAN and IAV altered the permeation properties of native MET current in Cho neurons. We also identified residues 857 through 990 in the IAV carboxyl terminus that regulate the adaptation time constant of MET currents. Additionally, nompC null mutants showed a decreased adaptation time constant of the MET current, with the current amplitude comparable to that in wild-type. Moreover, a nonconducting point mutation of NompC did not affect MET currents. These findings provide convincing evidence that NAN-IAV channels form the pore of the native auditory transduction channel in Drosophila and reveal functional domains in NAN and IAV for channel gating. Intriguingly, NompC regulates auditory transduction currents independent of its ion-conducting function, which is consistent with the idea that NompC couples forces to the transduction channels by acting as the amplifier.  相似文献   

6.
7.
The ability to sense and respond to subtle variations in environmental temperature is critical for animal survival. Animals avoid temperatures that are too cold or too warm and seek out temperatures favorable for their survival. At the molecular level, members of the transient receptor potential (TRP) family of cation channels contribute to thermosensory behaviors in animals from flies to humans. In Drosophila melanogaster larvae, avoidance of excessively warm temperatures is known to require the TRP protein dTRPA1. Whether larval avoidance of excessively cool temperatures also requires TRP channel function, and whether warm and cool avoidance use the same or distinct TRP channels has been unknown. Here we identify two TRP channels required for cool avoidance, TRPL and TRP. Although TRPL and TRP have previously characterized roles in phototransduction, their function in cool avoidance appears to be distinct, as neither photoreceptor neurons nor the phototransduction regulators NORPA and INAF are required for cool avoidance. TRPL and TRP are required for cool avoidance; however they are dispensable for warm avoidance. Furthermore, cold-activated neurons in the larvae are required for cool but not warm avoidance. Conversely, dTRPA1 is essential for warm avoidance, but not cool avoidance. Taken together, these data demonstrate that warm and cool avoidance in the Drosophila larva involves distinct TRP channels and circuits.  相似文献   

8.
We investigated two mitochondrial genes (cytb and cox1), one plastid gene (tufA), and one nuclear gene (ldh) in blood samples from 12 chimpanzees and two gorillas from Cameroon and one lemur from Madagascar. One gorilla sample is related to Plasmodium falciparum, thus confirming the recently reported presence in gorillas of this parasite. The second gorilla sample is more similar to the recently defined Plasmodium gaboni than to the P. falciparum–Plasmodium reichenowi clade, but distinct from both. Two chimpanzee samples are P. falciparum. A third sample is P. reichenowi and two others are P. gaboni. The other chimpanzee samples are different from those in the ape clade: two are Plasmodium ovale, and one is Plasmodium malariae. That is, we have found three human Plasmodium parasites in chimpanzees. Four chimpanzee samples were mixed: one species was P. reichenowi; the other species was P. gaboni in three samples and P. ovale in the fourth sample. The lemur sample, provisionally named Plasmodium malagasi, is a sister lineage to the large cluster of primate parasites that does not include P. falciparum or ape parasites, suggesting that the falciparum + ape parasite cluster (Laverania clade) may have evolved from a parasite present in hosts not ancestral to the primates. If malignant malaria were eradicated from human populations, chimpanzees, in addition to gorillas, might serve as a reservoir for P. falciparum.  相似文献   

9.
10.
We reviewed the associations of immunity-related genes with susceptibility of humans and rodents to hantaviruses, and with severity of hantaviral diseases in humans. Several class I and class II HLA haplotypes were linked with severe or benign hantavirus infections, and these haplotypes varied among localities and hantaviruses. The polymorphism of other immunity-related genes including the C4A gene and a high-producing genotype of TNF gene associated with severe PUUV infection. Additional genes that may contribute to disease or to PUUV infection severity include non-carriage of the interleukin-1 receptor antagonist (IL-1RA) allele 2 and IL-1β (-511) allele 2, polymorphisms of plasminogen activator inhibitor (PAI-1) and platelet GP1a. In addition, immunogenetic studies have been conducted to identify mechanisms that could be linked with the persistence/clearance of hantaviruses in reservoirs. Persistence was associated during experimental infections with an upregulation of anti-inflammatory responses. Using natural rodent population samples, polymorphisms and/or expression levels of several genes have been analyzed. These genes were selected based on the literature of rodent or human/hantavirus interactions (some Mhc class II genes, Tnf promoter, and genes encoding the proteins TLR4, TLR7, Mx2 and β3 integrin). The comparison of genetic differentiation estimated between bank vole populations sampled over Europe, at neutral and candidate genes, has allowed to evidence signatures of selection for Tnf, Mx2 and the Drb Mhc class II genes. Altogether, these results corroborated the hypothesis of an evolution of tolerance strategies in rodents. We finally discuss the importance of these results from the medical and epidemiological perspectives.  相似文献   

11.
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.Hyperpolarization-activated, cyclic nucleotide-gated (HCN), cation nonselective ion channels generate hyperpolarization-activated inward currents (Ih) and thus tend to stabilize membrane potential (13). In addition, binding of cyclic nucleotides (cAMP and cGMP) to the C-terminal cyclic nucleotide binding domain (CNBD) enhances Ih and thus couples membrane excitability with intracellular signaling pathways (2, 4). HCN channels are widely important for numerous systemic functions such as hormonal regulation, heart contractility, epilepsy, pain, central pattern generation, sensory perception (415), and learning and memory (1624).However, in previous studies it has been difficult to relate the cellular effects of HCN channels directly to their behavioral effects, because of the immense complexity of the mammalian brain. We have therefore investigated the role of HCN channels in Aplysia, which has a numerically simpler nervous system (25). We first identified and characterized an HCN gene in Aplysia, and showed that it codes for a channel that has many similarities to the mammalian HCN channel. We found that the Aplysia HCN channel is predominantly expressed in motor neurons including LFS neurons in the siphon withdrawal reflex circuit (26, 27). We therefore investigated simple forms of learning of that reflex in a semiintact preparation (2830) and found that HCN current is involved in classical conditioning and enhances the NMDA-like current in the motor neurons. These results provide a direct connection between HCN channels and behavioral learning and suggest a postsynaptic mechanism of that effect. HCN current in turn is enhanced by nitric oxide (NO), a transmitter of facilitatory interneurons, and thus may contribute to the postsynaptic role of NO during conditioning.  相似文献   

12.
13.
14.
Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ∼20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ∼2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.The mammalian Y chromosome has the lowest gene density of any chromosome, and most of its genes have a homolog on the X. This pattern is consistent with the mammalian sex chromosomes having originated from an ordinary pair of chromosomes, followed by massive gene loss from the Y (14). In contrast, the closest homologs of all Drosophila melanogaster Y-linked protein-encoding genes are autosomal, strongly suggesting that its Y chromosome has been acquiring genes from the autosomes (57). Indeed, gene gains, and not gene losses, have played the major role in shaping the gene content of the Drosophila Y, at least in the last ∼63 million years (My) (8, 9). Hence, the Drosophila Y chromosome seems to be evolving noncanonically (10) and is an ideal model to investigate the dynamics of gene gain on a nonrecombining Y chromosome.The Drosophila Y chromosome has long been known to contain genes essential for male fertility (11, 12). Due to its heterochromatic state, progress in the molecular identification of the Y-linked single-copy genes has been slow. male fertility factor kl5 (kl-5), the first single-copy gene identified, was found serendipitously; it encodes a motor protein (dynein heavy chain) required for flagellar beating (13). More recently, a combination of computational and experimental methods identified 11 single-copy Y-linked genes among the unmapped sequence scaffolds produced by the Drosophila Genome Project (57). These genes have two striking features: (i) their closest paralogs are autosomal and not X linked, and (ii) they have male-specific functions, such as the beating of sperm flagella reported for the kl-5 gene (14). The most likely explanation for this pattern is that Y-linked genes were acquired from the autosomes and have been retained because they confer a specific fitness advantage to their carriers. An autosomal origin has previously been reported for a few Y-linked genes in humans and a repetitive gene on the Drosophila Y (4, 15). However, unequivocal evidence of the autosomal origin of Drosophila Y-linked genes, and of the specific mechanism that originated them, is lacking due to their antiquity. The 11 known single-copy genes (kl-2, kl-3, kl-5, ARY, WDY, PRY, Pp1-Y1, Pp1-Y2, Ppr-Y, ORY, and CCY) represent ancient duplications, with amino acid identities to the putative ancestors ranging from 30% to 74%, and poor (if any) alignment at the nucleotide level. Most of them have introns in conserved positions compared with their autosomal paralogs, ruling out retrotransposition and suggesting DNA-based duplication as the mechanism. The original size of these putative duplications is unknown, because the similarity between autosomal and Y-linked regions is restricted to one gene in each case. Flanking sequences and contiguous genes either were not duplicated or were subsequently mutated and deleted beyond recognition.Here we describe flagrante delicto Y (FDY), a single copy Y-linked gene present only in D. melanogaster, and which is 98% identical at the nucleotide level to the autosomal gene vig2. Because its origin is very recent (it occurred after the split between D. melanogaster and Drosophila simulans, ∼4 Mya), it was possible to demonstrate that FDY arose from a DNA-based duplication of chromosome 3R to the Y: the duplicated segment spans 11 kb of autosomal sequence and includes five contiguous genes (vig2, Mocs2, CG42503, Clbn, and Bili); the last four genes became pseudogenes by rapid accumulation of deletions, point mutations, and transposable element insertions or by lack of expression. Thus, FDY unequivocally demonstrates that the Drosophila Y has acquired genes from autosomes. Several Y-linked genes such as kl-2, kl-3, and PRY are shared by distant Drosophila species that diverged ∼60 Mya, implying ancient acquisitions. FDY dates the more recent acquisition to ∼2 My, and hence strongly suggests that Drosophila Y has been continuously acquiring autosomal genes.  相似文献   

15.
Fungi produce numerous low molecular weight molecules endowed with a multitude of biological activities. However, mining the full-genome sequences of fungi indicates that their potential to produce secondary metabolites is greatly underestimated. Because most of the biosynthesis gene clusters are silent under laboratory conditions, one of the major challenges is to understand the physiological conditions under which these genes are activated. Thus, we cocultivated the important model fungus Aspergillus nidulans with a collection of 58 soil-dwelling actinomycetes. By microarray analyses of both Aspergillus secondary metabolism and full-genome arrays and Northern blot and quantitative RT-PCR analyses, we demonstrate at the molecular level that a distinct fungal-bacterial interaction leads to the specific activation of fungal secondary metabolism genes. Most surprisingly, dialysis experiments and electron microscopy indicated that an intimate physical interaction of the bacterial and fungal mycelia is required to elicit the specific response. Gene knockout experiments provided evidence that one induced gene cluster codes for the long-sought after polyketide synthase (PKS) required for the biosynthesis of the archetypal polyketide orsellinic acid, the typical lichen metabolite lecanoric acid, and the cathepsin K inhibitors F-9775A and F-9775B. A phylogenetic analysis demonstrates that orthologs of this PKS are widespread in nature in all major fungal groups, including mycobionts of lichens. These results provide evidence of specific interaction among microorganisms belonging to different domains and support the hypothesis that not only diffusible signals but intimate physical interactions contribute to the communication among microorganisms and induction of otherwise silent biosynthesis genes.  相似文献   

16.
17.
Mammalian Ether-a-go-go related gene (Erg) family voltage-gated K+ channels possess an unusual gating phenotype that specializes them for a role in delayed repolarization. Mammalian Erg currents rectify during depolarization due to rapid, voltage-dependent inactivation, but rebound during repolarization due to a combination of rapid recovery from inactivation and slow deactivation. This is exemplified by the mammalian Erg1 channel, which is responsible for IKr, a current that repolarizes cardiac action potential plateaus. The Drosophila Erg channel does not inactivate and closes rapidly upon repolarization. The dramatically different properties observed in mammalian and Drosophila Erg homologs bring into question the evolutionary origins of distinct Erg K+ channel functions. Erg channels are highly conserved in eumetazoans and first evolved in a common ancestor of the placozoans, cnidarians, and bilaterians. To address the ancestral function of Erg channels, we identified and characterized Erg channel paralogs in the sea anemone Nematostella vectensis. N. vectensis Erg1 (NvErg1) is highly conserved with respect to bilaterian homologs and shares the IKr-like gating phenotype with mammalian Erg channels. Thus, the IKr phenotype predates the divergence of cnidarians and bilaterians. NvErg4 and Caenorhabditis elegans Erg (unc-103) share the divergent Drosophila Erg gating phenotype. Phylogenetic and sequence analysis surprisingly indicates that this alternate gating phenotype arose independently in protosomes and cnidarians. Conversion from an ancestral IKr-like gating phenotype to a Drosophila Erg-like phenotype correlates with loss of the cytoplasmic Ether-a-go-go domain. This domain is required for slow deactivation in mammalian Erg1 channels, and thus its loss may partially explain the change in gating phenotype.Voltage-gated ion channel families are highly conserved across the Eumetazoa (cnidarians and bilaterians) (1, 2). Vertebrates recently expanded the number of ion channel genes within each of the conserved families because of vertebrate-specific gene duplications. Additionally, phylogenetically restricted duplications of ion channel genes appear common throughout the Eumetazoa (1, 35). Thus, there is little 1:1 gene orthology between the eumetazoan phyla (1). However, numerous studies show extremely high functional conservation, including family-specific gating properties. For example, Shaker-related voltage-gated K+ channels first cloned in Drosophila show a high fidelity of gating phenotype to their mammalian counterparts (6). Subsequent studies have shown this functional conservation extends to cnidarians (4, 710), which separated from bilaterians near the base of the eumetazoan tree over 500 Mya (11). One exception to this pattern of high conservation is the Ether-a-go-go related gene (Erg) family (or Kv11) of voltage-gated K+ channels. The three mammalian Erg orthologs show striking gating differences compared with Drosophila Erg (seizure, DmErg).The mammalian Erg gating phenotype is typified by human Erg1 (HsErg1), which underlies IKr, a K+ current that repolarizes the late plateau phase of ventricular action potentials (12, 13). HsErg1 loss-of-function mutations prolong the QT interval in ECG recordings, indicating impaired action potential repolarization (14). Several key gating features adapt Erg1 for ventricular action potential plateau repolarization. First, Erg1 channels inactivate rapidly in response to depolarization (Fig. 1 A–C). Second, recovery from inactivation through the open state is extremely rapid (Fig. 1B), whereas channel deactivation is slow (Fig. 1D); the combination produces a jump in Erg1 current in response to repolarization (15). The net effect is that peak Erg1 current flow is delayed and specifically accelerates cardiac action potential plateau repolarization (15), and the length of the plateau is dependent on Erg1 current density (16). The physiological role of mammalian Erg2 and Erg3 channels has not been extensively characterized, but they share an IKr-like gating phenotype (17).Open in a separate windowFig. 1.Comparison of HsErg1 and DmErg gating phenotypes. (A) Families of outward currents recorded from Xenopus oocytes expressing HsErg1 (Left) and DmErg + DAO (Right) in response to depolarizations (Inset). Scale bars indicate time and current amplitude. Currents elicited by a step to +60 mV are highlighted, and arrows indicate (1) rectification of HsErg1 during depolarization by inactivation, (2) rebound in HsErg1 current in response to repolarization due to rapid recovery and slow deactivation, and (3) rapid DmErg deactivation. (B) Comparison of HsErg1 (black) and DmErg (red) currents during a protocol in which channels were first activated by a 1 s step to +60 mV, returned to –100 mV for 10 ms, and then returned to +60 mV. Currents are normalized in peak amplitude for comparison. HsErg1 is inactivated at the end of the first depolarization, recovers to the open state at −100 mV, and inactivates rapidly from a high peak during the second pulse. DmErg1 remains active throughout the first +60 mV pulse, closes at –100 mV, and reactivates during the second +60 mV pulse. (C) Peak HsErg1 current during an initial depolarization (* in B) normalized to peak current after recovery from inactivation (# in B): inactivation reduces the HsErg1 current >20-fold during the first step. Data show mean ± SEM, n = 6 cells. (D) Time constant of deactivation (TauDEACT) measured from tail currents recorded at the indicated voltages for HsErg1 (black) and DmErg (red). Data show mean ± SEM, n = 6–7 cells. (E) Normalized GV curves for HsErg1 and DmErg fit with a single Boltzmann distribution (parameters in SI Methods. Scale bar indicates that time and current amplitudes have been normalized.In contrast, DmErg does not inactivate during depolarization (Fig. 1 A and B) and deactivates rapidly upon repolarization (Fig. 1D) (18). The voltage-activation curve (GV) of DmErg is shifted to hyperpolarized potentials, suggesting influence on subthreshold excitability (Fig. 1E). Modeled HsErg1 and DmErg responses to a crude plateau action potential waveform (Fig. 1F and Fig. S1) point to distinct physiological roles. HsErg1 current is attenuated during the plateau by inactivation and rebounds sharply as the plateau decays. These features allow HsErg1 to accelerate late repolarization without blocking the plateau itself (15). Peak DmErg current flows during the plateau, and the current decays rapidly during repolarization. DmErg would therefore directly combat plateau formation. Loss of HsErg1 inactivation in humans indeed leads to a shortened QT interval based on premature action potential repolarization (16). The specific contribution of DmErg to firing patterns in native cells is unknown, but its gating features are consistent with regulation of subthreshold excitability or rapid action potential repolarization. Temperature-sensitive mutations in the seizure locus that encodes DmErg cause bursts of uncoordinated motor output (19) suggestive of changes in subthreshold excitability. The Caenorhabditis elegans Erg ortholog (CeErg, encoded by unc-103) has not been functionally expressed, but genetic analysis demonstrates that it regulates the excitation threshold of vulva muscles in females and protractor muscles in males (2023).The Erg, Ether-a-go-go (Eag), and Elk gene families comprise the EAG superfamily of voltage-gated K+ channels. These gene families are highly conserved in eumetazoan genomes, and Eag channels display a high functional conservation in the bilaterians. Given the distinct gating phenotypes of the Erg genes in Drosophila and mammals, we decided to explore the functional evolution of the Erg gene family to determine the origins of the distinct IKr-like and DmErg gating phenotypes in the Erg gene family. We functionally characterized CeErg and Erg paralogs from the starlet sea anemone Nematostella vectensis. We examined CeErg to determine whether the DmErg gating phenotype was present in multiple protostome invertebrate phyla. We reasoned that comparison of bilaterian and Nematostella Erg channels would provide insight into ancestral Erg gating phenotypes present before the cnidarian/bilaterian divergence. Functional and phylogenetic analysis presented here supports an IKr-like phenotype as the ancestral gating pattern. An alternate DmErg-like gating phenotype has emerged independently at least twice during metazoan evolution (once in cnidarians and at least once in protostomes) and correlates with loss of the cytoplasmic eag gating domain.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号