首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies from this laboratory suggested that a solution model (Flory-Huggins equation) modified by a free volume model (Vrentas equation) could satisfactorily describe water absorption into an amorphous solid composed of a sugar or a polymer. This paper has extended the studies of single solutes to binary mixtures of trehalose-and sucrose-poly(vinyl pyrrolidone) (trehalose-PVP and sucrose-PVP, respectively) either co-lyophilized or individually lyophilized and then physically mixed. Water vapor absorption isotherms of the binary mixtures were determined at 30 degrees C. Co-lyophilized PVP-sugar mixtures take up essentially the same amount of water as predicted by the weight average of individual isotherms, whereas sugar crystallization is significant retarded in the molecular dispersions. The sugar-PVP interaction, as reflected in the Flory-Huggins chi interaction parameter, was estimated by fitting the high relative pressure (p/p(0)) region of the isotherm, at which the system is in a liquid state, with a three-component Flory-Huggins-type model. The estimated sugar-water PVP-water, and sugar-PVP interaction parameters suggest that the solute-water interactions are not significantly affected by the sugar-PVP interaction; that is, the solute-water interaction parameters in a binary solute system are similar to those in the corresponding single solute systems. Based on these interaction parameters, the sucrose-PVP interaction appears to be stronger than that of trehalose-PVP. Manipulation of the interaction parameters suggest that the water vapor absorption isotherm is not a sensitive indicator of possible sugar-PVP interactions. Density, glass transition temperature, T(g), and the heat capacity change, DeltaC(p), at T(g) were determined to estimate the excess water absorption energy due to the plasticizing effect of water using the structural relaxation model, as described by Vrentas. Results suggest that PVP is a better antiplasticizer for sucrose than for trehalose. Consequently, the excess free energy arising from structural relaxation was disproportionally reduced by the presence of PVP in these molecular dispersions. Finally, the entire isotherms of co-lyophilized sugar-PVP mixtures are reasonably described with an extended three-component Flory-Huggins model and Vrentas glass structural relaxation model.  相似文献   

2.
Purpose. To compare the enthalpy relaxation of amorphous sucrose and co-lyophilized sucrose-additive mixtures near the calorimetric glass transition temperature, so as to measure the effects of additives on the molecular mobility of sucrose. Methods. Amorphous sucrose and sucrose-additive mixtures, containing poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone-co-vinyl-acetate) (PVP/VA) dextran or trehalose, were prepared by lyophilization. Differential scanning calorimetry (DSC) was used to determine the area of the enthalpy recovery endotherm following aging times of up to 750 hours for the various systems. This technique was also used to compare the enthalpy relaxation of a physical mixture of amorphous sucrose and PVP. Results. Relative to sucrose alone, the enthalpy relaxation of co-lyophilized sucrose-additive mixtures was reduced when aged for the same length of time at a comparable degree of undercooling in the order: dextran PVP > PVP/VA > trehalose. Calculated estimates of the total enthalpy change required for sucrose and the mixtures to relax to an equilibrium supercooled liquid state (H) were essentially the same and were in agreement with enthalpy changes measured at longer aging times (750 hours). Conclusions. The observed decrease in the enthalpy relaxation of the mixtures relative to sucrose alone indicates that the mobility of sucrose is reduced by the presence of additives having a Tg that is greater than that of sucrose. Comparison with a physically mixed amorphous system revealed no such effects on sucrose. The formation of a molecular dispersion of sucrose with a second component, present at a level as low as 10%, thus reduces the mobility of sucrose below Tg, most likely due to the coupling of the molecular motions of sucrose to those of the additive through molecular interactions.  相似文献   

3.
This study examines the water sorption behavior of proteins co-lyophilized with sugar/polyol excipients. Gravimetric sorption analysis (GSA) was used to measure water sorption of the lyophilized mixtures and these data allowed for calculation of the water monolayer (M0). Lyophilized protein–mannitol mixtures behaved as predicted from the data for the pure components. Mannitol was shown to crystallize upon lyophilization. For protein co-lyophilized with sucrose or trehalose, which remain amorphous upon lyophilization, M0 tended to be lower than that expected based on contributions of the pure protein and sugar. This negative deviation supports the view that amorphous sugars and pharmaceutical proteins interact in the solid state in such a way as to reduce the availability of water-binding sites. At high relative humidities (rh), sucrose and trehalose were susceptible to moisture-induced crystallization. When co-lyophilized protein was present, the GSA data revealed that this crystallization required a higher rh, or did not occur. For the temperature-induced (non-isothermal) sucrose crystallization, which was studied by differential scanning calorimetry, it was found that the temperature of crystallization tended to increase with an increasing amount of protein. The tendency to crystallize rose in the presence of elevated moisture, whether or not protein was present, likely due to the ability of water to plasticize the solid phase.  相似文献   

4.
The purpose of the present study was to investigate the effects of molecular weight (MW) of polyvinylpyrrolidone (PVP) on glass transition and crystallization of sucrose. Thus, sucrose was co-lyophilized with 2.5 and 5.0% w/w PVP of different molecular weights, which were characterized using gel permeation chromatography. Freeze drying was carried out for 48 h at a shelf temperature of -40 degrees C and a pressure of about 36 Pa. The samples were then dried in a vacuum oven at 24 degrees C for 12 h before drying for a further 12 h at 40 degrees C. Differential scanning calorimetry (DSC) was employed to measure the glass transition temperature (Tg), dynamic crystallization temperature (Tc) and isothermal crystallization induction time (tc) at 85 degrees C of sucrose. Isothermal water vapour sorption of each sample was also measured at different relative humidities. Tg values of sucrose varied from 48.3+/-0.8 degrees C for freeze-dried (FD) sucrose alone to 58.8+/-0.8 degrees C for the mixture containing 5.0% PVP of nominal MW 300 K. PVP increased sucrose T(g) significantly (ANOVA P<0.05). Although there was no significant difference (P>0.05) in Tg of the mixtures containing 2.5% w/w PVP of different MW, samples with 5.0% PVP of MW 300 K produced a significantly higher (P<0.05) Tg than the other mixtures. All mixtures were shown to possess higher (P<0.01) Tc than FD sucrose alone, which exhibited a T(c) of approximately 85 degrees C. PVP of MW 300 K consistently induced a significantly (P<0.05) higher Tc of sucrose than PVP of smaller MW. Increasing PVP concentration from 2.5 to 5.0% also resulted in a substantial increase in sucrose Tc. Using isothermal water vapour absorption, sucrose tc was found to increase up to over 10 times when it was co-lyophilized with 2.5% PVP, the actual value of tc being dependent upon the MW of the PVP. For example, PVP of MW 300 K resulted in a sucrose tc at 85 degrees C (89.1-95.6 min), which was approximately seven times higher than that of 2.5% PVP of MW 24 or 40 K. A longer tc of sucrose was also observed for mixtures containing PVP of MW 300 K than when sucrose was mixed with PVP of smaller MW. Thus the effect of PVP on sucrose Tg, Tc and tc was found to be dependent upon MW. PVP of higher MW was more efficient in inhibiting sucrose crystallization and by stabilizing glassy structures of the sugar, these polymers may improve the stability of co-lyophilized proteins and peptides.  相似文献   

5.
Poly(vinylpyrrolidone) (PVP) was used as model system to examine molecular mobility in mixtures of absorbed water with solid amorphous polymers. Water vapor absorption isotherms were determined, along with diffusion and proton NMR relaxation measurements of absorbed water. Concurrently, measurements of glass transition temperatures (T g) and carbon-13 NMR relaxation times for PVP were determined as a function of water content. Two water contents were used as reference points: W m, obtained from the fit of water absorption isotherms to the BET equation, corresponding to the first shoulder in the sigmoid isotherm; and W g, the amount of water necessary to depress T g to the isotherm temperature. Translational diffusion coefficients of water, along with proton T 1 relaxation time constants, show that both the translational and the rotational mobility of the water is hindered by the presence of the solid polymer and that the absorbed water is most likely represented by two or more populations of water with different modes or time scales of motion. The presence of "tightly bound or immobilized water at levels corresponding to W m, however, is unlikely, since water molecules maintain a high degree of mobility, even at the lowest levels of water. Above W g, water shows an increase in mobility with increasing water content, but it is always less mobile than bulk water. With increasing water content, carbon-13 T 1 relaxation time constants for PVP, measured under the same conditions as above, indicate a major increase in the molecular mobility of carbon atoms associated with the pyrrolidone side chains.  相似文献   

6.
Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.  相似文献   

7.
Purpose. To use an inverse gas chromatographic (IGC) method to determine the glass transition temperature (Tg) of some amorphous pharmaceuticals and to extend this technique for the in situ study of the plasticizing effect of water on these materials. Methods. Amorphous sucrose and colyophilized sucrose-PVP mixtures were the model compounds. Both IGC and differential scanning calorimetry (DSC) were used to determine their Tg. By controlling the water vapor pressure in the IGC sample column, it was possible to determine the Tg of plasticized amorphous phases. Under identical temperatures and vapor pressures, the water uptake was independently quantified in an automated water sorption apparatus. Results. The Tg of the dry phases, determined by IGC and by DSC, were in very good agreement. With an increase in the environmental relative humidity (RH), there was a progressive decrease in Tg as a result of the plasticizing effect of water. Because the water uptake was independently quantified, it was possible to use the Gordon-Taylor equation to predict the Tg values of the plasticized materials. The predicted values were in very good agreement with those determined experimentally using IGC. A unique advantage of this technique is that it provides complete control over the sample environment and is thus ideally suited for the characterization of highly reactive amorphous phases. Conclusions. An IGC method was used (a) to determine the glass transition temperature of amorphous pharmaceuticals and (b) to quantify the plasticizing effect of water on multicomponent systems.  相似文献   

8.
Purpose. To examine the potential of raffinose as an excipient in stabilizing protein and to study the effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein and amorphous solids during storage at an elevated temperature. Methods. Glucose-6-phosphate dehydrogenase (G6PDH) was co-lyophilized with sucrose and raffinose mixed at different mass ratios. The activity of dried G6PDH was monitored during storage at 44°C. Thermal properties of sucrose/raffinose matrices were determined by differential scanning calorimetry (DSC). Results. Mass ratios of sucrose to raffinose did not affect the recovery of G6PDH activity after freeze-drying, but significantly affected the stability of freeze-dried G6PDH during storage. The sucrose-alone formulation offered the best enzyme stabilization during storage. With increasing fraction of raffinose, the G6PDH stability decreased, sugar crystallization inhibited, and crystal-melting temperature increased. Conclusions. Despite the higher Tg of the formulations with higher fraction of raffinose, they provided less protection for G6PDH than did sucrose alone during storage. Our data do not support the prediction from recent thermophysical studies that raffinose should be superior to sucrose and trehalose as a potential excipient or stabilizer.  相似文献   

9.
Purpose. The aim was to investigate the influence of polymer content and molecular weight on the morphology and heat- and moisture-induced transformations, as indicators of stability, of spray-dried composite particles of amorphous lactose and poly(vinylpyrrolidone) (PVP). Methods. Amorphous lactose and composite particles of amorphous lactose with different contents and molecular weights of PVP were prepared by spray drying. The nanostructure of the particles was analyzed by x-ray powder diffractometry, the morphology by light microscopy and SEM, the glass transition temperatures (Tg), crystallization temperatures (Tc), heats of crystallization and melting temperatures by differential scanning calorimetry, and moisture-induced crystallizations gravimetrically and by microcalorimetry. Results. All the types of particles prepared were amorphous. The Tg was unchanged or only marginally increased as a result of the inclusion of PVP. However, crystallization temperature, time to moisture-induced crystallization, and particle morphology were affected by both content and molecular weight of PVP. Conclusions. Increased content and molecular weight of PVP may have the potential to increase the physical stability of amorphous lactose. However, Tg seems not to be a relevant indicator for the stability of this type of amorphous composite materials.  相似文献   

10.
Purpose To investigate the ability of various polymers to inhibit the crystallization of amorphous felodipine from amorphous molecular dispersions in the presence of absorbed moisture. Methods Spin coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydroxypropylmethylcellulose (HPMC) were exposed to different storage relative humidities and nucleation rates were measured using polarized light microscopy. Solid dispersions were further characterized using differential scanning calorimetry, infrared spectroscopy and gravimetric measurement of water vapor sorption. Results It was found that the polymer additive reduced nucleation rates whereas absorbed water enhanced the nucleation rate as anticipated. When both polymer and water were present, nucleation rates were reduced relative to those of the pure amorphous drug stored at the same relative humidity, despite the fact that the polymer containing systems absorbed more water. Differences between the stabilizing abilities of the various polymers were observed and these were explained by the variations in the moisture contents of the solid dispersions caused by the different hygroscopicities of the component polymers. No correlations could be drawn between nucleation rates and the glass transition temperature (T g) of the system. PVP containing solid dispersions appeared to undergo molecular level changes on exposure to moisture which may be indicative of phase separation. Conclusions In conclusion, it was found that for a given storage relative humidity, although the addition of a polymer increases the moisture content of the system relative to that of the pure amorphous drug, the crystallization tendency was still reduced.  相似文献   

11.
Purpose. Use a microcalorimetric technique to measure the interactions between water vapor and amorphous pharmaceutical solids and describe the relationship between long-term physical stability and the storage relative humidity (RH) at constant temperature. Methods. A thermal activity monitor was used to characterize interactions of water vapor with spray-dried amorphous sucrose, lactose, raffinose, and sodium indomethacin. Differential scanning calorimetry was used to measure glass transition temperature, T g. X-ray powder diffraction was used to confirm that the spray-dried samples were amorphous. Scanning electron microscopy was used to examine particle morphology. Specific surface area was determined by BET analysis of nitrogen and krypton adsorption isotherms. Results. The moisture-induced thermal activity traces (MITATs) of the materials in this study exhibit general behavior that helps explain the effect of moisture content on the physical stability of the glassy phase at a given storage temperature. At some RH threshold, RH m, the MITAT exhibits a dramatic increase in the energy of interaction between water vapor and the glass that cannot be explained by a phase or morphology change. Calorimetric data indicate that water vapor-solid interactions are reversible below RH m; above RH m, energetic hysteresis is observed and water-water interactions predominate. In addition, the MITAT was deconvoluted into sorptive and nonsorptive components, making it possible to assign the observed heat flow to unique thermal events. Samples stored at a RH just below RH m for more than 2 months show no evidence of morphology or phase change. In addition, the MITAT can be deconvoluted into sorptive and nonsorptive components by using a twin-calorimeter arrangement. This analysis provides specificity to the microcalorimetric analysis and helps explain the nature of the physical changes that occur during the hydration glassy phase. Conclusions. The MITAT is a useful tool to determine the onset of moisture-induced physical instability of glassy pharmaceuticals and may find a broad application to determine appropriate storage conditions to ensure long-term physical stability.  相似文献   

12.
The purpose of this study was to investigate the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles prepared by spray-drying an aqueous solution of crystalline lactose and sodium alginate. The temperature-induced crystallization of amorphous lactose in the composite particles was suppressed by increasing the amount of sodium alginate in the particles. The stabilizing effect of sodium alginate on amorphous lactose in the composite particles was greater than that in physical mixtures having the same formulating ratios. The improved stability of amorphous lactose in the composite particles was attributed to an increase in the glass transition temperature (Tg) of the mixture. Moisture-induced crystallization of amorphous lactose was also retarded by increasing the amount of sodium alginate in composite particles. Although the Tg of the mixture was reduced by increasing the water content of the particles, the values were higher than that of 100% amorphous lactose when particles of the same water content were compared. The change in the Tg of the composite particles with increasing water content was interpreted as involving three components of the Gordon–Taylor equation. In the amorphous lactose–sodium alginate systems, the Tg values of the composite particles containing sodium alginate were higher than the theoretical line predicted by two components of the Gordon–Taylor equation. These results suggested that there was a specific interaction between the sodium alginate and lactose molecules. This specific interaction was suggested by the fact that only very little amorphous lactose was measured in the spray-dried composite particles stored under humid conditions using differential scanning calorimetry. This molecular interaction may also be partly responsible for the suppression of both the temperature- and moisture-induced crystallization of amorphous lactose in the composite particles.  相似文献   

13.

Purpose

To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions.

Methods

Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy.

Results

In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations.

Conclusions

An increase in local mobility of sucrose brought about by annealing could be negated with an additive.  相似文献   

14.
Purpose To compare the physical stability of amorphous molecular level solid dispersions of nifedipine and felodipine, in the presence of poly(vinylpyrrolidone) (PVP) and small amounts of moisture. Methods Thin amorphous films of nifedipine and felodipine and amorphous molecular level solid dispersions with PVP were stored at various relative humidities (RH) and the nucleation rate was measured. The amount of water sorbed at each RH was measured using isothermal vapor sorption and glass transition temperatures (T g) were determined using differential scanning calorimetry. The solubility of each compound in methyl pyrrolidone was measured as a function of water content. Results Nifedipine crystallizes more easily than felodipine at any given polymer concentration and in the presence of moisture. The glass transition temperatures of each compound, alone and in the presence of PVP, are statistically equivalent at any given water content. The nifedipine systems are significantly more hygroscopic than the corresponding felodipine systems. Conclusions Variations in the physical stability of the two compounds could not be explained by differences in T g. However, the relative physical stability is consistent with differences in the degree of supersaturation of each drug in the solid dispersion, treating the polymer and water as a co-solvent system for each drug compound.  相似文献   

15.
Purpose. To better understand the nature of drug-excipient interactions we have studied the phase behavior of amorphous binary and ternary mixtures of citric acid, indomethacin and PVP, as model systems. Methods. We have prepared amorphous mixtures by co-melting or coprecipitation from solvents, and have measured glass transition temperatures with differential scanning calorimetry. Results. Citric acid and indomethacin in the amorphous state are miscible up to 0.25 weight fraction of citric acid, equivalent to about 2 moles of citric acid and 3 moles of indomethacin. Phase separation, as reflected by two Tg values, occurs without crystallization leading to a saturated citric acid-indomethacin amorphous phase and one essentially containing only citric acid. PVP-citric acid and PVP-indomethacin form non-ideal miscible systems at all compositions. A ternary system containing 0.3 weight fraction of PVP produces a completely miscible system at all citric acid-indomethacin compositions. The use of 0.2 weight fraction of PVP, however, only produces miscibility up to a weight fraction of 0.4 citric acid relative to indomethacin. The two phases above this point appear to contain citric acid in PVP and citric acid in indomethacin, respectively. Conclusions. Two components of an amorphous solid mixture containing citric acid and indomethacin with limited solid state miscibility can be solublized as an amorphous solid phase by the addition of moderate levels of PVP.  相似文献   

16.
Purpose. To investigate the effect of low concentrations of molecularly dispersed poly(vinylpyrrolidone) (PVP) on indomethacin (IMC) crystallization from the amorphous state using particle size effects to identify possible mechanisms of crystallization inhibition. Methods. Different particle sizes of amorphous IMC and 1, 2, and 5% PVP were stored dry at 30°C for 84 days. PXRD was used to calculate the rate and extent of crystallization and the polymorph formed. Results. Crystallization from amorphous IMC and IMC/PVP molecular dispersions yielded the polymorph of IMC. Crystallization rates were reduced at larger particle size and in the presence of 1, 2, and 5%PVP. Crystallization did not reach completion in some IMC/PVP samples, with the quantity of uncrystallized amorphous phase proportional to particle size. Conclusions. Low concentrations of molecularly dispersed PVP affected IMC crystallization from the amorphous state. Formation of -IMC at rates dependent on particle size indicated that surface nucleation predominated in both the absence and presence of PVP. Excellent correlation was seen between the extent of crystallization and simulated depths of crystal penetration, supporting the hypothesis that increasing local PVP concentration inhibits crystal growth from surface nuclei into the amorphous particle.  相似文献   

17.
Objective  Amorphous pharmaceuticals, a viable approach to enhancing bioavailability, must be stable against crystallization. An amorphous drug can be stabilized by dispersing it in a polymer matrix. To implement this approach, it is desirable to know the drug’s solubility in the chosen polymer, which defines the maximal drug loading without risk of crystallization. Measuring the solubility of a crystalline drug in a polymer is difficult because the high viscosity of polymers makes achieving solubility equilibrium difficult. Method  Differential Scanning Calorimetry (DSC) was used to detect dissolution endpoints of solute/polymer mixtures prepared by cryomilling. This method was validated against other solubility-indicating methods. Results  The solubilities of several small-molecule crystals in polymers were measured for the first time near the glass transition temperature, including d-mannitol (β polymorph) in PVP, indomethacin (γ polymorph) in PVP/VA, and nifedipine (α polymorph) in PVP/VA. Conclusion  A DSC method was developed for measuring the solubility of crystalline drugs in polymers. Cryomilling the components prior to DSC analysis improved the uniformity of the mixtures and facilitated the determination of dissolution endpoints. This method has the potential of providing useful data for designing physically stable formulations of amorphous drugs.  相似文献   

18.
Freeze-dried samples of sucrose with buffer salts, amino acids, or dextran have been analyzed with differential scanning calorimetry (DSC) to evaluate the use of DSC thermograms in predicting the physical storage stability. The glass transition temperature, T g, of the amorphous cake, crystallization, and melting of sucrose are observed with DSC. T g appeared to be an important characteristic of the physical stability of the amorphous freeze-dried cake. A storage temperature above T g results in collapse or shrinkage of the cake, which for a sucrose-based formulation, may be accompanied by crystallization of the sucrose. The T g of the amorphous sucrose is influenced by other components present in the cake. Dextran-40 raised T g, while the addition of glycine to the formulation lowered T g. The residual moisture content strongly influences T g, since water acts as a plasticizer of the system; the higher the moisture content, the lower the T g and the less physically stable the freeze-dried cake. Crystallization of amorphous sucrose is shown to be inhibited by high molecular weight components or ionic compounds. DSC analysis of freeze-dried cakes proved to be a powerful tool in formulation studies.  相似文献   

19.
The aim of this work is to determine if a stability testing protocol based on the correlations between crystallization onset and relaxation time above the glass transition temperature (Tg) can be used to predict the crystallization onsets in amorphous pharmaceutical systems well below their Tg. This procedure assumes that the coupling between crystallization onset and molecular mobility is the same above and below Tg. The stability testing protocol has been applied to phenobarbital, phenobarbital/polyvinylpyrrolidone (PVP) (95/5, w/w), and nifedipine/PVP (95/5, w/w). Crystallization onsets have been detected by polarized light microscopy examination of amorphous films; molecular mobility has been determined by dielectric relaxation spectroscopy above Tg and by both isothermal calorimetry and modulated differential scanning calorimetry below Tg. We find that small amounts of PVP significantly retard re-crystallization. This dramatic effect of PVP is not related to mobility, so this approach applies, at best, to extrapolation of high temperature data on a given formulation to low temperatures. Variation in molecular mobility at these concentrations of PVP is not the dominant factor in determining variation in propensity for re-crystallization from glassy systems; we suggest surface interactions between PVP and nuclei and/or small crystals slowing growth control variation in crystallization kinetics between formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3887-3900, 2010  相似文献   

20.
Purpose. This study examined the effect of third components (low-molecular-weight saccharides and polymers) on the crystallization of poly(ethylene) glycol (PEG) in frozen solutions, focusing on the relationship between their crystallization-inhibiting ability and molecular compatibility. Methods. Effects of sugars and polymers on the crystallization of PEG 3000 in frozen solution were monitored by differential scanning calorimetry (DSC). Pulsed-NMR was employed to monitor the molecular mobility of water and solutes in the frozen solutions. Miscibility between PEG and third components in aqueous solution was estimated from the lowering of cloud point of PEG 20,000. Thermal analysis of frozen solutions containing some non-crystallizing solutes was used to examine the possibility of phase separation in frozen solutions. Results. Some sugars and polymers inhibited the crystallization of PEG and formed practically stable amorphous phases among ice crystals. The mobility of solute molecules in the amorphous phase increased above the softening temperature of maximally concentrated solutions (Ts), whereas that of water molecules appeared at a lower temperature. Mono- and disaccharides that are relatively less miscible with PEG in solution inhibit PEG crystallization to a lesser degree. Two Ts regions were observed in frozen solutions containing both polyvinylpyrrolidone (PVP) and dextran, at much lower concentrations than those causing aqueous two-phase separation at ambient temperatures. Conclusions. Ice crystallization raises the concentration of solutes in the remaining solution, which can lead to phase separation in the amorphous phase. Molecular compatibility between components is an important factor determining their propensity to phase separate and crystallize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号