首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renin–angiotensin system (RAS) plays an important role in the pathogenesis of hypertension. However, the role of RAS in preeclampsia is largely unknown, because the plasma concentration of renin and angiotensin (AII) is lower in preeclampsia than in normal pregnancy, whereas its cardinal sign is hypertension. A pressor response to AII infusions can predict the onset of preeclampsia, resulting in involvement of RAS in the pathogenesis of preeclampsia. It has been reported that patients with preeclampsia exhibit angiotensin type I receptor agonistic autoantibody (AT1-AA), suggesting the involvement of RAS in the pathogenesis of this condition. The physiological action of AT1-AA can explain the various clinical symptoms of preeclampsia. However, the significance of circulatory RAS, including AT1-AA, in the pathogenesis of preeclampsia remains obscure. Since many reports state that circulating RAS is thought to be suppressed in preeclampsia it is difficult to explain the onset of hypertension in preeclampsia by circulating RAS. Therefore, I propose new insights into the role of RAS in preeclampsia to resolve the contradiction as above-mentioned. The recent discovery of tissue RAS, on which prorenin and its receptor act, suggests a promising new direction in understanding the role of RAS in the pathogenesis of preeclampsia.  相似文献   

2.
The renin-angiotensin-aldosterone system (RAAS) is not the sole, but perhaps the most important volume regulator in vertebrates. To gain insights into the function and evolution of its components, we conducted a phylogenetic analysis of its main related genes. We found that important parts of the system began to appear with primitive chordates and tunicates and that all major components were present at the divergence of bony fish, with the exception of the Mas receptor. The Mas receptor first appears after the bony-fish/tetrapod divergence. This phase of evolutionary innovation happened about 400 million years ago. We found solid evidence that angiotensinogen made its appearance in cartilage fish. The presence of several RAAS genes in organisms that lack all the components shows that these genes have had other ancestral functions outside of their current role. Our analysis underscores the utility of sequence comparisons in the study of evolution. Such analyses may provide new hypotheses as to how and why in today's population an increased activity of the RAAS frequently leads to faulty salt and volume regulation, hypertension, and cardiovascular diseases, opening up new and clinically important research areas for evolutionary medicine.  相似文献   

3.
4.
5.
The activity of the renin–angiotensin system crucially depends on the rate of renal renin secretion. Changes in renin secretion result in fluctuations of angiotensin II concentrations in the circulation and subsequently in the activation of angiotensin receptors in all accessible target organs. Consequently, various mechanisms have evolved to regulate the local sensitivity to angiotensin II. In this review, an overview of angiotensin II receptor-associated proteins is addressed. These proteins regulate the local sensitivity of receptor-expressing cells by modulating the receptor surface expression and the receptor sensitivity. A hypothesis will be discussed that integrates the existence of various angiotensin receptor-associated proteins into an overall functional model.  相似文献   

6.
To elucidate the role of the renin–angiotensin system (RAS) in diabetic nephropathy, we examined the association between diabetic nephropathy in a large cohort of Japanese type 2 diabetic patients and polymorphisms within the genes that encode angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor type 1 (AGTR1). Single nucleotide polymorphisms (SNPs) within these genes were genotyped using invader assay in 747 nephropathy cases and 557 control subjects. Eight SNPs within the ACE gene were significantly associated with diabetic nephropathy (P<0.05), including five SNPs in almost complete linkage disequilibrium to the insertion/deletion polymorphism in the 16th intron (P=0.01, odds ratio =1.34, 95% CI 1.07–1.69). Three SNPs within the AGT, including M235T and one SNP in the AGTR1, were also significantly associated with nephropathy (M235T P=0.01, odds ratio =0.74, 95% CI 0.59–0.94). In addition, we found that the allelic mRNA expression corresponding to the 235M allele was significantly higher than that for the 235T allele in normal kidney tissues. Furthermore, we found a significant additional effect of these three genes by a step-wise logistic regression analysis (final empirical P value =0.00005). We concluded that RAS gene polymorphisms may contribute to the susceptibility to diabetic nephropathy in type 2 diabetes. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
Hypertension affects 26% of adults and is in constant progress related to increased incidence of obesity and diabetes. One-third of hypertensive patients may be successfully treated with one antihypertensive agent, one-third may require two agents and in the remaining patients will need three agents for effective blood pressure (BP) control. The development of new classes of antihypertensive agents with different mechanisms of action therefore remains an important goal. Brain renin–angiotensin system (RAS) hyperactivity has been implicated in hypertension development and maintenance in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III have similar affinities for type 1 (AT1) and type 2 (AT2) Ang II receptors. Following intracerebroventricular (i.c.v.) injection, Ang II and Ang III similarly increase arginine–vasopressin (AVP) release and BP. Blocking the brain RAS may be advantageous as it simultaneously (1) decreases sympathetic tone and consequently vascular resistance, (2) decreases AVP release, reducing blood volume and vascular resistance and (3) blocks angiotensin-induced baroreflex inhibition, decreasing both vascular resistance and cardiac output. However, as Ang II is converted to Ang III in vivo, the exact nature of the active peptide is not precisely determined. We summarize here the main findings identifying AngIII as one of the major effector peptides of the brain RAS in the control of AVP release and BP. Brain AngIII exerts a tonic stimulatory effect on BP in hypertensive rats, identifying brain aminopeptidase A (APA), the enzyme generating brain Ang III, as a potentially candidate target for hypertension treatment. This has led to the development of potent orally active APA inhibitors, such as RB150 — the prototype of a new class of centrally acting antihypertensive agents.  相似文献   

8.
9.
Integrins are cell surface adhesion molecules (CAM) that regulate via intercellular and cell-matrix signaling various cellular processes including wound healing, cell differentiation, division, growth, migration and metastatic dissemination. Although a correlation between carcinogenesis and changes in integrin expression, especially β1 integrin, has been reported, its role in colorectal liver metastases remains unclear. This study aimed to evaluate the expression of β1 integrin in colorectal liver metastases and to correlate the pattern of expression with clinicopathological features and to investigate the putative role of β1 integrin expression on survival of these patients. Methods: Formalin-fixed, paraffin-embedded (FFPE) tumor samples of 81 patients who were operated because of colorectal liver metastases without any neoadjuvant therapy were obtained and stained with hematoxylin and eosin (H & E). An immunohistochemical examination was performed using Dako, Peroxidase/DAB kit and a primary monoclonal β1 integrin (CD29, fibronectin receptor subunit beta; ab3167, Abcam plc). β1 integrin expression was evaluated according to the immunoreactive score of Remmele and Stegner and was related with clinicopathological features of prognostic significance and with disease-free and overall survival as well. Statistical analysis was performed using SPSS version 21.0. Results: β1 integrin was overexpressed in tumor cells in 37 (48%) patients and in stromal cell in 27 (33%) patients. The β1 expression was not statistically correlated with clinicopathological features of the primary tumors but it was statistically correlated (p=0.03) with the histological grading of liver metastases. Kaplan-Meier survival analysis showed that there is a tendency but no statistically significant correlation in disease-free and overall survival. Conclusion: Considering that expression of β1 integrin in colorectal liver metastases remains controversial, specially its relation with survival of patients, we showed that the β1 expression represents a reliable prognostic factor regarding the grading of liver metastases of CRC and our findings imply that β1 integrin expression profiles may have further potential in identifying the stage of colorectal liver metastases and being a marker of prognosis in these patients.  相似文献   

10.
We have previously obtained in rodents a considerable amount of data suggesting a major role for the brain renin–angiotensin system (RAS) in dopaminergic neuron degeneration and potentially in Parkinson’s disease. However, the presence of a local RAS has not been demonstrated in the monkey or the human substantia nigra compacta (SNc). The present study demonstrates the presence of major RAS components in dopaminergic neurons, astrocytes and microglia in both the monkey and the human SNc. Angiotensin type 1 and 2 and renin–prorenin receptors were located at the surface of dopaminergic neurons and glial cells, as expected for a tissular RAS. However, angiotensinogen and receptors for angiotensin and renin–prorenin were also observed at the cytoplasm and nuclear level, which suggests the presence of an intracrine or intracellular RAS in monkey and human SNc. Although astrocytes and microglia were labeled for angiotensin and prorenin receptors in the normal SNc, most glial cells appeared less immunoreactive than the dopaminergic neurons. However, our previous studies in rodent models of PD and studies in other animal models of brain diseases suggest that the RAS activity is significantly upregulated in glial cells in pathological conditions. The present results together with our previous findings in rodents suggest a major role for the nigral RAS in the normal functioning of the dopaminergic neurons, and in the progression of the dopaminergic degeneration.  相似文献   

11.
Obstructive sleep apnea is a chronic, sleep-related breathing disorder, which is an independent risk factor for cardiovascular disease. The renin–angiotensin–aldosterone system regulates salt and water homeostasis, blood pressure, and cardiovascular remodelling. Elevated aldosterone levels are associated with excess morbidity and mortality. We aimed to analyse the influence and implications of renin–angiotensin–aldosterone system derangement in individuals with and without obstructive sleep apnea. We pooled data from 20 relevant studies involving 2828 participants (1554 with obstructive sleep apnea, 1274 without obstructive sleep apnea). The study outcomes were the levels of renin–angiotensin–aldosterone system hormones, blood pressure and heart rate. Patients with obstructive sleep apnea had higher levels of plasma renin activity (pooled wmd+ 0.25 [95% confidence interval 0.04–0.46], p = 0.0219), plasma aldosterone (pooled wmd+ 30.79 [95% confidence interval 1.05–60.53], p = 0.0424), angiotensin II (pooled wmd+ 5.19 [95% confidence interval 3.11–7.27], p < 0.001), systolic (pooled wmd+ 5.87 [95% confidence interval 1.42–10.32], p = 0.0098) and diastolic (pooled wmd+ 3.40 [95% confidence interval 0.86–5.94], p = 0.0086) blood pressure, and heart rate (pooled wmd+ 3.83 [95% confidence interval 1.57–6.01], p = 0.0009) compared with those without obstructive sleep apnea. The elevation remained significant (except for renin levels) when studies involving patients with resistant hypertension were removed. Sub-group analysis demonstrated that levels of angiotensin II were significantly higher only among the Asian population with obstructive sleep apnea compared with those without obstructive sleep apnea. Body mass index accounted for less than 10% of the between-study variance in elevation of the renin–angiotensin–aldosterone system parameters. Patients with obstructive sleep apnea have higher levels of renin–angiotensin–aldosterone system hormones, blood pressure and heart rate compared with those without obstructive sleep apnea, which remains significant even among patients without resistant hypertension.  相似文献   

12.
13.
Histological reporting of hepatic resections of colorectal liver metastases (CRLMs) is limited to confirmation of diagnosis and evaluation of resection margins. More exhaustive diagnostic reporting might be warranted. Here, we critically and systematically review the potentially important histological prognostic factors in CRLM. Histological features such as intrahepatic spread, resection margins, and tumour response to neoadjuvant chemotherapy have been defined. Intrahepatic spread (venous, lymphatic, bile duct and perineural invasion) was evaluated in a number of studies. Meta‐analysis demonstrated a clear correlation between 5‐year overall survival and both portal vein invasion (RR 1.8, 95% CI 1.3–2.5) and lymphatic invasion (RR 1.7, 95% CI 1.4–2.0). The impact of hepatic vein invasion and bile duct invasion on outcome is not clear. Perineural invasion was linked to survival in one study. Resection margin is an important prognostic factor; however, the significance of the width of negative margins remains controversial. Various studies have evaluated tumour response to neoadjuvant chemotherapy, but different grading systems were used, and definite recommendations cannot be made. In conclusion, with the high incidence of CRLM and the increase in the number of hepatic resections, we need well‐defined prognostic factors, studied in homogeneous patient populations, to optimize diagnostic work‐up. This review identifies several of these factors.  相似文献   

14.
Substantial evidence supports a role for the renin–angiotensin system (RAS) in the regulation of metabolic function, but an apparent paradox exists where genetic or pharmacological inhibition of the RAS occasionally has similar physiological effects as chronic angiotensin infusion. Similarly, while RAS targeting in animal models has robust metabolic consequences, effects in humans are more subtle. Here, we review the data supporting a role for the RAS in metabolic rate regulation and propose a model where the local brain RAS works in opposition to the peripheral RAS, thus helping to explain the paradoxically similar effects of RAS supplementation and inhibition. Selectively modulating the peripheral RAS or brain RAS may thus provide a more effective treatment paradigm for obesity and obesity-related disorders.  相似文献   

15.
Tubeimoside-1 (TBMS1) is considered to have anti-tumor properties. However, the role of TBMS1 on human colorectal cancer (CRC) is still unclear. Therefore, in this study, we investigated the role of TBMS1 on human CRC and explored the underlying mechanism. The cell proliferation of CRC cells was detected by MTT assay. Cell migration and invasion were assessed by Boyden chamber assay, and the involvement of molecular mechanisms was examined by western blot. In this study, we found that TBMS1 inhibited the proliferation, migration/invasion of CRC cells, and it reduced β-catenin expression in CRC cells. Furthermore, overexpression of β-catenin rescued TBMS1-induced proliferation and invasion inhibition, and knockdown of β-catenin potentiated TBMS1-induced proliferation and invasion inhibition. Taken together, our results demonstrate that TBMS1 inhibited CRC cell proliferation and invasion via suppressing the Wnt/β-catenin signaling pathway. Therefore, TBMS1 may represent a chemopreventive and/or therapeutic agent in the prevention of CRC.  相似文献   

16.
《Cardiovascular pathology》2014,23(5):298-305
IntroductionIt is well known that exercise alleviates aortic remodeling and preserves endothelial function in spontaneously hypertensive rats (SHRs). However, the underlying molecular mechanism remains unclear. This study aimed to investigate the role of renin–angiotensin system (RAS) components in exercise-induced attenuation of aortic remodeling and improvement of endothelial function in an animal model of human essential hypertension.MethodsThe 10-week-old male SHR and age-matched normotensive Wistar–Kyoto rats were given moderate-intensity exercise for 12 weeks (four groups, n= 80–86 in each group).ResultsIn this work, exercise training reduced blood pressure and effectively attenuated aortic remodeling, marked by a reduction in aortic weight/length, wall thickness, and aortic levels of elastin and hydroxyproline, and improved endothelium-mediated vascular relaxations of aortas in response to acetylcholine. Exercise training in SHR reduced angiotensin II (AngII) levels and enhanced Ang-(1–7) levels in aortas. Exercise training in SHR suppressed aortic angiotensin-converting enzyme (ACE) and AngII type 1 receptor (AT1R) messenger RNA (mRNA) levels and protein expression and up-regulated ACE2, AngII type 2 receptor, and Mas mRNA levels and protein expression. In addition, exercise training in SHR increased levels of microRNA-27a (targeting ACE) and microRNA-155 (targeting AT1R) and decreased levels of microRNA-143 (targeting ACE2) in the aortas.ConclusionChronic aerobic exercise training improved RAS balance in the aortas, which may in part explain the protective effect of exercise on aortic function and structure.SummaryChronic aerobic exercise training improved RAS balance in the aortas, which may explain the protective effect of exercise on aortic function and structure, at least in part.  相似文献   

17.
The classic renin–angiotensin system (RAS) was initially described as a hormone system designed to mediate cardiovascular and body water regulation, with angiotensin II as its major effector. The discovery of an independent local brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins) significantly expanded the possible physiological and pharmacological functions of this system. This review first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT1, AT2, and AT4 receptor subtypes. Next, we discuss the classic physiologies and behaviors controlled by the RAS including cardiovascular, thirst, and sodium appetite. A final section summarizes non-classic functions and clinical conditions mediated by the brain RAS with focus on memory and Alzheimer’s disease. There is no doubt that the brain RAS is an important component in the development of dementia. It also appears to play a role in normal memory consolidation and retrieval. The presently available anti-dementia drugs are proving to be reasonably ineffective, thus alternative treatment approaches must be developed. At the same time, presently available drugs must be tested for their efficacy to treat newly identified syndromes and diseases connected with the RAS. The list of non-classic physiologies and behaviors is ever increasing in both number and scope, attesting to the multidimensional influences of the RAS. Such diversity in function presents a dilemma for both researchers and clinicians. Namely, the blunting of RAS subsystems in the hopes of combating one constellation of underlying causes and disease symptoms may be counter-balanced by unanticipated and unwanted consequences to another RAS subsystem. For example, the use of angiotensin-converting enzyme inhibitors and AT1 and/or AT2 receptor blockers have shown great promise in the treatment of cardiovascular related pathologies; however, their use could negate the cerebroprotective benefits offered by this system.  相似文献   

18.
CD98-mediated β1 and β3 integrins activation can induce Fak phosphorylation which eventually promotes cell survival, proliferation, and migration. We evaluated the expression of CD98, integrin β1, integrin β3 and Fak in 45 cases of matched colorectal cancer (CRC) and liver metastases as well as 35 cases of CRC without liver metastases.  相似文献   

19.
To investigate the effect of γ-terpineol on cell proliferation and apoptosis of human hepatoma BEL-7402 cells to elucidate its molecular mechanism. Here, BEL-7402 cells were treated with various concentrations (40, 80, 160, 320 and 640 μg/ml) of γ-terpineol for 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromides (MTT) assay. Cell colony inhibition was determined by soft agar assay. Apoptosis and possible molecular mechanisms were evaluated by morphological observation, flow cytometry analysis, and DNA fragmentation assay. The γ-terpineol significantly suppressed BEL-7402 cell proliferation in a dose-dependent manner. Characteristic morphological and biochemical changes associated with apoptosis such as cells shrinkage, deformation and vacuolization of mitochondria, nuclear chromatin condensation and fragmentation, formation of apoptotic bodies were observed after BEL-7402 cells treated with γ-terpineol for 24 h and 48 h. Cell cycle were displayed by flow cytometry analysis, the γ-terpineol treatment resulted in accumulation of cells at G1 or S phase and a blockade of cell proliferation compared to control group. Treating BEL-7402 cells with 320 μg/ml of γ-terpineol for 36 h and 48 h, a typical apoptotic “DNA ladder” was observed using DNA fragmentation assay. The present study demonstrated that possible anti-cancer mechanism of γ-terpineol on human hematomas cells is through inducing cell apoptosis to suppress tumor cell growth.  相似文献   

20.
Background and aim: Fentanyl is widely used for relieving pain and narcotizing in cancer patients. However, there are few published reports regarding the effects of fentanyl on tumor control and treatment. Here we investigated the effects of fentanyl on tumor growth and cell invasion in the human colorectal carcinoma (HCT116) cells. Methods: Nude mice xenografts of HCT116 cells were established to assess the inhibition effect on tumor growth by fentanyl. MTT and Transwell were employed to determine the cell survival rate and cell invasion, respectively. MicroRNAs and mRNAs expression were quantified by real-time PCR. β-catenin and matrix metalloproteinases (MMP-2 and MMP-9) expression were assayed by western blotting. β-Catenin-specific small interfering RNA (Si-β-catenin) and miR-182 mimics were transfected in cells to investigate the mechanism underlying the effects of fentanyl on the colorectal tumor and HCT116 cells. Results: Treatment with fentanyl inhibited the tumor growth and HCT116 cells invasion. Fentanyl also downregulated the expression of β-catenin and miR-182 in both xenograft tumors and HCT116 cells, and decreased the protein level of MMP-9 in HCT116 cells. Downregulation of β-Catenin resulted in the decrease of miR-182 expression in colorectal cells. In addition, the overexpression of miR-182 reversed the effect of fentanyl on MMP-9 expression and cell invasion of HCT116 cells. Conclusions: The current study demonstrated that the inhibition of tumor growth and cell invasion in colorectal cancer by fentanyl is probably due to downregulation of miR-182 and MMP-9 expression by β-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号