首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2) are newly identified receptors for adiponectin, an adipocytokine with anti-inflammatory and insulin-sensitizing properties. We screened for polymorphisms by performing sequence analysis on all eight exons, splice junctions, and approximately 2 kb of the 5' flanking regions of each receptor. We detected 5 single nucleotide polymorphisms (SNPs) in ADIPOR1 and 16 SNPs in ADIPOR2. We genotyped these SNPs in Amish subjects with type 2 diabetes (n = 137), impaired glucose tolerance (IGT) (n = 139), and normal glucose tolerance (n = 342) to test for association with type 2 diabetes. Three intronic SNPs in ADIPOR1 were significantly associated with type 2 diabetes (P = 0.014-0.007; odds ratio [OR] 1.61-1.65) and in high linkage disequilibrium (r2 = 0.97-1.0). In ADIPOR2, we found that five SNPs delineated one large haplotype block (r2= 0.9-1.0) spanning >98 kb of the gene and promoter region, which was strongly associated with the combined type 2 diabetes/IGT trait (P < or = 0.001; OR 1.64-1.71). To our knowledge, these data provide the first evidence for association between variation in the adiponectin receptors and type 2 diabetes.  相似文献   

4.
Das SK  Chu W  Zhang Z  Hasstedt SJ  Elbein SC 《Diabetes》2004,53(12):3300-3306
Genome-wide scans in multiple populations have identified chromosome 1q21-q24 as one susceptibility region for type 2 diabetes. To map the susceptibility genes, we first placed a dense single nucleotide polymorphism (SNP) map across the linked region. We identified two SNPs that showed strong associations, and both mapped to within intron 2 of the calsequestrin 1 (CASQ1) gene. We tested the hypothesis that sequence variation in or near CASQ1 contributed to type 2 diabetes susceptibility in Northern European Caucasians by identifying additional SNPs from the public database and by screening the CASQ1 gene for additional variation. In addition to 15 known SNPs in this region, we found 8 new SNPs, 3 of which were in exons. A single rare nonsynonymous SNP in exon 11 (A348V) was not associated with type 2 diabetes. The associated SNPs were localized to the region between -1,404 in the 5' flanking region and 2,949 in intron 2 (P = 0.002 to P = 0.034). No SNP 3' to intron 2, including the adjacent gene PEA15, showed an association. The strongest associations were restricted to individuals of Northern European ancestry ascertained in Utah. A six-marker haplotype was also associated with type 2 diabetes (P = 0.008), but neither transmission disequilibrium test nor family-based association studies were significant for the most strongly associated SNP in intron 2 (SNP CASQ2312). An independent association of SNPs in introns 2 and 4 with type 2 diabetes is reported in Amish families with linkage to chromosome 1q21-q24. Our findings suggest that noncoding SNPs in CASQ1 alter diabetes susceptibility, either by a direct effect on CASQ1 gene expression or perhaps by regulating a nearby gene such as PEA15.  相似文献   

5.
Rho guanine nucleotide exchange factor 11 (ARHGEF11), located on chromosome 1q21, is involved in G protein signaling and is a pathway known to play a role in both insulin secretion and action. We genotyped 52 single nucleotide polymorphims (SNPs) in ARHGEF11 and compared the genotype frequencies of subjects with type 2 diabetes (n = 145) or type 2 diabetes/impaired glucose tolerance (IGT) (n = 293) with those of control subjects with normal glucose tolerance (NGT) (n = 358). Thirty SNPs, spanning the entire gene, were significantly associated with type 2 diabetes or type 2 diabetes/IGT. The most significantly associated SNP was rs6427340 (intron 2), in which the less common allele was the risk allele (odds ratio [OR] 1.82 [95% CI 1.20-2.70], P = 0.005 for type 2 diabetes vs. NGT and 1.79 [1.27-2.50], P = 0.0008 for type 2 diabetes/IGT vs. NGT). In an expanded set of nondiabetic subjects (n = 754), most of the type 2 diabetes-and IGT-associated SNPs were significantly associated with glucose levels during an oral glucose tolerance test, with the same SNP (rs6427340) showing the most significant associations (P = 0.007). All type 2 diabetes-and IGT-associated SNPs were in high linkage disequilibrium and constitute a single 133-kb haplotype block. These results, coupled with similar findings in Pima Indians, suggest that sequence variation in ARHGEF11 may influence risk of type 2 diabetes.  相似文献   

6.
Adiponectin (APM1) is an adipocyte-derived peptide. The APM1 gene is located on chromosome 3q27 and linked to type 2 diabetes. In patients with type 2 diabetes, the adiponectin level in plasma is decreased in comparison to healthy subjects. To identify genetic defects of the APM1 gene that contribute to the development of type 2 diabetes, we genotyped 13 single nucleotide polymorphisms (SNPs) in 106 patients with type 2 diabetes, 325 patients with impaired glucose tolerance (IGT), and 497 nondiabetic control subjects in Swedish Caucasians by using dynamic allele-specific hybridization (DASH). We found that SNPs -11426(A/G) and -11377(G/C) in the proximal promoter region had significant differences of allele frequencies between type 2 diabetic patients and nondiabetic control subjects (P = 0.02 and P = 0.04, respectively). SNP-11426(A/G) was significantly associated with fasting plasma glucose in type 2 diabetic patients (P = 0.02) and in IGT subjects (P = 0.04), while the patients carrying CC and CG genotypes for SNP-11377(G/C) had a higher BMI than the patients with the GG genotype (P = 0.03). Haplotype analysis of 13 SNPs in the APM1 gene showed that estimates of haplotype frequencies in Swedish Caucasians are similar to those estimated in French Caucasians. However, no significant association of haplotypes with type 2 diabetes and IGT was detected in our study. The present study provides additional evidence that SNPs in the proximal promoter region of the APM1 gene contribute to the development of type 2 diabetes.  相似文献   

7.
Recently, the interleukin-18 cytokine gene (IL18) was reported to be associated with type 1 diabetes. In the present report, we calculated that the reported genotypes of the two 5' region/promoter single nucleotide polymorphisms (SNPs), -607 (C-->A) (rs1946518) and -137 (G-->C) (rs187238), were not in Hardy-Weinberg equilibrium (HWE). We therefore investigated the association of the -607 and -137 SNPs in a U.K. type 1 diabetic Caucasian case-control collection (1,560 case and 1,715 control subjects tested at -607 and 4,323 case and 4,610 control subjects tested at -137) as well as a type 1 diabetic Caucasian collection comprised of families of European ancestry (1,347 families tested at -137 and 1,356 families tested at -607). No evidence for association with type 1 diabetes was found, including for the -607 A/A and C/A genotypes. To evaluate whether common variation elsewhere in the gene was associated with disease susceptibility, we analyzed eight IL18 tag SNPs in a type 1 diabetic case-control collection (1,561 case and 1,721 control subjects). No evidence for association was obtained (P = 0.11). We conclude that common allelic variation in IL18 is unlikely to contribute substantially to type 1 diabetes susceptibility in the populations tested and recommend routine application of tests for HWE in population-based studies for genetic association.  相似文献   

8.
Peroxisome proliferator-activated receptor (PPAR)-delta regulates fatty acid oxidation and improves insulin sensitivity. We screened six single nucleotide polymorphisms (SNPs) of the PPAR-delta gene (PPARD) for an association with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in 769 subjects participating in the STOP-NIDDM trial. A 2.7-fold increase in the risk of diabetes was observed in female carriers of the C allele of rs6902123 (95% CI 1.44-5.30; adjusted P = 0.002). In the placebo group, subjects possessing both the 482Ser allele of the PPAR-gamma coactivator-1alpha gene (PGC-1A) and the rare allele of two SNPs of PPARD (rs6902123 and rs3734254) had up to 2.5-fold increased risk for diabetes. Furthermore, women carrying the C allele of rs6902123 of PPARD and the Pro12Pro genotype of the PPAR-gamma2 gene (PPARG2) had a 3.9-fold (95% CI 1.79-8.63; P = 0.001)-higher risk for diabetes than women with protective genotypes. Expression levels of PPAR-delta in subcutaneous adipose tissue of 87 offspring of Finnish patients with type 2 diabetes did not differ among the genotype groups of SNPs of PPARD. We conclude that SNPs in PPARD modify the conversion from IGT to type 2 diabetes, particularly in combination with the SNPs of PGC-1A and PPARG2.  相似文献   

9.
TCF7L2 acts as both a repressor and transactivator of genes, as directed by the Wnt signaling pathway. Recently, several highly correlated sequence variants located within a haplotype block of the TCF7L2 gene were observed to associate with type 2 diabetes in three Caucasian cohorts. We previously reported linkage of type 2 diabetes in the San Antonio Family Diabetes Study (SAFADS) cohort consisting of extended pedigrees of Mexican Americans to the region of chromosome 10q harboring TCF7L2. We therefore genotyped 11 single nucleotide polymorphisms (SNPs) from nine haplotype blocks across the gene in 545 SAFADS subjects (178 diabetic) to investigate their role in diabetes pathogenesis. We observed nominal association between four SNPs (rs10885390, rs7903146, rs12255372, and rs3814573) in three haplotype blocks and type 2 diabetes, age at diagnosis, and 2-h glucose levels (P = 0.001-0.055). Furthermore, we identified a common protective haplotype defined by these four SNPs that was significantly associated with type 2 diabetes and age at diagnosis (P = 4.2 x 10(-5), relative risk [RR] 0.69; P = 6.7 x 10(-6), respectively) and a haplotype that confers diabetes risk that contains the rare alleles at SNPs rs10885390 and rs12255372 (P = 0.02, RR 1.64). These data provide evidence that variation in the TCF7L2 genomic region may affect risk for type 2 diabetes in Mexican Americans, but the attributable risk may be lower than in Caucasian populations.  相似文献   

10.
11.
12.
The estrogen receptor-alpha gene (ESR1) was selected as a positional candidate under a type 2 diabetes linkage peak at 6q24-27. A total of 42 ESR1 single nucleotide polymorphisms (SNPs) were genotyped in 380 African-American type 2 diabetic case subjects with end-stage renal disease (ESRD) and 276 African-American control subjects. A total of 22 ancestry informative markers were also genotyped, and the program Admixmap was used to adjust allelic and haplotypic association tests for individual estimates of admixture. The most significant association with type 2 diabetes-ESRD was with rs1033182 in intron 2 (P = 0.013, admixture-adjusted P(a) = 0.021). Genotyping 17 SNPs across a region of ESR1 intron 1-intron 2 in an expanded population of 851 case and 635 control subjects supported association with rs1033182 (P = 0.004, P(a) = 0.027) and with an independent six-SNP haplotype of high linkage disequilibrium spanning 6.4 kb (P < 0.0001, P(a) < 0.0001). The same 17 ESR1 SNPs were genotyped in 300 European-American type 2 diabetes-ESRD case subjects and 310 European-American control subjects. Two intron 2 SNPs, rs2431260 (P = 0.015) and rs1709183 (P = 0.019), and a four-SNP haplotype containing these SNPs (P = 0.033) were associated with type 2 diabetes and/or ESRD. Results suggest that intron 1 and intron 2 of the ESR1 gene may contain functionally important regions related to type 2 diabetes or ESRD risk.  相似文献   

13.
AMP-activated protein kinase (AMPK) acts as a fuel gauge for glucose and lipid metabolism. The gene encoding the alpha2 isoform of the catalytic subunit of AMPK (PRKAA2) is located at one of the Japanese type 2 diabetes loci mapped by our previous genome scan (1p36-32). PRKAA2 is, therefore, a good candidate gene for insulin resistance and type 2 diabetes. We screened all nine exons, their exon-intron boundaries, and the 5' and 3' flanking regions of PRKAA2 to identify single nucleotide polymorphisms (SNPs), and we genotyped 192 type 2 diabetic patients and 272 nondiabetic subjects to assess possible associations between genotypes or haplotypes and type 2 diabetes. None of the 10 SNPs genotyped was associated with type 2 diabetes, but the haplotype analysis, consisting of six representative SNPs, revealed one haplotype, with the A (minor) allele for rs2051040 and a major allele for the other five SNPs, to be associated with type 2 diabetes (P = 0.009). This finding was confirmed in two larger replication samples (657 case and 360 control subjects, P = 0.021; and 356 case and 192 control subjects from the same area in Japan, P = 0.007) and a significant P value was obtained in the joint haplotype analysis of all samples (1,205 case and 824 control subjects, P = 0.0001). Furthermore, insulin resistance was associated with rs2051040 in nondiabetic subjects, and those with the A (minor) allele had a higher homeostasis model assessment of insulin resistance index than those who did not (initial control subjects [n = 272], P = 0.002; and joint replication control subjects [n = 552], P = 0.037). We speculate that the PRKAA2 gene influences insulin resistance and susceptibility to type 2 diabetes in the Japanese population.  相似文献   

14.
More than 120 published reports have described associations between single nucleotide polymorphisms (SNPs) and type 2 diabetes. However, multiple studies of the same variant have often been discordant. From a literature search, we identified previously reported type 2 diabetes-associated SNPs. We initially genotyped 134 SNPs on 786 index case subjects from type 2 diabetes families and 617 control subjects with normal glucose tolerance from Finland and excluded from analysis 20 SNPs in strong linkage disequilibrium (r(2) > 0.8) with another typed SNP. Of the 114 SNPs examined, we followed up the 20 most significant SNPs (P < 0.10) on an additional 384 case subjects and 366 control subjects from a population-based study in Finland. In the combined data, we replicated association (P < 0.05) for 12 SNPs: PPARG Pro12Ala and His447, KCNJ11 Glu23Lys and rs5210, TNF -857, SLC2A2 Ile110Thr, HNF1A/TCF1 rs2701175 and GE117881_360, PCK1 -232, NEUROD1 Thr45Ala, IL6 -598, and ENPP1 Lys121Gln. The replication of 12 SNPs of 114 tested was significantly greater than expected by chance under the null hypothesis of no association (P = 0.012). We observed that SNPs from genes that had three or more previous reports of association were significantly more likely to be replicated in our sample (P = 0.03), although we also replicated 4 of 58 SNPs from genes that had only one previous report of association.  相似文献   

15.
Impaired insulin secretion is a fundamental defect in type 2 diabetes. The aim of this study was to investigate whether single nucleotide polymorphisms (SNPs) in the genes regulating insulin secretion (SLC2A2 [encoding GLUT2], GCK, TCF1 [encoding HNF-1alpha], HNF4A, GIP, and GLP1R) are associated with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in participants of the Finnish Diabetes Prevention Study. With the exception of SLC2A2, other genes were not associated with the risk of type 2 diabetes. All four SNPs of SLC2A2 predicted the conversion to diabetes, and rs5393 (AA genotype) increased the risk of type 2 diabetes in the entire study population by threefold (odds ratio 3.04, 95% CI 1.34-6.88, P = 0.008). The risk for type 2 diabetes in the AA genotype carriers was increased in the control group (5.56 [1.78-17.39], P = 0.003) but not in the intervention group. We conclude that the SNPs of SLC2A2 predict the conversion to diabetes in obese subjects with IGT.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) within the hepatocyte nuclear factor 4alpha (HNF4alpha) gene are associated with type 2 diabetes in Finns and Ashkenazi Jews. Previous studies in both populations have reported linkage to type 2 diabetes near the HNF4alpha locus on chromosome 20q12-13. To investigate whether HNF4alpha is a diabetes susceptibility gene in Pima Indians, a population with the highest reported prevalence of type 2 diabetes but with no evidence for linkage of the disease on chromosome 20q, 19 SNPs across the promoter and coding region of HNF4alpha were genotyped for association analysis. In a group of 1,037 Pima Indians (573 diabetic and 464 nondiabetic subjects), three SNPs in HNF4alpha (rs3212183 and rs2071197 located in introns 3 and 1, respectively, and rs6031558, an extremely rare SNP located in the P2 promoter region) were modestly associated with type 2 diabetes (rs3212183 odds ratio [OR] 1.34 [95% CI 1.07-1.67], P = 0.009; rs2071197 1.34 [1.07-1.66], P = 0.008; and rs6031558 3.18 [1.03-9.84], P = 0.04, adjusted for age, sex, birth year, heritage, and family membership). We conclude that variants in HNF4alpha do not appear to be major determinants for type 2 diabetes in Pima Indians; however, HNF4alpha may have a minor role in type 2 diabetes susceptibility within this Native American population.  相似文献   

17.
We conducted a genome scan using a 10-cM map to search for genes linked to type 2 diabetes in 691 individuals from a founder population, the Old Order Amish. We then saturated two regions on chromosomes 1 and 14 showing promising linkage signals with additional markers to produce a approximately 2-cM map for fine mapping. Analyses of both discrete traits (type 2 diabetes and the composite trait of type 2 diabetes and/or impaired glucose homeostasis [IGH]), and quantitative traits (glucose levels during a 75-g oral glucose challenge, designated glucose 0-180 and HbA(1c)) were performed. We obtained significant evidence for linkage to type 2 diabetes in a novel region on chromosome 14q11 (logarithm of odds [LOD] for diabetes = 3.48, P = 0.00005). Furthermore, we observed evidence for the existence of a diabetes-related locus on chromosome 1q21-q24 (LOD for type 2 diabetes/IGH = 2.35, P = 0.0008), a region shown to be linked to diabetes in several other studies. Suggestive evidence for linkage to glucose traits was observed on three other regions: 14q11-q13 (telomeric to that above with LOD = 1.82-1.85 for glucose 150 and 180), 1p31 (LOD = 1.28-2.30 for type 2 diabetes and glucose 120-180), and 18p (LOD = 3.07, P = 0.000085 for HbA(1c) and LOD = 1.50 for glucose 0). In conclusion, our findings provide evidence that type 2 diabetes susceptibility genes reside on chromosomes 1, 14, and 18.  相似文献   

18.
Neuroadrenergic function in type 2 diabetic (T2D) patients without neuropathy is poorly characterized. We therefore compared sympathetic nervous system activity at rest and during an oral glucose tolerance test in obese metabolic syndrome (MetS) subjects classified as glucose intolerant (impaired glucose tolerance [IGT]; n = 17) or treatment-naive T2D (n = 17). Untreated subjects, matched for age (mean 59 ± 1 year), sex, BMI (32.4 ± 0.6 kg/m(2)), and family history of diabetes were studied. We measured resting muscle sympathetic nerve activity (MSNA) by microneurography, whole-body norepinephrine kinetics by isotope dilution, insulin sensitivity by euglycemic-hyperinsulinemic clamp (steady-state glucose utilization adjusted for fat-free mass and steady-state insulin concentration [M/I]), and MetS components. T2D subjects had higher resting MSNA burst incidence (67 ± 4 versus 55 ± 3 bursts per 100 heartbeats; P = 0.05) and arterial norepinephrine levels (264 ± 33 versus 167 ± 16 pg/mL; P = 0.02), lower plasma norepinephrine clearance (by 17%; P = 0.03), and reduced neuronal reuptake compared with IGT subjects (by 46%; P = 0.04). Moreover, norepinephrine spillover responses to glucose ingestion were blunted in T2D subjects. The M/I value independently predicted whole-body norepinephrine spillover (r = -0.47; P = 0.008), whereas fasting insulin level related to neuronal norepinephrine reuptake (r = -0.35, P = 0.047). These findings demonstrate that progression to T2D is associated with increased central sympathetic drive, blunted sympathetic responsiveness, and altered norepinephrine disposition.  相似文献   

19.
Adiponectin is a metabolic link between adipose tissue and insulin action, mediating part of obesity-associated insulin resistance and type 2 diabetes. Two adiponectin receptors have been identified, and we investigated whether sequence variations in adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2) genes could contribute to the genetic risk for type 2 diabetes in a case-control study of 1,498 Caucasian subjects. We sequenced the putative functional regions of the two genes in 48 subjects and selected single nucleotide polymorphisms (SNPs) from the public database. Five SNPs in ADIPOR1 and 12 in ADIPOR2 were tested for association with type 2 diabetes. No SNP of ADIPOR1 showed association in any of the samples from the French population. In contrast, three SNPs of ADIPOR2 showed nominal evidence for association with type 2 diabetes before correction for multiple testing (odds ratio [OR] 1.29-1.37, P = 0.034-0.014); only rs767870, located in intron 6, was replicated in an additional diabetes dataset (n = 636, OR 1.29, P = 0.020) with significant allelic association from the overall meta-analysis of 2,876 subjects (adjusted OR 1.25 [95% CI 1.07-1.45], P = 0.0051). In conclusion, our data suggest a modest contribution of ADIPOR2 variants in diabetes risk in the French population.  相似文献   

20.
We performed a genome-wide linkage scan of plasma adiponectin levels in 569 nondiabetic participants in the Amish Family Diabetes Study. The highest logarithm of odds (LOD) score (2.13; P = 0.0009) occurred on chromosome 3q27 between markers D3S1602 and D3S1580, which flank APM1/ACDC, the adiponectin gene. The APM1 +2019 A/- insertion/deletion polymorphism in the 3' untranslated region (single nucleotide polymorphism [SNP] +2019; deletion allele frequency 0.30 in Amish) showed strong association with adiponectin levels in a dosage-dependent manner in a direction consistent with that reported in previous studies, with deletion heterozygosity increasing adiponectin levels by 1.3 +/- 0.5 microg/ml and deletion homozygosity increasing levels by 3.0 +/- 0.8 microg/ml (P < 0.0001). Two other SNPs, rs2241766 and rs1501299, showed moderate association. In a subset of 523 subjects genotyped for both SNP +2019 and rs2241766, including the APM1 SNP +2019 genotype as a covariate reduced the linkage signal at 3q27 by 1.26 LOD units (from 2.22 to 0.96) and including both SNPs reduced the signal by 1.51 LOD units (to 0.71). These findings, combined with a two-point LOD score of 2.35 for SNP +2019, provide evidence that variation in APM1 is responsible for linkage of adiponectin levels to 3q27 in the Old Order Amish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号