首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prenatal stress (PS) produces persistent abnormalities in anxiety-related behaviors, stress responsivity, susceptibility to psychopathology and hippocampal changes in adult offspring. The hippocampus shows a remarkable degree of structural plasticity, notably in response to stress and glucocorticoids. We hypothesized that PS would differentially affect hippocampal neurogenesis in rats selectively bred for genetic differences in anxiety-related behaviors and stress responsivity. Pregnant dams of high anxiety-related behavior (HAB) and low anxiety-related behavior (LAB) strains were stressed between days 5 and 20 of pregnancy. The survival of newly generated hippocampal cells was found to be significantly lower in 43-day-old HAB than in LAB male offspring of unstressed pregnancies. PS further reduced newly generated cell numbers only in HAB rats, and this was paralleled by a reduction in doublecortin-positive cell numbers, indicative of reduced neurogenesis. As maternal plasma corticosterone levels during PS were similar in both strains, we examined placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses rapid inactivation of maternal corticosterone to inert 11-dehydrocorticosterone and thus serves as a physiological 'barrier' to maternal glucocorticoids. PS significantly increased placental 11β-HSD2 activity in LAB, but not HAB, rats. We conclude that PS differentially affects the number of surviving newly generated cells and neurogenesis in HAB and LAB rats. The high sensitivity of hippocampal neurogenesis to PS in HAB rats is paralleled by a failure to increase placental 11β-HSD2 activity after stress rather than by different maternal corticosterone responses. Hence, stress-induced placental 11β-HSD2 expression may be critical in protecting the fetal brain from maternal stress-induced effects on adult neurogenesis.  相似文献   

2.
Emerging evidence indicates an important role for neuroinflammation in depression. Brief maternal separation promotes resilience to depression in offspring, but relatively little is known about the effects of different durations of postpartum separation (PS) from offspring on anxiety and depressive-like behaviors in dams following immune challenge. Lactating C57BL/6J mice were subjected to no separation (NPS), brief PS (15 min/day, PS15) or prolonged PS (180 min/day, PS180) from postpartum day (PPD) 1 to PPD21 and then injected with lipopolysaccharide (LPS). Behavioral tests, including the open field test (OFT) and forced swimming test (FST), were carried out at 24 h after the injection. LPS resulted in anxiety and depressive-like behaviors in NPS dams and activated ionized calcium-binding adaptor molecule (Iba1), an important biomarker of microglia, in the hippocampus. However, compared with NPS + LPS dams, PS15 + LPS dams spent significantly more time in the center of the OFT (anxiety-like behavior) and exhibited lower immobility time in the FST (depressive-like behavior), which indicated a phenomenon of resilience. Furthermore, the activation of neuroinflammation was inhibited in PS15 dams. Specifically, levels of the Iba1 mRNA and protein were decreased, while the mRNA expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome/interleukin-18 (IL-18)/nuclear factor kappa-B (NF-κB) was decreased in the hippocampus. Furthermore, positive linear correlations were observed between microglial activation and LPS-induced depressive-like behaviors in dams. Collectively, the findings of this study confirm that brief PS from offspring promotes resilience to LPS immune challenge-induced behavioral deficits and inhibits neuroinflammation in dams separated from their offspring during lactation.  相似文献   

3.
Glucocorticoids may underlie the association between prenatal stress, low birth weight and adult stress-associated disorders, e.g. hypertension and type 2 diabetes, increased hypothalamic-pituitary-adrenal (HPA) activity and affective dysfunction. Normally, 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) rapidly inactivates glucocorticoids in placenta and many foetal tissues, thus acting as a 'barrier' to maternal steroids. We investigated the effect of inhibiting foeto-placental 11beta-HSD in rats, using carbenoxolone (CBX), on subsequent HPA activity and regulation and stress-induced behaviour in adult offspring. Pregnant Wistar rats were injected with CBX (12.5 mg s.c.) or vehicle daily throughout pregnancy. CBX treatment reduced birth weight. Adult offspring of CBX-treated dams had persistently reduced body weight, increased basal corticosterone (CORT) levels, increased corticotropin-releasing hormone (CRH) and reduced glucocorticoid receptor (GR) mRNA in the hypothalamic paraventricular nucleus, though hippocampal GR and mineralocorticoid receptor (MR) mRNA expression were unaltered. In addition, these animals showed less grooming and rearing in an open field and reduced immobility in a forced swim test, and had increased GR mRNA expression in the basolateral (BLA), central (CEA) and medial (MEA) nuclei of the amygdala, with unaltered MR mRNA. These data suggest that disturbance of the foeto-placental enzymatic barrier to maternal glucocorticoids reduces birth and body weight, and produces permanent alterations of the HPA axis and anxiety-like behaviour in aversive situations. The behavioural and HPA effects may reflect GR gene programming in amygdala and hypothalamus, respectively. Foetal overexposure to endogenous glucocorticoids (prenatal stress or reduced activity of foeto-placental 11beta-HSD) may represent a common link between the prenatal environment, foetal growth and adult neuroendocrine and affective disorders.  相似文献   

4.
Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6hours×28days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety- and depression-like behaviors.  相似文献   

5.
Rodent studies have revealed that the early rearing environment plays an important role in the development of stress vulnerability, memory and cognition. Although early lighting conditions (ELC) are involved in these neuronal developments through both maternal and offspring behavior, their influence has not been fully elucidated. Thus, by using Sprague-Dawley rats, we examined whether ELC affected maternal care by the dam and the subsequent neurodevelopment of the offspring. Prolonged dark phase conditions (PDC) (light/dark, 6/18 h) and prolonged light phase conditions (light/dark, 18/6 h) were administered from postnatal day 2 to postnatal day 14. Throughout this period, maternal care and the circadian rhythmicity of dams were investigated. In adolescence and adulthood of the offspring, we measured anxiety-like behavior, social interaction, object recognition memory, activity rhythm and corticosterone response to stress with hippocampal expression of N-methyl-D-aspartate and glucocorticoid receptor mRNAs. PDC altered maternal care and circadian rhythmicity in the dam compared with normal lighting conditions and prolonged light phase conditions. PDC markedly increased anxiety-like behavior, decreased social interaction and object recognition memory, and inhibited corticosterone feedback in offspring later in life. Furthermore, hippocampal levels of glucocorticoid receptor mRNA and N-methyl-D-aspartate receptor 2B mRNA in rats subjected to PDC were significantly lower than in animals subjected to normal lighting conditions. In the adult offspring, the circadian rhythm of locomotor activity was not affected. These findings suggested that ELC affect mother-infant interactions and subsequently at least partially alter the neurobehavioral development of offspring.  相似文献   

6.
Neonatal maternal separation of rat pups has been shown to produce long-term increases in hypothalamic-pituitary-adrenal (HPA) axis responsiveness, elevated levels of hypothalamic corticotropin releasing factor (CRF) mRNA in the hypothalamic paraventricular nucleus (PVN), and enhanced anxiety-like behavior. These effects appear to be at least partially mediated by subtle disruptions in the quality of maternal-pup interactions. This hypothesis was tested by providing half the dams with foster litters during the maternal separation paradigm, so that in those litters, only the pups and not the dams were experiencing a period of separation. The separation protocol took place daily from PND2-14 for either 15 min (HMS15, handled) or 180 min (HMS180, maternal separation). During the period of separation dams were either transferred to adjacent cages without any pups present (HMS15, HMS180) or to cages containing an age-matched foster litter (HMS15F, HMS180F). As adults, the HMS180 progeny exhibited the expected increased expression of CRF mRNA in the PVN, stress hyper-responsiveness to airpuff startle and evidence of impaired feedback both in the CORT response, as well as in response to the dexamethasone suppression test. The HMS180F rats, however, appeared to be resistant to these effects of maternal separation as they demonstrated CRF mRNA levels intermediate between HMS15 and HMS180 rats. Their stress responses and feedback regulation of the HPA axis was comparable to that of the HMS15 rats. GR mRNA was elevated in the cortex of HMS180F rats. Overall, these studies support the thesis that the long-term effects of neonatal maternal separation may largely result from alterations in the quality of maternal care rather than from direct effects of the separation per se on the pups.  相似文献   

7.
There is converging evidence that prenatal maternal infection can increase the risk of occurrence of neuropsychiatric disorders like schizophrenia, autism, anxiety and depression in later life. Experimental studies have shown conflicting effects of prenatal maternal immune activation on anxiety-like behavior and hypothalamic–pituitary–adrenal (HPA) axis development in offspring. We investigated the effects of maternal immune activation during pregnancy on anxiety- and depression-like behaviors in pregnant mice and their offspring to determine whether these effects are dependent on strain. NMRI and C57BL/6 pregnant mice were treated with either saline or lipopolysaccharide on gestational day 17 and then interleukin (IL)-6 and corticosterone (COR) levels; anxiety or depression in the pregnant mice and their offspring were evaluated. The results indicate that maternal inflammation increased the levels of COR and anxiety-like behavior in NMRI pregnant mice, but not in C57BL/6 dams. Our data also demonstrate that maternal inflammation elevated the levels of anxiety-and depression-like behaviors in NMRI offspring on the elevated plus-maze, elevated zero-maze, tail suspension test and forced swimming test respectively, but not in the open field and light–dark box. In addition, we did not find any significant change in anxiety- and depression-like behaviors of adult C57BL/6 offspring. Our findings suggest that prenatal maternal immune activation can alter the HPA axis activity, anxiety- and depression-like behaviors in a strain- and task-dependent manner in offspring and further comprehensive studies are needed to prove the causal relationship between the findings found here and to validate their relevance to neuropsychiatric disorders in humans.  相似文献   

8.
AimsThe present study focuses on detecting anxiety-like behavior and associated neurochemical alterations in adolescent rats exposed perinatally to bisphenol A (BPA), an estrogen-mimicking endocrine disrupter and investigating the possible involvement of metabotropic glutamate 2/3 receptors (mGlu2/3 receptors) in BPA-induced anxiogenic effects.Methods and resultsWhen female breeders were administered orally with BPA (40 μg/kg/d) during pregnancy and lactation, their pups (here named ‘BPA-exposed offspring’) developed an anxiety-like phenotype, characterized by the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, impaired glucocorticoid receptor (GR)-mediated negative feedback regulation of the HPA axis, altered hippocampal synaptic plasticity and increased anxiety-like behaviors. BPA-exposed offspring also showed a reduced expression of mGlu2/3 receptors in the hippocampus. BPA-exposed offspring further subjected to systemic administration of mGlu2/3 receptor agonist (LY379268, 0.5 mg/kg, i.p.) or antagonist (LY341495, 1.5 mg/kg, i.p.) twice per day for 6 days. The results indicated that chronic LY379268 treatment corrected the anxiety-like behaviors and associated neurochemical and endocrinological alterations in BPA-exposed offspring.ConclusionOur data demonstrate for the first time that the perinatal BPA exposure induces an anxiety-like phenotype in behaviors and -related neuroendocrinology, and suggest that the changes in mGlu2/3 receptor might lie at the core of the pathological reprogramming triggered by early-life adversity. mGlu2/3 receptor may serve as a novel biomarker and potential therapeutic target for anxiety disorders associated with adverse early-life agents including perinatal BPA exposure.  相似文献   

9.
Adverse early-life environment is associated with anxiety-like behaviors and disorders. Brain-derived neurotrophic factor (BDNF) is sensitive to this environment and could be a marker of underlying brain changes. We aimed at evaluating the development of anxiety-like behaviors in a rat model of early adversity, as well as the possible association with BDNF levels. Similar associations were investigated in a sample of adolescent humans. For the rat study, Wistar rat litters were divided into: early-life stress (ELS, limited access to nesting material) and control groups. Maternal behavior was observed from days 1 to 9 of life and, as adults, rats were subjected to behavioral testing and BDNF measurements in plasma, hippocampus, amygdala and periaqueductal gray. For the human study, 129 adolescents were evaluated for anxiety symptoms and perceived parental care. Serum BDNF levels and the Val66Met polymorphism of the BDNF gene were investigated. We found that ELS dams showed more pure contact, that is, contact with low care and high control, toward pups, and their adult offspring demonstrated higher anxiety-like behaviors and plasma BDNF. Also the pure contact correlated positively with adult peripheral BDNF. Similarly in humans, there was a positive correlation between maternal overprotection and serum BDNF only in Met carriers. We also found negative correlations between maternal warmth and separation anxiety, social phobia and school phobia. Finally, our translational approach revealed that ELS, mediated through variations in maternal care, is associated with anxiety in both rats and humans and increased peripheral BDNF may be marking these phenomena.  相似文献   

10.
Makino S  Smith MA  Gold PW 《Brain research》2002,943(2):216-223
Sustained responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis during chronic or repeated stress is associated with continuous activation of ascending noradrenergic neurons from the brainstem to the hypothalamic paraventricular nucleus (PVN). The fact that glucocorticoid receptor (GR) exists in the brainstem noradrenergic neurons including locus coeruleus (LC) suggests that glucocorticoids play a modulatory role in maintaining the activity of these neurons during chronic stress. To determine whether alterations in the sensitivity of noradrenergic neuronal activity to endogenous CORT occur during chronic or repeated stress, tyrosine hydroxylase (TH) and GR mRNA expressions in the LC were examined in acute (2 h) and repeated (2 h daily, 14 days) immobilization stress, using sham-operated rats and adrenalectomized rats with a moderate dose of CORT replacement (ADX+CORT group). In acute stress, TH mRNA in the LC increased in the ADX+CORT rats, but not in sham operated rats. In repeated stress, however, elevated endogenous CORT failed to inhibit TH mRNA responses in sham rats; LC TH mRNA in sham rats responded to the same extent as in ADX+CORT rats. A reduction of GR mRNA in the LC was observed in the acutely stressed and repeatedly stressed sham group, but not in the ADX+CORT groups. The decrease in LC GR mRNA levels in sham rats tended to be greater after repeated than after acute stress. LC GR mRNA levels decreased in response to systemic CORT treatment (200 mg pellet sc, for 14 days) and increased in response to adrenalectomy; neither CORT treatment nor adrenalectomy influenced TH mRNA levels in the LC. These results suggest that glucocorticoid responses to acute immobilization prevent LC TH mRNA levels from rising significantly, while glucocorticoids appear to decrease their capacity to restrain LC TH mRNA during repeated immobilization. Although the results clearly show glucocorticoid-dependent alterations in LC GR mRNA expression, the association between increased TH mRNA and decreased GR mRNA in the LC remains to be elucidated.  相似文献   

11.
Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology.  相似文献   

12.
Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring.  相似文献   

13.
Clinical and preclinical studies have demonstrated that prenatal stress (PS) induces neuronal and behavioral disturbances in the offspring. In the present study, we determined whether maternal voluntary wheel running (VWR) during pregnancy could reverse the putative deleterious effects of PS on the neurodevelopment and behavior of the offspring. Pregnant CF-1 mice were randomly assigned to control, restraint stressed or restraint stressed + VWR groups. Dams of the stressed group were subjected to restraint stress between gestational days 14 and delivery, while control pregnant dams remained undisturbed in their home cages. Dams of the restraint stressed + VWR group were subjected to exercise between gestational days 1 and 17. On postnatal day 23 (P23), male pups were assigned to one of the following experimental groups: mice born from control dams, stressed dams or stressed + VWR dams. Locomotor behavior and pyramidal neuronal morphology were evaluated at P23. Animals were then sacrificed, and Golgi-impregnated pyramidal neurons of the parietal cortex were morphometrically analyzed. Here, we present two major findings: first, PS produced significantly diminished dendritic growth of parietal neurons without altered locomotor behavior of the offspring; and second, maternal VWR significantly offset morphological impairments.  相似文献   

14.
Corticosteroids (CORT) have been widely used in anti-inflammatory medication. Chronic CORT treatment can cause mesocorticolimbic system dysfunctions, which are known to play a key role for the development of psychiatric disorders. The VTA is a critical site in the mesocorticolimbic pathway and is responsible for motivation and reward-seeking behaviors. However, the mechanism by which chronic CORT alters VTA dopamine neuronal activity is largely unknown. We treated periadolescent male mice with vehicle, 1 d, or 7 d CORT in the drinking water, examined behavioral impacts with light/dark box, elevated plus maze, operant chamber, and open field tests, measured the effects of CORT on VTA dopamine neuronal activity using patch-clamp electrophysiology and dopamine concentration using fast-scan cyclic voltammetry, and tested the effects of dopamine D2 receptor (D2R) blockade by intra-VTA infusion of a D2R antagonist. CORT treatment induced anxiety-like behavior as well as decreased food-seeking behaviors. We show that chronic CORT treatment decreased excitability and excitatory synaptic transmission onto VTA dopamine neurons. Furthermore, chronic CORT increased somatodendritic dopamine concentration. The D2R antagonist sulpiride restored decreased excitatory transmission and excitability of VTA dopamine neurons. Furthermore, sulpiride decreased anxiety-like behavior and rescued food-seeking behavior in mice with chronic CORT exposure. Together, 7 d CORT treatment induces anxiety-like behavior and impairs food-seeking in a mildly aversive environment. D2R signaling in the VTA might be a potential target to ameliorate chronic CORT-induced anxiety and reward-seeking deficits.SIGNIFICANCE STATEMENT With widespread anti-inflammatory effects throughout the body, corticosteroids (CORT) have been used in a variety of therapeutic conditions. However, long-term CORT treatment causes cognitive impairments and neuropsychiatric disorders. The impact of chronic CORT on the mesolimbic system has not been elucidated. Here, we demonstrate that 7 d CORT treatment increases anxiety-like behavior and attenuates food-seeking behavior in a mildly aversive environment. By elevating local dopamine concentration in the VTA, a region important for driving motivated behavior, CORT treatment suppresses excitability and synaptic transmission onto VTA dopamine neurons. Intriguingly, blockade of D2 receptor signaling in the VTA restores neuronal excitability and food-seeking and alleviates anxiety-like behaviors. Our findings provide a potential therapeutic target for CORT-induced reward deficits.  相似文献   

15.
Gestational stress (GS) produces profound behavioural impairments in the offspring and may permanently programme hypothalamic-pituitary-adrenal (HPA) axis function. We investigated whether or not GS produced changes in the maternal behaviour of rat dams, and measured depression-like behaviour in the dam, which might contribute to effects in the progeny. We used the Porsolt test, which measures immobility in a forced-swim task, and models depression in rodents, while monitoring maternal care (arched-back nursing, licking/grooming, nesting/grouping pups). Pregnant rats underwent daily restraint stress (1 h/day, days 10-20 of gestation), or were left undisturbed (control). On post-parturition days 3 and 4, dams were placed into a swim tank, and time spent immobile was measured. GS significantly elevated immobility scores by approximately 25% above control values on the second test day. Maternal behaviours, in particular arched-back nursing and nesting/grouping pups, were reduced in GS dams over post-natal days 1-10. Adult offspring showed increased immobility in the Porsolt test, and also hypersecreted ACTH and CORT in response to an acute stress challenge. These data show that GS can alter maternal behaviour in mothers, and this might contribute to alterations in the offspring. GS may be an important factor in maternal post-natal depression, which may in turn detrimentally effect the offspring because depressed mothers do not sufficiently care for their offspring.  相似文献   

16.
BackgroundStress during pregnancy and maternal inflammation are two common prenatal factors that impact offspring development. Asthma is the leading chronic condition complicating pregnancy and a common source of prenatal stress and inflammation.ObjectiveThe goal of this study was to characterize the developmental impact of repeated allergic asthma inflammation during pregnancy on offspring behavioral outcomes and brain inflammation.MethodsPregnant female C57BL/6 mice were sensitized with ovalbumin (OVA) or PBS vehicle control and then randomly assigned to receive daily aerosol exposures to the same OVA or PBS treatment during early, gestational days (GD) 2-GD9, or late pregnancy, GD10-GD17. Maternal sera were collected after the first and last aerosol induction regimen and measured for concentrations of corticosterone, anti-OVA IgE, and cytokine profiles. Juvenile male and female offspring were assessed for locomotor and social behaviors and later as adults assessed for anxiety-like, and marble burying behaviors using a series of behavioral tasks. Offspring brains were evaluated for region-specific differences in cytokine concentrations.ResultsIn early gestation, both PBS and OVA-exposed dams had similar serum corticosterone concentration at the start (GD2) and end (GD9) of daily aerosol inductions. Only OVA-exposed dams showed elevations in cytokines that imply a diverse and robust T helper cell-mediated immune response. Male offspring of early OVA-exposed dams showed decreases in open-arm exploration in the elevated plus maze and increased marble burying without concomitant changes in locomotor activity or social interactions. These behavioral deficits in early OVA-exposed male offspring were associated with lower concentrations of G-CSF, IL-4, IL-7, IFNγ, and TNFα in the hypothalamus. In late gestation, both PBS and OVA-exposed dams had increased corticosterone levels at the end of daily aerosol inductions (GD17) compared to at the start of inductions (GD10). Male offspring from both PBS and OVA-exposed dams in late gestation showed similar decreases in open arm exploration on the elevated plus maze compared to OVA male offspring exposed in early gestation. No behavioral differences were present in female offspring across all treatment groups. However, females of dams exposed to OVA during early gestation displayed similar reductions as males in hypothalamic G-CSF, IL-7, IL-4, and IFNγ.DiscussionThe inflammatory responses from maternal allergic asthma in early gestation and resulting increases in anxiety-like behavior in males support a link between the timing of prenatal insults and sex-specific developmental outcomes. Moreover, the heightened stress responses in late gestation and concomitant dampened inflammatory response to allergic asthma suggest that interactions between the maternal immune and stress-response systems shape early life fetal programming.  相似文献   

17.
Early life stress is believed to constitute a risk factor for the development of mood disorders later in life. In the present study, we hypothesized that prenatal stress (PS) exerts long-lasting effects in female rat offspring, resulting in impaired adaptations to stress during lactation and, as such, may be a contributory factor to postpartum mood disorders. PS increased anxiety in adult virgin females compared with controls. During lactation, PS dams nursed significantly less and spent less time with pups compared with controls, whereas dams did not differ in pup retrieval or maternal aggression. HPA axis reactivity was elevated in response to a mild stressor in PS dams compared to their controls, but not in virgins, with the delta corticosterone response returning to the higher level seen in virgins. Moreover, corticotropin-releasing hormone (CRH) mRNA expression within the parvocellular region of the paraventricular nucleus (PVN) was increased in both virgins and dams exposed to PS compared with the relative controls, while the attenuation in expression in lactating controls was abolished following PS. In addition, arginine vasopressin (AVP) mRNA was increased in the parvocellular, but not magnocellular part of the PVN, in both PS-exposed virgins and lactating dams compared with their relative controls; although expression was also higher in controls during lactation compared with virgins. Thus, the present study demonstrates that exposure to PS results in long-lasting behavioural and neuroendocrine alterations in the female offspring, which are manifested during the lactation period. Furthermore, it implicates PS as a potential risk factor for the development of postpartum mood disorders, and that alterations in the HPA axis reactivity, at least partially, are involved.  相似文献   

18.
Effects of prenatal environmental enrichment (EE) were examined in Wistar Kyoto (WKY) "depressive- and anxious-like" rats and Wistar rats. During gestation, dams lived in standard cages or in EE cages. Their behavior during gestation and lactation was observed. On weaning day, they were tested in the forced swimming test, and corticosterone concentration was measured from their plasma. The offspring, reared in standard environment, were tested as juveniles or young adults in the elevated plus maze, open field and forced swimming tests. Corticosterone concentration in feces was analyzed. EE offspring showed more anxiety-like behaviors and less activity, compared to controls. Effects were more prominent in youth than in adulthood and in Wistar rats more than in WKY. EE lowered corticosterone concentration in young WKY rats' feces. EE induced changes in the dams' behavior during gestation and lactation. These changes in dams' behavior could be mediators of the effects on the offspring.  相似文献   

19.
BACKGROUND: Synthetic glucocorticoids are commonly prescribed during pregnancy, despite a lack of systematic investigations of their potential impact on the developing brain and neurological and behavioral performance. METHODS: Neuroendocrine parameters and behavior in the adult offspring of pregnant Wistar rats treated antenatally with either dexamethasone (DEX) or corticosterone (CORT) were monitored; DEX (.1 mg/kg and 1 mg/kg) and CORT (25 mg/kg) were given to pregnant rat dams on gestation days 18 and 19. RESULTS: Despite normal basal levels of corticosterone, the adult offspring of mothers given DEX or CORT displayed abnormal responses in the dexamethasone-suppression test. Neither treatment influenced spatial memory performance, but both DEX and CORT facilitated development of depression-like behavior following chronic stress. The latter finding demonstrates that high-dose antenatal corticotherapy can impair the organism's resilience to stress in adulthood. Interestingly, comparison of the progeny of CORT-treated and DEX-treated mothers revealed that the latter were more anxious. CONCLUSIONS: Since DEX and CORT differ in their affinity for glucocorticoid and mineralocorticoid receptors and corticosteroid-binding globulin, our findings emphasize the need to consider the pharmacologic properties of antenatal corticotherapies and demonstrate the potential long-term benefits of ligands that can bind to both receptors.  相似文献   

20.
Both iron deficiency (ID) and infection are common during pregnancy and studies have described altered brain development in offspring as a result of these individual maternal exposures. Given their high global incidence, these two insults may occur simultaneously during pregnancy. We recently described a rat model which pairs dietary ID during pregnancy and prenatal immune activation. Pregnant rats were placed on iron sufficient (IS) or ID diets from embryonic day 2 (E2) until postnatal day 7, and administered the bacterial endotoxin, lipopolysaccharide (LPS) or saline on E15/16. In this model, LPS administration on E15 caused greater induction of the pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α, in ID dams compared to IS dams. This suggested that the combination of prenatal immune activation on a background of maternal ID might have more adverse neurodevelopmental consequences for the offspring than exposure to either insult alone. In this study we used this model to determine whether combined exposure to maternal ID and prenatal immune activation interact to affect juvenile and adult behaviors in the offspring. We assessed behaviors relevant to deficits in humans or animals that have been associated with exposure to either maternal ID or prenatal immune activation alone. Adult offspring from ID dams displayed significant deficits in pre-pulse inhibition of acoustic startle and in passive avoidance learning, together with increases in cytochrome oxidase immunohistochemistry, a marker of metabolic activity, in the ventral hippocampus immediately after passive avoidance testing. Offspring from LPS treated dams showed a significant increase in social behavior with unfamiliar rats, and subtle locomotor changes during exploration in an open field and in response to amphetamine. Surprisingly, there was no interaction between effects of the two insults on the behaviors assessed, and few observed alterations in juvenile behavior. Our findings show that long-term effects of maternal ID and prenatal LPS were additive, such that offspring exposed to both insults displayed more adult behavioral abnormalities than offspring exposed to one alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号