首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The gain of the human vestibuloocular reflex (VOR) is influenced by the proximity of the object of regard. In six human subjects, we measured the eye rotations induced by passive, sinusoidal, horizontal head rotations at 2.0 Hz during binocular fixation of a stationary far target at 7 m; a stationary target close to the subject's near point of fixation (<15 cm); and the bridge of the subject's own nose, viewed through a mirror positioned so that, for each subject, the angle of vergence was similar to that during viewing of the near target. The median gain of compensatory eye movements for the group of subjects during far viewing was 0.99 (range 0.80-1.04), during near viewing was 1.21 (range 0.88-1.47), and during mirror viewing was 0.85 (range 0.71-1.01). The gain during near and mirror viewing was significantly different for each subject (P < 0.001) even though the vergence angles were similar. The lower gain values during mirror viewing can be attributed to the geometric relationship between the head rotation, the position of the eyes in the head, and the movement of the subject's virtual image in the mirror. To determine whether visually mediated eye movements were responsible for the observed gain values, we conducted a control experiment in which subjects were rotated using a sum-of-sines stimulus that minimized the effects of predictive visual tracking; differences of gain values between near- and mirror-viewing conditions were similar to those during rotation at 2 Hz. We conclude that, in these experiments, target proximity and vergence angle were not the key determinants of gain of the visuo-vestibular response during head rotation while viewing a near target but that contextual cues from motion vision were more important in generating the appropriate response.  相似文献   

2.
We measured torsional vestibular and optokinetic eye movements in human subjects with the head and trunk erect, with the head supine and the trunk erect, and with the head and trunk supine, in order to quantify the effects of otolithic and proprioceptive modulation. During active head movements, the torsional vestibulo-ocular reflex (VOR) had significantly higher gain with the head upright than with the head supine, indicating that dynamic otolithic inputs can supplement the semicircular canal-ocular reflex. During passive earth-vertical axis rotation, torsional VOR gain was similar with the head and trunk supine and with the head supine and the trunk erect. This finding implies that static proprioceptive information from the neck and trunk has little effect upon the torsional VOR. VOR gain with the head supine was not increased by active, self-generated head movement compared with passive, whole body rotation, indicating that the torsional VOR is not augmented by dynamic proprioceptive inputs or by an efference copy of a command for head movement. Viewing earth-fixed surroundings enhanced the torsional VOR, while fixating a chair-fixed target suppressed the VOR, especially at low frequencies. Torsional optokinetic nystagmus (OKN) evoked by a full-field stimulus had a mean slow-phase gain of 0.22 for 10°/s drum rotation, but gain fell to 0.06 for 80°/s stimuli. Despite this fall in gain, mean OKN slow-phase velocities increased with drum speed, reaching maxima of 2.5°/s–8.0°/s in our subjects. Optokinetic afternystagmus (OKAN) was typically absent. Torsional OKN and OKAN were not modified by otolithic or proprioceptive changes caused by altering head and trunk position with respect to gravity. Torsional velocity storage is negligible in humans, regardless of head orientation.Presented in part at the Society for Neuroscience Annual Meeting, October 31, 1989, Phoenix, AZ  相似文献   

3.
The vestibulo-ocular reflex (VOR) acts to maintain images stable on the retina by rotating the eyes in exactly the opposite direction, but with equal magnitude, to head velocity. When viewing a near target, this reflex has an increased response to compensate for the translation of the eyes relative to the target that acts to reduce retinal image slip. Previous studies have shown that retinal velocity error provides an important visual feedback signal to increase the low-frequency (<1 Hz) VOR response during near viewing. We sought to determine whether initial eye position and retinal image position error could provide enough information to substantially increase the high-frequency VOR gain (eye velocity/head velocity) during near viewing. Ten human subjects were tested using the scleral search coil technique during horizontal head impulses under different lighting conditions (constant dark, strobe light at 0.5, 1, 2, 4, 10, 15 Hz, constant light) while viewing near (9.5 ± 1.3 cm) and far (104 cm) targets. Our results showed that the VOR gain increased during near viewing compared to far viewing, even during constant dark. For the near target, there was an increase in VOR gain with increasing strobe frequency from 1.17 ± 0.17 in constant dark to 1.36 ± 0.27 in constant light, a 21 ± 9 % increase. For the far target, strobe frequency had no effect. Presentation order of strobe frequency (i.e. 0.5–15 vs. 15–0.5 Hz) did not affect the gain, but it did affect the vergence angle (angle between the two eye’s lines of sight). The VOR gain and vergence angles were constant during each trial. Our findings show that a retinal position error signal helps increase the vergence angle and could be invoking vestibular adaptation mechanisms to increase the high-frequency VOR response during near viewing. This is in contrast to the low-frequency VOR that depends more on retinal velocity error and predictive adaptation mechanisms.  相似文献   

4.
Gain of the vestibuloocular reflex (VOR) not only varies with target distance and rotational axis, but can be chronically modified in response to prolonged wearing of head-mounted magnifiers. This study examined the effect of adaptation to telescopic spectacles on the variation of the VOR with changes in target distance and yaw rotational axis for head velocity transients having peak accelerations of 2,800 and 1,000 degrees /s(2). Eye and head movements were recorded with search coils in 10 subjects who underwent whole body rotations around vertical axes that were 10 cm anterior to the eyes, centered between the eyes, between the otoliths, or 20 cm posterior to the eyes. Immediately before each rotation, subjects viewed a target 15 or 500 cm distant. Lighting was extinguished immediately before and was restored after completion of each rotation. After initial rotations, subjects wore 1.9x magnification binocular telescopic spectacles during their daily activities for at least 6 h. Test spectacles were removed and measurement rotations were repeated. Of the eight subjects tolerant of adaptation to the telescopes, six demonstrated VOR gain enhancement after adaptation, while gain in two subjects was not increased. For all subjects, the earliest VOR began 7-10 ms after onset of head rotation regardless of axis eccentricity or target distance. Regardless of adaptation, VOR gain for the proximate target exceeded that for the distant target beginning at 20 ms after onset of head rotation. Adaptation increased VOR gain as measured 90-100 ms after head rotation onset by an average of 0.12 +/- 0.02 (SE) for the higher head acceleration and 0.19 +/- 0.02 for the lower head acceleration. After adaptation, four subjects exhibited significant increases in the canal VOR gain only, whereas two subjects exhibited significant increases in both angular and linear VOR gains. The latencies of linear and early angular target distance effects on VOR gain were unaffected by adaptation. The earliest significant change in angular VOR gain in response to adaptation occurred 50 and 68 ms after onset of the 2,800 and 1,000 degrees /s(2) peak head accelerations, respectively. The latency of the adaptive increase in linear VOR gain was approximately 50 ms for the peak head acceleration of 2,800 degrees /s(2), and 100 ms for the peak head acceleration of 1,000 degrees /s(2). Thus VOR gain changes and latency were consistent with modification in the angular VOR in most subjects, and additionally in the linear VOR in a minority of subjects.  相似文献   

5.
Chronic motor learning in the vestibuloocular reflex (VOR) results in changes in the gain of this reflex and in other eye movements intimately associated with VOR behavior, e.g., the velocity storage generated by optokinetic stimulation (OKN velocity storage). The aim of the present study was to identify the plastic sites responsible for the change in OKN velocity storage after chronic VOR motor learning. We studied the neuronal responses of vertical eye movement flocculus target neurons (FTNs) during the optokinetic after-nystagmus (OKAN) phase of the optokinetic response (OKR) before and after VOR motor learning. Our findings can be summarized as follows. 1) Chronic VOR motor learning changes the horizontal OKN velocity storage in parallel with changes in VOR gain, whereas the vertical OKN velocity storage is more complex, increasing with VOR gain increases, but not changing following VOR gain decreases. 2) FTNs contain an OKAN signal having opposite directional preferences after chronic high versus low gain learning, suggesting a change in the OKN velocity storage representation of FTNs. 3) Changes in the eye-velocity sensitivity of FTNs during OKAN are correlated with changes in the brain stem head-velocity sensitivity of the same neurons. And 4) these changes in eye-velocity sensitivity of FTNs during OKAN support the new behavior after high gain but not low gain learning. Thus we hypothesize that the changes observed in the OKN velocity storage behavior after chronic learning result from changes in brain stem pathways carrying head velocity and OKN velocity storage information, and that a parallel pathway to vertical FTNs changes its OKN velocity storage representation following low, but not high, gain VOR motor learning.  相似文献   

6.
The purpose of this study was to examine the effect of fixation target distance on the human vestibuloocular reflex (VOR) during eccentric rotation in pitch. Such rotation induces both angular and linear acceleration. Eight normal subjects viewed earth-fixed targets that were either remote or near to the eyes during wholebody rotation about an earth-horizontal axis that was either oculocentric or 15 cm posterior (eccentric) to the eyes. Eye and head movements were recorded using magnetic search coils. Using a servomotor-driven chair, passive whole-body rotations were delivered as trains of single-frequency sinusoids at frequencies from 0.8 to 2.0 Hz and as pseudorandom impulses of acceleration. In the light, the visually enhanced VOR (VVOR) was recorded while subjects were asked to fixate targets at one of several distances. In darkness, subjects were asked to remember targets that had been viewed immediately prior to the rotation. In order to eliminate slip of the retinal image of a near target when the axis of rotation of the head is posterior to the eyes, the ideal gain (compensatory eye velocity divided by head velocity) of the VVOR and VOR must exceed 1.0. Both the VOR and VVOR were found to have significantly enhanced gains during sinusoidal and pseudorandom impulses of rotation (P<0.05). Enhancement of VVOR gain was greatest at low frequencies of head rotation and decreased with increasing frequency. However, enhanced VOR gain only slightly exceeded 1.0, and VVOR gain enhancement was significantly lower than the expected ideal values for the stimulus conditions employed (P<0.05). During oculocentric rotations with near targets, both the VOR and VVOR tended to exhibit small phase leads that increased with rotational frequency. In contrast, during eccentric rotations with near targets, there were small phase lags that increased with frequency. Visual tracking contributes during ocular compensatory responses to sustained head rotation, although the latency of visual tracking reflexes exceeds 100 ms. In order to study initial vestibular responses prior to modification by visual tracking, we presented impulses of head acceleration in pseudorandom sequence of initial positions and directions, and evaluated the ocular response in the epoch from 25 to 80 ms after movement onset. As with sinusoidal rotations, pseudorandom eccentric head rotation in the presence of a near, earth-fixed target was associated with enhancement of VVOR and VOR gains in the interval from 25 to 80 ms from movement onset. Despite the inability of visual tracking to contribute to these responses, VVOR gain significantly exceeded VOR gain for pseudorandom accelerations. This gain enhancement indicates that target distance and linear motion of the head are considered by the human ocular motor system in adjustment of performance of the early VOR, prior to a contribution by visual following reflexes. Vergence was appropriate to target distance during all VVOR rotations, but varied during VOR rotations with remembered targets. For the 3-m target distance, vergence during the VOR was stable over each entire trial but slightly exceeded the ideal value. For the 0.1-m near target, instantaneous vergence during the VOR typically declined gradually in a manner not corresponding to the time course of instantaneous VOR gain change; mean vergence over entire trials ranged from 60 to 90% of ideal, corresponding to target distances for which ideal gain would be much higher than actually observed. These findings suggest a dissociation between vergence and VOR gain during eccentric rotation with near targets in the frequency range from 0.8 to 2.0 Hz.  相似文献   

7.
Summary The vestibulo-ocular reflex (VOR) can be suppressed in darkness if a subject tries to imagine that he looks at a head fixed target. This mental suppression of VOR was used to induce adaptive changes in VOR gam during 3 h of active head oscillations in complete darkness. VOR gain changes were tested by asking the subject to look at a visual target; then passively or actively the head was turned in darkness while the subject fixated the same target. Corrective saccades occurring at the end of the movement when lights were turned on give an elegant measure of VOR gain. Three hours of training induced in 3 subjects a mean of 10.9% and 11.4% decrease of VOR gain for passive and active conditions, respectively. This demonstrates that reflex adaptation can be obtained without external cues, and probably with only an internal reconstruction of target and eye movement.  相似文献   

8.
This study used visual-vestibular conflict to effect short-term torsional and horizontal adaptation of the vestibulo-ocular reflex (VOR). Seven normal subjects underwent sinusoidal whole-body rotation about the earth-vertical axis for 40 min (±37°/s, 0.3 Hz) while viewing a stationary radial pattern fixed to the chair (×0 viewing). During adaptation and testing in darkness, the head was pitched either up or down 35° to excite both the horizontal and torsional VOR. The eyes were kept close to zero orbital elevation. Eye movements were recorded with a dual search coil in a three-field magnetic system. VOR gain was determined by averaging peak eye velocity from ten cycles of chair oscillation in complete darkness. The gain of the angular horizontal VOR (response to rotation about the head rostral-caudal axis) was significantly reduced after training in both head orientations. Angular torsional VOR gain (head rotation about the naso-occipital axis) was reduced in both head orientations, but this reached statistical significance only in the head down position. These results suggest that torsional and horizontal VOR gain adaptation, even when elicited together, may be subject to different influences depending upon head orientation. Differences between head up and down could be due to the relatively greater contribution of the horizontal semicircular canals with nose-down pitch. Alternatively, different VOR-adaptation processes could depend on the usual association of the head down posture to near viewing, in which case the torsional VOR is relatively suppressed.  相似文献   

9.
The vestibuloocular reflex (VOR) needs to modulate its gain depending on target distance to prevent retinal slip during head movements. We investigated gain modulation (context compensation) for binocular gaze stabilization in human subjects during voluntary yaw and pitch head rotations. Movements of each eye were recorded, both when attempting to maintain gaze on a small visual target at straight-ahead in a darkened room and after its disappearance (remembered target). In the analysis, we relied on a binocular coordinate system yielding a version and a vergence component. We examined how frequency and target distance, approached here by using vergence angle, affected the gain and phase of the version component of the VOR and compared the results to the requirements for ideal performance. Linear regression analysis on the version gain-vergence relationship yielded a slope representing the influence of target proximity and an intercept corresponding to the response at zero vergence ("default gain"). The slope of the fitted relationship, divided by the geometrically required slope, provided a measure for the quality of version context compensation ("context gain"). In both yaw and pitch experiments, we found default version gains close to one even for the remembered target condition, indicating that the active VOR for far targets is already close to ideal without visual support. In near target experiments, the presence of visual feedback yielded near unity context gains, indicating close to optimal performance (retinal slip <0.4 degrees /s). For remembered targets, the context gain deteriorated but was still superior to performance in corresponding passive studies reported in the literature. In general, context compensation in the remembered target paradigm was better for vertical than for horizontal head rotations. The phase delay of version eye velocity relative to head velocity was small (approximately 2 degrees) for both horizontal and vertical head movements. Analysis of the vergence data from the near target experiments showed that context compensation took into account that the two eyes require slightly different VORs. In the DISCUSSION, comparison of the present default VOR gains and context gains with data from earlier passive studies has led us to propose a limited role for efference copies during self-generated movements. We also discuss how our analysis can provide a framework for evaluating two different hypotheses for the generation of binocular VOR eye movements.  相似文献   

10.
1. These experiments investigated plastic changes in the vestibulo-ocular reflex (VOR) of human subjects consequent to long-term optical reversal of vision during free head movement. Horizontal vision-reversal was produced by head-mounted dove prisms. Four normal adults were continuously exposed to these conditions during 2, 6, 7 and 27 days respectively.

2. A sinusoidal rotational stimulus, previously shown to be nonhabituating (1/6 Hz; 60°/sec amplitude), was used to test the VOR in the dark at frequent intervals both during the period of vision-reversal and an equal period after return to normal vision. D.c. electro-oculography (EOG) was used to record eye movement, taking care to avoid changes of EOG gain due to light/dark adaptation of the retina.

3. All subjects showed substantial reduction of VOR gain (eye velocity/head velocity) during the first 2 days of vision-reversal. The 6-, 7- and 27-day subjects showed further reduction of gain which reached a low plateau at about 25% the normal value by the end of one week. At this time the attenuation of some EOG records was so marked as to defy extraction of a meaningful sinusoidal signal.

4. After removal of the prisms VOR gain recovered along a time course which approximated that of the original adaptive attenuation.

5. In the 27-day experiment large changes of phase developed in the VOR during the second week of vision-reversal. These changes generally progressed in a lagging sense, to reach 130° phase lag relative to normal by the beginning of the third week. Accompanying this was a considerable restoration of gain from 25 to 50% the normal value. These adapted conditions, which approximate functional reversal of the reflex, were then maintained steady, even overnight, until return to normal vision on the 28th day.

6. Thereafter, whereas VOR phase returned to near-normal in 2 hr, restoration of gain occupied a further 2-3 weeks.

7. There was a highly systematic relation between instantaneous gain and phase, even during periods of widely fluctuating change associated with transition from one steady state to another. During such transition there was a tendency for directional preponderance to occur in the VOR.

8. All the observed changes were highly specific to the plane of vision-reversal, no VOR changes being observed in the sagittal plane.

9. VOR changes were adaptive, in the sense that they were always goal-directed towards the requirements of retinal image stabilization during head movement. They were plastic to the extent that there was extensive and retained remodelling of the reflex towards this goal.

10. It is inferred that all the observed changes in gain and phase are compatible with a simple neural network employing known vestibulo-ocular projections via brainstem and cerebellar pathways, providing that the reversed visual tracking task can produce plastic modulation of efficacy in the cerebellar pathway and that this pathway exhibits a dynamic characteristic producing moderate phase lead in a sinusoidal signal at 1/6 Hz.

  相似文献   

11.
One commonly observed phenomenon of vestibulo-ocular reflex (VOR) adaptation is a frequency-selective change in gain (eye velocity/head velocity) and phase (relative timing between the vestibular stimulus and response) based on the frequency content of the adaptation training stimulus. The neural mechanism behind this type of adaptation is not clear. Our aim was to determine whether there were other parameter-selective effects on VOR adaptation, specifically velocity-selective and acceleration-selective changes in the horizontal VOR gain and phase. We also wanted to determine whether parameter selectivity was also in place for cross-axis adaptation training (a visual–vestibular training stimulus that elicits a vestibular-evoked torsional eye movement during horizontal head rotations). We measured VOR gain and phase in 17 C57BL/6 mice during baseline (no adaptation training) and after gain-increase, gain-decrease and cross-axis adaptation training using a sinusoidal visual–vestibular (mismatch) stimulus with whole-body rotations (vestibular stimulus) with peak velocity 20 and 50°/s both with a fixed frequency of 0.5 Hz. Our results show pronounced velocity selectivity of VOR adaptation. The difference in horizontal VOR gain after gain-increase versus gain-decrease adaptation was maximal when the sinusoidal testing stimulus matched the adaptation training stimulus peak velocity. We also observed similar velocity selectivity after cross-axis adaptation training. Our data suggest that frequency selectivity could be a manifestation of both velocity and acceleration selectivity because when one of these is absent, e.g. acceleration selectivity in the mouse, frequency selectivity is also reduced.  相似文献   

12.
The rotatory vestibulo-ocular reflex (VOR) keeps the visual world stable during head movements by causing eye velocity that is equal in amplitude and opposite in direction to angular head velocity. We have studied the performance of the VOR in darkness for sinusoidal angular head oscillation at frequencies ranging from 0.5 to 50 Hz. At frequencies of > or = 25 Hz, the harmonic distortion of the stimulus and response were estimated to be <14 and 22%, respectively. We measured the gain of the VOR (eye velocity divided by head velocity) and the phase shift between eye and head velocity before and after adaptation with altered vision. Before adaptation, VOR gains were close to unity for frequencies < or = 20 Hz and increased as a function of frequency reaching values of 3 or 4 at 50 Hz. Eye velocity was almost perfectly out of phase with head velocity for frequencies < or = 12.5 Hz, and lagged perfect compensation increasingly as a function of frequency. After adaptive modification of the VOR with magnifying or miniaturizing optics, gain showed maximal changes at frequencies <12.5 Hz, smaller changes at higher frequencies, and no change at frequencies larger than 25 Hz. Between 15 and 25 Hz, the phase of eye velocity led the unmodified VOR by as much as 50 degrees when the gain of the VOR had been decreased, and lagged when the gain of the VOR had been increased. We were able to reproduce the main features of our data with a two-pathway model of the VOR, where the two pathways had different relationships between phase shift and frequency.  相似文献   

13.
The angular vestibulo-ocular reflex normally has an increased response during vergence on a near target. Surgical unilateral vestibular deafferentation reduces the horizontal vestibulo-ocular reflex (VOR) in response to far target viewing and eliminates this vergence effect. Intratympanic gentamicin treatment reduces VOR gain during far viewing, but the reduction is less severe than that after unilateral vestibular deafferentation. We sought to determine how gentamicin would affect vergence-mediated modulation of the VOR. The VOR in response to passive head impulses in the horizontal plane while viewing a far (124 cm) or near (15 cm) target was evaluated in 11 subjects following intratympanic gentamicin treatment. Three of these subjects had also been tested immediately prior to receiving gentamicin. The impulses were low amplitude (~20°), high velocity (~150°/s), high acceleration (~3,000°/s2) horizontal head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The VOR gain was defined as eye velocity divided by inverted head velocity. Prior to intratympanic gentamicin, the VOR gain during rotations to either side was symmetric and showed the same vergence-mediated increase. Following gentamicin, head impulses towards the untreated side yielded VOR gains of 0.91±0.12 while viewing a far target and 1.27±0.22 while viewing a near target, an increase of 33%. Head impulses towards the treated side produced a hypometric VOR with no increase between far and near viewing. The average latency of the VOR was 7.6±2.5 ms towards the untreated side for either near or far viewing and 20.7±13.1 ms towards the treated side for either near or far viewing. Our findings show that a peripheral lesion caused by gentamicin does not ablate the VOR but does eliminate a component of the vestibular signal that is necessary for vergence-mediated modulation of the VOR. Gentamicin has preferential toxicity for the hair cells in the central zone of the crista, where irregular afferents predominate. Our findings are consistent with the hypothesis that irregular afferents provide the necessary signal for vergence-mediated modulation of the VOR.  相似文献   

14.
During transient, high-acceleration rotation, performance of the normal vestibulo-ocular reflex (VOR) depends on viewing distance. With near targets, gain (eye velocity/head velocity) enhancement is manifest almost immediately after ocular rotation begins. Later in the response, VOR gain depends on both head rotation and translation; gain for near targets is decreased for rotation about axes anterior to the otoliths and augmented for rotation about axes posterior to the otoliths. We sought to determine whether subjects with cerebellar dysfunction have impaired modification of the VOR with target distance. Eleven subjects of average age 48 +/- 16 years (mean +/- standard deviation, SD) with cerebellar dysfunction underwent transients of directionally unpredictable whole-body yaw rotation to a peak angular acceleration of 1000 or 2800 degrees/s2 while viewing a target either 15 cm or 500 cm distant. Immediately before onset of head rotation, the lights were extinguished and were relit only after the rotation was completed. The axis of head rotation was varied so that it was located 20 cm behind the eyes, 7 cm behind the eyes (centered between the otoliths), centered between the eyes, or 10 cm anterior to the eyes. Angular eye and head positions were measured with magnetic search coils. The VOR in subjects with cerebellar dysfunction was compared with the response from 12 normal subjects of mean age 25 +/- 4 years. In the period 35-45 ms after onset of 2800 degrees/s2 head rotation, gain was independent of rotational axis. In this period, subjects with cerebellar dysfunction had a mean VOR gain of 0.5 +/- 0.2, significantly lower than the normal range of 1.0 +/- 0.2. During a later period, 125-135 ms after head rotation about an otolith-centered axis, subjects with cerebellar dysfunction had a mean VOR gain of 0.67 +/- 0.46, significantly lower than the value of 1.06 +/- 0.14 in controls. Unlike normal subjects, those with cerebellar dysfunction did not show modification of VOR gain with target distance in the early response and only one subject showed a correct effect of target distance in the later response. The effect of target distance was quantitatively assessed by subtracting gain for a target 500 cm distant from gain for a target 15 cm distant. During the period 35-45 ms after the onset of 2800 degrees/s2 head motion, only two subjects with cerebellar loss demonstrated significant VOR gain enhancement with a near target, and both of these exhibited less than half of the mean enhancement for control subjects. During the later period 125-135 ms after the onset of head rotation, when VOR gain normally depended on both target location and otolith translation, only one subject with cerebellar dysfunction consistently demonstrated gain changes in the normal direction. These findings support a role for the cerebellum in gain modulation of both the canal and otolith VOR in response to changes in distance. The short latency of gain modification suggests that the cerebellum may normally participate in target distance-related modulation of direct VOR pathways in a manner similar to that found in plasticity induced by visual-vestibular mismatch.  相似文献   

15.
 We employed binocular magnetic search coils to study the vestibulo-ocular reflex (VOR) and visually enhanced vestibulo-ocular reflex (VVOR) of 15 human subjects undergoing passive, whole-body rotations about a vertical (yaw) axis delivered as a series of pseudorandom transients and sinusoidal oscillations at frequencies from 0.8 to 2.0 Hz. Rotations were about a series of five axes ranging from 20 cm posterior to the eyes to 10 cm anterior to the eyes. Subjects were asked to regard visible or remembered targets 10 cm, 25 cm, and 600 cm distant from the right eye. During sinusoidal rotations, the gain and phase of the VOR and VVOR were found to be highly dependent on target distance and eccentricity of the rotational axis. For axes midway between or anterior to the eyes, sinusoidal gain decreased progressively with increasing target proximity, while, for axes posterior to the otolith organs, gain increased progressively with target proximity. These effects were large and highly significant. When targets were remote, rotational axis eccentricity nevertheless had a small but significant effect on sinusoidal gain. For sinusoidal rotational axes midway between or anterior to the eyes, a phase lead was present that increased with rotational frequency, while for axes posterior to the otolith organs phase lag increased with rotational frequency. Transient trials were analyzed during the first 25 ms and from 25 to 80 ms after the onset of the head rotation. During the initial 25 ms of transient head rotations, VOR and VVOR gains were not significantly influenced by rotational eccentricity or target distance. Later in the transient responses, 25–80 ms from movement onset, both target distance and eccentricity significantly influenced gain in a manner similar to the behavior during sinusoidal rotation. Vergence angle generally remained near the theoretically ideal value during illuminated test conditions (VVOR), while in darkness vergence often varied modestly from the ideal value. Regression analysis of instantaneous VOR gain as a function of vergence demonstrated only a weak correlation, indicating that instantaneous gain is not likely to be directly dependent on vergence. A model was proposed in which linear acceleration as sensed by the otoliths is scaled by target distance and summed with angular acceleration as sensed by the semicircular canals to control eye movements. The model was fit to the sinusoidal VOR data collected in darkness and was found to describe the major trends observed in the data. The results of the model suggest that a linear interaction exists between the canal and otolithic inputs to the VOR. Received: 1 April 1996 / Accepted: 15 October 1996  相似文献   

16.
This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.  相似文献   

17.
To determine age-related changes in oculomotor function we measured vestibuloocular (VOR), optokinetic (OKN), and visual-vestibular responses in a large group of normal subjects over the age of 75 years and compared the results with those from a group of young adults. Compared with the young subjects, older subjects had: (1) an amplitude-dependent decrease in VOR gain, (2) a shorter dominant VOR time constant, (3) a lower OKN slow-phase velocity saturation, and (4) a decreased ability to enhance and suppress the VOR with vision. These functional changes in older subjects are presumably secondary to well-documented, age-related changes in the sensory and neural elements of the visualvestibulooculomotor pathways. They may be a contributory factor to the common complaints of dizziness and dysequilibrium in people over the age of 75 years.  相似文献   

18.
The vestibulo-ocular reflex (VOR) and optokinetic nystagmus (OKN) were examined in alert pigmented rabbits following interruption of proprioceptive afferents from the extraocular muscles in one eye by surgical section of the ophthalmic branch of the trigeminal nerve (V1 nerve). Deficits were mainly produced in movement dynamics of the ipsilateral eye including reduction of (1) the VOR gain at a high frequency of head rotation, (2) the OKN gain and (3) the velocity of quick eye movements in the OKN. In some of the rabbits examined, the cerebellar flocculus was lesioned by local injection of kainic acid before severance of the V1 nerve. No significant additional reductions of VOR or OKN gains were produced by V1 nerve section in the flocculus-lesioned rabbits. These results suggest that proprioceptive signals from eye muscles act to improve VOR and OKN dynamics through the neuronal mechanisms involving the cerebellar flocculus.  相似文献   

19.
We investigated the effects of short-term vestibulo-ocular reflex (VOR) adaptation on the gain and phase of the VOR, and on eccentric gaze-holding in darkness, in five normal human subjects. For 1 h, subjects sat in a chair that rotated sinusoidally at 0.2 Hz while surrounded by a visual stimulus (optokinetic drum). The drum was rotated relative to the chair, to require a VOR with either a phase lead or lag of 45 deg (with respect to a compensatory phase of zero) with no change in gain, or a gain of 1.7 or 0.5 with no change in phase. Immediately before and after each training session, VOR gain and phase were measured in the dark with 0.2 Hz sinusoidal rotation. Gaze-holding was evaluated following 20 deg eccentric saccades in darkness. Adaptation paradigms that called only for a phase lead produced an adapted VOR with 33% of the required amount of phase change, a 20% decrease in VOR gain, and an increased centripetal drift after eccentric saccades made in darkness. Adaptation paradigms that called for a phase lag produced an adapted VOR with 29% of the required amount of phase change, no significant change in VOR gain, and a centrifugal drift after eccentric saccades. Adaptation paradigms requiring a gain of 1.7 produced a 15% increase in VOR gain with small increases in phase and in centripetal drift. Adaptation paradigms requiring a gain of 0.5 produced a 31% decrease in VOR gain with a 6 deg phase lag and a centrifugal drift. The changes in drift and phase were well correlated across all adaptation paradigms; the changes in phase and gain were not. We attribute the effects on phase and gaze-holding to changes in the time constant of the velocity-to-position ocular motor neural integrator. Phase leads and the corresponding centripetal drift are due to a leaky integrator, and phase lags and the corresponding centrifugal drift are due to an unstable integrator. These results imply that in the short-term adaptation paradigm used here, the control of drift and VOR phase are tightly coupled through the neural integrator, whereas VOR gain is controlled by another mechanism.  相似文献   

20.
The gain (ratio of eye velocity to head velocity) of the initial horizontal vestibulo-ocular reflex (VOR) was calculated in 12 normal subjects over 350 ms during impulsive, unpredictable whole body rotation under three conditions: (1) darkness; (2) visual enhancement of the VOR, while the subjects fixated a stationary target; and (3) visual cancellation of the reflex, while subjects fixated a target that rotated with the head. The gain of the initial 80 ms of compensatory eye movement increased significantly during visual fixation in 5 subjects and decreased during attempted VOR cancellation in 3 subjects, when compared with VOR gain in darkness. Compensatory vestibular smooth eye movements were slowed, becoming curved at the onset of VOR cancellation, at mean latencies ranging from 78 to 149 ms in individual subjects (group mean 128 ms). At about 190 ms, quick phases moved the eyes in the same direction as head and target motion. The subsequent vestibular eye movements were about 50% slower than the initial smooth eye movements, indicating more effective cancellation. Visual enhancement of the VOR can occur prior to the onset of pursuit, providing evidence that fixation and smooth pursuit are distinct ocular motor systems. Visual cancellation of the VOR also begins prior to smooth pursuit initiation and becomes more effective after the latency of smooth pursuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号