首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apoptosis of vascular smooth muscle cells (VSMCs) plays an important role in remodeling of vessel walls, one of the major determinants of long-term blood pressure elevation and an independent risk factor for cardiovascular morbidity and mortality. Recently, we have found that apoptosis in cultured VSMCs can be inhibited by inversion of the intracellular [Na+]/[K+] ratio after the sustained blockage of the Na+,K+-ATPase by ouabain. To understand the mechanism of ouabain action, we analyzed subsets of hydrophilic and hydrophobic VSMC proteins from control and ouabain-treated cells by 2-dimensional electrophoresis. Ouabain treatment led to overexpression of numerous soluble and hydrophobic cellular proteins. Among proteins that showed the highest level of ouabain-induced expression, we identified mortalin (also known as GRP75 or PBP-74), a member of the heat shock protein 70 (HSP70) superfamily and a marker for cellular mortal and immortal phenotypes. Northern and Western blotting and immunocytochemistry all have confirmed that treatment of VSMCs with ouabain results in potent induction of mortalin expression. Transient transfection of cells with mortalin cDNA led to at least a 6-hour delay in the development of apoptosis after serum deprivation. The expression of tumor suppressor gene, p53, in mortalin-transfected cells was delayed to the same extent, and the expressed protein showed abnormal perinuclear distribution, suggesting that p53 is retained and inactivated by mortalin. Our studies therefore define a new [Na+]i/[K+]i-responsive signaling pathway that may play an important role in the regulation of programmed cell death in VSMCs.  相似文献   

2.
This study examines the involvement of RNA and protein synthesis in the modulation of apoptosis in vascular smooth muscle cells (VSMC) by intracellular monovalent cations. In VSMC transfected with E1A adenovirus (VSMC-E1A), inversion of the [Na(+)](i)/[K(+)](i) ratio by an inhibitor of the Na(+),K(+) pump, ouabain, prevented the development of apoptosis triggered by serum withdrawal. Inhibition of apoptosis by ouabain was abolished by inhibitors of RNA and protein synthesis, actinomycin D, and cycloheximide, respectively. In VSMC-E1A, incubation with ouabain for 4 and 24 hours augmented RNA synthesis by 20% to 50% and 3-fold to 4-fold, respectively. In quiescent VSMC, the effect of ouabain and serum on RNA synthesis was additive. Ouabain did not affect the level of phosphorylation of ERK, JNK, and p38 MAP kinases and blocked apoptosis independent of the presence of the MAPK kinase inhibitors PD98059 and SB 202190. Equimolar substitution of NaCl with KCl in the incubation medium abolished the effect of ouabain on intracellular Na(+) and K(+) concentration, apoptosis, and RNA synthesis. Thus, our results demonstrate that the antiapoptotic effect of the inverted [Na(+)](i)/[K(+)](i) ratio is mediated by MAPK-independent induction of de novo synthesis of RNA species encoding inhibitor(s) of programmed cell death.  相似文献   

3.
Na+-Ca2+ exchange in cultured vascular smooth muscle cells   总被引:4,自引:0,他引:4  
Vascular smooth muscle cells (VSMC) contract as intracellular free calcium ([Ca2+]i) rises. While Na+-Ca2+ exchange has been proposed to contribute to transmembrane Ca2+ flux, its role in cultured VSMC is unknown. Accordingly, we have investigated the role of Na+-Ca2+ exchange in unidirectional and net transmembrane Ca2+ fluxes in cultured rat aortic VSMC under basal conditions and following agonist-mediated stimulation. Transmembrane Ca2+ uptake was significantly increased in response to a low external Na+ concentration ([Na+]o) compared with 140 mM [Na+]o. Na+-dependent Ca2+ uptake in response to low [Na+]o was further increased by intracellular Na+ loading by preincubation of the VSMC with 1 mM ouabain. Under steady-state conditions, Ca2+ content varied inversely with [Na+]o, increasing from 1.0 nmol Ca2+/mg protein at 140 mM [Na+]o to 4.0 nmol Ca2+/mg protein at 20 mM [Na+]o. Increasing [K+]o to 55 mM also enhanced Na+-dependent Ca2+ influx. Augmentation of Ca2+ uptake with K+ depolarization was not significantly inhibited by the calcium channel antagonist verapamil. Transmembrane Ca2+ efflux was increased in response to 130 mM [Na+]o compared with zero [Na+]o (iso-osmotic substitution with choline+), and was further stimulated by the vasoconstrictor angiotensin II, which is known to elevate [Ca2+]i. These changes in [Ca2+]i were studied directly using fura-2 fluorescence measurements. Elevated [Ca2+]i levels returned to baseline more rapidly in the presence of normal (130 mM) [Na+]o compared with zero [Na+]o (iso-osmotic substitution with choline+). These findings suggest that a bidirectional Na+-Ca2+ exchange mechanism is present in cultured rat aortic VSMC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of extracellular calcium (Ca2+) on the cellular action of arginine vasopressin (AVP) was examined using an Na+, K+-ATPase inhibitor in rat renal papillary collecting tubule cells in culture. The pretreatment of cells with ouabain enhanced basal and AVP-induced cAMP production in a dose-dependent manner. The augmentation by ouabain of cellular cAMP production in response to AVP was totally abolished by co-treatment with cobalt, lanthanum, verapamil or Ca2+-free medium containing 1 mmol EGTA/l, each blocking cellular Ca2+ uptake by different mechanisms. Two other findings indicated that ouabain directly stimulated cellular Ca2+ mobilization; namely, that ouabain significantly increased 45Ca2+ influx and cellular free Ca2+ concentration [( Ca2+]i) determined by Fura-2 fluorescence. The ouabain-induced increase in [Ca2+]i was completely blocked by either cobalt or Ca2+-free medium containing 1 mmol EGTA/l. AVP at 0.1 mumol/l increased [Ca2+]i to 177.1 +/- 26.2 nmol/l from 92.2 +/- 8.0 nmol/l (P less than 0.01) in renal papillary collecting tubule cells, and ouabain significantly enhanced the AVP-induced increase in [Ca2+]i. The increase of cellular free Ca2+ induced by ouabain probably binds to calmodulin to form an active complex of Ca2+-calmodulin in the cell, since two chemically dissimilar antagonists of calmodulin attenuated the enhancement by ouabain of cAMP production in response to AVP. These results therefore indicate that ouabain increases cellular Ca2+ uptake and enhances AVP-induced cellular free Ca2+ mobilization and its own second messenger cAMP production in renal papillary collecting tubule cells, and that extracellular Ca2+ is an important source for ouabain-mobilized cellular Ca2+.  相似文献   

5.
Two ionophores (monensin and gramicidin) that carry Na+ into 3T3 cells markedly enhance the rate of 86Rb+ uptake. Ouabain prevents both ionophores from increasing 86Rb+ uptake, indicating that the ionophores activate the Na+,K+ pump. Measurements of 86Rb+ uptake and cell Na+ and K+ over a range of monensin concentrations show that the activity of the Na+,K+ pump in 3T3 cells is limited by the supply of internal Na+ and is extremely sensitive to small changes in internal Na+. Serum rapidly enhances the rate of 22Na+ uptake and net Na+ entry when Na+ exit is inhibited by ouabain. At 0.3 microgram/ml, monensin increases the rate of net Na+ entry and activates the Na+,K+ pump by the same degree as serum. The stimulation of 86Rb+ uptake by serum or the ionophores has an absolute requirement for external Na+. Thus, serum appears to stimulate the Na+,K+ pump in quiescent 3T3 cells by increasing its supply of Na+.  相似文献   

6.
OBJECTIVE: Cytosolic sodium ([Na+]i) is increased in heart failure (HF). We hypothesize that up-regulation of Na+/H+-exchanger (NHE) in heart failure is causal to the increase of [Na+]i and underlies disturbance of cytosolic calcium ([Ca2+]i) handling. METHODS: Heart failure was induced in rabbits by combined volume and pressure overload. Age-matched animals served as control. [Na+]i, cytosolic calcium [Ca2+]i and cytosolic pH (pH(i)) were measured in isolated left ventricular midmural myocytes with SBFI, indo-1 and SNARF. SR calcium content was measured as the response of [Ca2+]i to rapid cooling (RC). Calcium after-transients were elicited by cessation of rapid stimulation (3 Hz) in the presence of 100 nmol/l noradrenalin. NHE and Na+/K+-ATPase activity were inhibited with 10 micromol/l cariporide and 100 micromol/l ouabain, respectively. RESULTS: At all stimulation rates (0-3 Hz) [Na+]i and diastolic [Ca2+]i were significantly higher in HF than in control. With increasing frequency [Na+]i and diastolic [Ca2+]i progressively increased in HF and control, and the calcium transient amplitude (measured as total calcium released from SR) decreased in HF and increased in control. In HF (at 2 Hz), SR calcium content was reduced by 40% and the calcium gradient across the SR membrane by 60%. Fractional systolic SR calcium release was 90% in HF and 60% in control. In HF the rate of pH(i) recovery following acid loading was much faster at all pH(i) and NHE dependent sodium influx was almost twice as high as in control. In HF cariporide (10 micromol/l, 5 min) reduced [Na+]i and end diastolic [Ca2+]i to almost control values, and reversed the relation between calcium transient amplitude and stimulation rate from negative to positive. It increased SR calcium content and SR membrane gradient and decreased fractional systolic SR depletion to 60%. Cariporide greatly reduced the susceptibility to develop calcium after-transients. In control animals, cariporide had only minor effects on all these parameters. Increase of [Na+]i with ouabain in control myocytes induced abnormal calcium handling as found in HF. CONCLUSIONS: In HF up-regulation of NHE activity is causal to increased [Na+]i and secondarily to disturbed diastolic, systolic and SR calcium handling. Specific inhibition of NHE partly normalized [Na+]i, end diastolic [Ca2+]i, and SR calcium handling and reduced the incidence of calcium after-transients. Chronic treatment with specific NHE inhibitors may provide a useful future therapeutic option in treatment of developing hypertrophy and heart failure.  相似文献   

7.
Na(+)-Ca2+ exchange is proposed to be an important regulator of myoplasmic intracellular Ca2+ concentration ([Ca2+]i) and contraction in vascular smooth muscle. We investigated the role of Na(+)-Ca2+ exchange in regulating [Ca2+]i in swine carotid arterial tissues that were loaded with aequorin to allow simultaneous measurement of [Ca2+]i and force. Reversal of Na(+)-Ca2+ exchange, by reduction of extracellular Na+ concentration ([Na+]o) to 1.2 mM, induced a large increase in aequorin-estimated [Ca2+]i and a low [Ca2+]i sensitivity. The contraction induced by 1.2 mM [Na+]o was partially caused by depolarization and opening of L-type Ca2+ channels because 10 microM diltiazem partially attenuated the 1.2 mM [Na+]o-induced increases in [Ca2+]i. High dose ouabain (10 microM), a putative endogenous Na+,K(+)-ATPase inhibitor, increased both [Ca2+]i and force. However, the increases in [Ca2+]i and force were mostly blocked by 10 microM phentolamine, suggesting the predominant effect of ouabain was to increase norepinephrine release from nerve terminals. In the presence of 10 microM phentolamine, 10 microM ouabain slightly accentuated 1 microM histamine-induced increases in [Ca2+]i and force. The ouabain dose necessary to induce contraction in the absence of phentolamine was significantly less than the ouabain dose necessary to accentuate histamine-induced contractions in the presence of phentolamine. These results suggest that Na(+)-Ca2+ exchange exists in swine arterial smooth muscle. These data also suggest that ouabain (which should increase [Na+]i and inhibit Na(+)-Ca2+ exchange) primarily enhances contractile function in the swine carotid artery by releasing catecholamines from nerve terminals; direct action of Na+,K(+)-ATPase inhibitors on smooth muscle appears to occur only with very high doses.  相似文献   

8.
OBJECTIVE: Diastolic calcium is increased in myocytes from failing hearts despite up-regulation of the principal calcium extruding mechanism the Na+/Ca2+-exchanger (NCX). We hypothesize that increased diastolic calcium ([Ca2+]i) is secondary to increased cytosolic sodium ([Na+]i) and decreased driving force of NCX (DeltaG(exch)). METHODS: The stimulation rate dependence of simultaneously measured cytosolic sodium ([Na+]i), calcium transients ([Ca2+]i) and action potentials were determined with SBFI, indo-1 and the perforated patch technique in midmural left ventricular myocytes isolated from rabbits with pressure and volume overload induced heart failure (HF) and in age matched controls. Dynamic changes of DeltaG(exch) were calculated. RESULTS: With increasing stimulation frequency, 0.2-3 Hz (all data HF versus control): [Na+]i increased (6.4 to 10.8 versus 3.8 to 6.4 mmol/l), diastolic [Ca2+]i increased (142 to 219 versus 47 to 98 nmol/l), calcium transient amplitude decreased in HF (300 to 250 nmol/l) but increased in control (201 to 479 nmol/l), action potential duration (APD90) decreased (380 to 260 versus 325 to 205 ms) and time averaged DeltaG(exch) decreased (6.8 to 2.8 versus 8.7 to 6.4 kJ/mol. With increasing stimulation rate the forward mode time integral of DeltaG(exch) decreased in HF by about 30%, the reversed mode time integral increased about ninefold and the duration of reversed mode operation more than sixfold relative to control. CONCLUSIONS: [Na+]i is increased in HF and the driving force of NCX is decreased. NCX exerts thermodynamic control over diastolic calcium. Disturbed diastolic calcium handling in HF is due to decreased forward mode DeltaG(exch) secondary to increased [Na+]i and prolongation of the action potential. Enhanced reversed mode DeltaG(exch) may account for increased contribution of NCX to e-c coupling in HF.  相似文献   

9.
Na+ influx via INa during cardiac action potentials can raise bulk [Na+]i by 10 to 15 micromol/L. However, larger rises in submembrane [Na+] ([Na+]sm) local to Na+-Ca2+ exchangers (NCX) could enhance Ca2+ influx via NCX (and Ca2+-induced Ca2+ release). We tested whether INa could increase [Na+]sm, using NCX current (INCX) as a biosensor in rabbit ventricular myocytes (with [Ca2+]i buffered, [Na+]i=10 mmol/L, and other currents blocked). We measured INCX as early as 5 ms after INa. Prior INa activation did not affect INCX at physiological membrane potentials (Em=-100 to +50 mV), but for Em >+50 mV (where INCX is especially sensitive to [Na+]i), INCX shifted outward. At 5 ms and +100 mV, INa shifted INCX outward by 0.23 A/F (corresponding to Delta[Na+]sm=0.24 mmol/L). The effect of INa dissipated with a time constant of approximately 15 ms. Thus, the impact of INa on NCX is almost undetectable at physiological Em and short lived. This suggests that INa effects on excitation-contraction coupling (via outward INCX) are minimal and limited to early during the action potential. However, local Delta[Na+]sm during INa may be 60 times higher than bulk Delta[Na+]i.  相似文献   

10.
The in vivo activation and turnover rates of the sodium pump (Na+, K(+)-ATPase) were investigated in the electrocytes of the electric organ of the elasmobranch Narcine brasiliensis. The Narcine electric organ appears to be an excellent model for the study of sodium pump activation in an excitable tissue. The sodium transmembrane gradient and high-energy phosphagens were concurrently measured by 23Na and 31P NMR spectroscopy. The resting electric organ, which depends primarily on anaerobic metabolism, displays a high concentration of phosphocreatine (PCr). It has an intracellular sodium concentration ([Na+]i) of 20 +/- 10 milliequivalents/liter as estimated by NMR. Electrical stimulation of the nerves innervating the electric organ results in an increase in [Na+]i in the electrolyte and rapid depletion of PCr. Ouabain causes an 85% decrease in utilization of high-energy phosphagens, indicating that rapid PCr turnover in this tissue is mainly due to Na+, K(+)-ATPase activity. From these data we can determine that the rate of sodium pump turnover increases by greater than 3 orders of magnitude within several hundred milliseconds. In excised unstimulated electric organ slices, changes in [Na+]i equivalent to those occurring with stimulation, but induced by hyperosmolar conditions, do not result in increased PCr hydrolysis. We conclude that cholinergic stimulation of the electric organ causes a rapid and extremely large increase in sodium pump turnover, which is regulated predominantly by factors other than [Na+]i.  相似文献   

11.
The Na/K pump of vascular smooth muscle cells (VSMC) and renal epithelial cells (REC) is viewed as a target of digitalis and endogenous ouabain (EO), leading to the development of hypertension. In this study, we compared the effect of ouabain on Na/K pump activity and the intracellular content of monovalent cations in VSMC and REC obtained from rats, humans and dogs. In VSMC from the rat aorta, ouabain inhibited maximal Na/K pump activity measured as the rate of 86Rb influx in Na+-loaded cells, with an ID50 of approximately 20-30 microM without any differences between two strains of normotensive rats (WKY and BN.1x) and three substrains of spontaneously hypertensive rats (SHR). Half-maximal inhibition of the Na/K pump in REC from the rat inner medullary collecting duct was observed at approximately 20 microM of ouabain. In contrast to rat cells, half-maximal inhibition of 86Rb influx in VSMC from human coronary arteries and in REC from the Madin-Darby canine kidney was seen at approximately 0.03 and 0.1 microM ouabain, respectively. At concentrations lower than 100 microM, ouabain did not affect the intracellular content of exchangeable Na+ and K+ in rat VSMC, measured as the steady-state distribution of 22Na and 86Rb, whereas in human VSMC, it increased the intracellular Na+/K+ ratio with an ID50 of approximately 0.5 microM. Keeping in mind that the circulating level of administered digitalis and EO does not exceed 10(-9) M, our results strongly suggest that the involvement of these compounds in the pathogenesis of hypertension in rats is not mediated by inhibition of the alpha1-isoform of the Na/K pump in VSMC and REC. Alternative mechanisms of the involvement of EO and ouabain-like factors in the development of hypertension are considered.  相似文献   

12.
Sugi K  Musch MW  Field M  Chang EB 《Gastroenterology》2001,120(6):1393-1403
BACKGROUND & AIMS: To determine how interferon (IFN)-gamma inhibits epithelial barrier and ion transport functions, intestinal T84 cells were studied. METHODS: Acute and chronic effects of IFN-gamma on T84 barrier function, Na+,K+-adenosine triphosphatase (ATPase) activity, and certain ion transport and tight junctional proteins were determined. To assess the role of Na+,K+-ATPase and intracellular Na+, similar studies with the Na+,K+-ATPase inhibitor ouabain and Na+ ionophore monensin were performed. To determine the role of nitric oxide (NO), the NO donor SPER-NO was used. RESULTS: IFN-gamma acutely (<6 hour) decreased cellular Na+,K+-ATPase activity, followed later (>24 hours) by decreases in expression of Na/K/2Cl, the alpha subunit of Na+,K+-ATPase, occludin, and ZO-1. In contrast, cystic fibrosis transmembrane conductance regulator or the Na+ pump beta subunit were unchanged. Ouabain and monensin caused nearly identical changes to IFN-gamma. Incubation in low Na+ media significantly blunted the chronic effects of IFN-gamma. Hypotonic-induced cell swelling, in contrast, had effects similar to IFN-gamma but did not alter the expression of the Na+ pump alpha subunit. The NO donor SPER-NO rapidly inhibited Na+,K+-ATPase and also down-regulated transport and barrier proteins. CONCLUSIONS: IFN-gamma inhibition of Na+,K+-ATPase activity acutely causes increases in intracellular Na(i) concentration and cell volume, which are distinct signaling events that ultimately result in a leaky and dysfunctional epithelium associated with chronic inflammation.  相似文献   

13.
Angiotensin markedly altered the Na+ permeability of smooth muscle cells cultured from explants of rat aorta. The rate of net Na+ uptake was followed in the presence of ouabain in order to block Na+ efflux via the Na+/K+ pump. Angiotensin II (AII) or angiotensin III (AIII) increased net Na+ uptake by about 3-fold. Maximal stimulation of Na+ uptake was produced by about 10 nM AII. Bradykinin and the angiotensin antagonist [Sar1, Ileu5, Ala8]AII had no significant effect on net Na+ uptake. Angiotensin also enhanced the activity of the Na+/K+ pump, which was assayed by following the rate of ouabain-sensitive 86Rb+ uptake by the cells. AII and AIII nearly doubled ouabain-sensitive 86Rb+ uptake, but bradykinin, norepinephrine, and [Sar1, Ileu5, Ala8]AII had no effect. In the presence of ouabain, 86Rb+ uptake was not significantly affected by AII or AIII, indicating that angiotensin did not alter passive permeability to Rb+. Loading the cells with Na+, either by incubation in K+-free medium or exposure to the Na+-selective ionophore monensin, markedly increased ouabain-sensitive 86RB+ uptake. This result indicates that the activity of the Na+/K+ pump is limited by the low level of Na+ that is normally in the cells. AII had no effect on the activity of the Na+/K+ pump in Na+-loaded cells. These results suggest that AII or AIII stimulates the Na+/K+ pump in cultured aortic muscle cells by increasing its Na+ supply.  相似文献   

14.
OBJECTIVE: To investigate whether hypertrophy in the dog with chronic atrioventricular block (CAVB) alters [Na+]i and Na/K-pump function of ventricular myocytes. METHODS: We measured the [Na+]i dependence of the Na/K pump current, I(p). This relation was used as a calibration curve for [Na+]i based on I(p). We measured I(p) at the time of access and extrapolated [Na+] at the pump sites, i.e. subsarcolemmal [Na+], [Na+](subs), from the calibration curve. RESULTS: The extrapolated [Na+](subs) was significantly higher in CAVB (7.9 vs. 3.2 mM in control). The [Na+]i dependence of I(p) in CAVB myocytes was shifted to the right (range of [Na+](i): 0-20 mM). In resting cells, the I(p), i.e. steady state Na+ efflux, which matches Na+ influx, was higher in CAVB (0.25+/-0.02 vs. 0.47+/-0.06 pA/pF, P<0.05). Maximal I(p) density was not different, and DHO sensitivity was not altered. CONCLUSIONS: Hypertrophy in CAVB cells is associated with increased [Na+](subs). This results from an increase in Na+ influx, and a decreased sensitivity of I(p) for Na+ in the range of [Na+]i studied. There is no evidence for a decrease in total pump capacity or for a functional Na/K-ATPase isoform shift. The rise in Na+ contributes to the contractile adaptation and preservation of sarcoplasmic reticulum Ca2+ content at the low heart rates of the dog with CAVB.  相似文献   

15.
GH promptly increases cytosolic free calcium ([Ca2+]i) in freshly isolated rat adipocytes. Adipocytes deprived of GH for 3 h or longer are incapable of increasing [Ca2+]i in response to GH, but instead respond in an insulin-like manner. Insulin blocks the GH-induced increase in [Ca2+]i in GH-replete cells and stimulates the sodium pump (i.e. Na+/K+-ATPase), thereby hyperpolarizing the cell membrane. Blockade of the Na+/K+-ATPase with 100 microM ouabain reversed these effects of insulin and enabled GH to increase [Ca2+]i in GH-deprived adipocytes. Both insulin and GH activated the sodium pump in GH-deprived adipocytes, as indicated by increased uptake of 86Rb+. Decreasing availability of intracellular Na+ by blockade of Na+/K+/ 2Cl- symporters or Na+/H+ antiporters abolished the effects of both hormones on 86Rb+ uptake and enabled both GH and insulin to increase [Ca2+]i in GH-deprived adipocytes. The data suggest that hormonal stimulation of Na+/K+-ATPase activity interferes with activation of voltage-sensitive calcium channels by either membrane hyperpolarization or some unknown interaction between the sodium pump and calcium channels.  相似文献   

16.
Na+]i handling in the failing human heart   总被引:3,自引:0,他引:3  
Proper contractile function of the heart depends on intact excitation-contraction processes and ion homeostasis of the myocytes. The Ca2+ ion activates contraction through its binding to troponin C. However, Ca2+ homeostasis is tightly linked to Na+ regulation because the primary mechanism for Ca2+ efflux in cardiac myocytes is via electrogenic Na+/Ca2+-exchange. While altered Ca2+-homeostasis has been demonstrated in animal models of heart failure and failing human cardiac tissue, the role of dysfunctional Na+ handling processes in altered excitation-contraction coupling remains obscure. Furthermore, altered Na+ handling has been implicated in a wide range of cellular processes, such as regulation of membrane potential, pH, and growth. This review will discuss (1) the evidence for altered [Na+]i homeostasis in the failing human heart, (2) how alterations in the Na+ electrochemical gradient can influence Ca2+ handling, contractile function, and a number of other cellular processes, and (3) the potential defects in Na+ channels and transporters that may underlie altered [Na+]i in the failing human heart.  相似文献   

17.
A constitutive mutant, alar4, for the A system of amino acid transport, has increased activity and amount of the A system. This is accompanied by increased sensitivity to ouabain, as measured by efficiency of plating, and increased activity and abundance of the Na+,K+-ATPase that is present in the parental cell line, CHO-K1 (wild type). The latter was shown by increases in (i) ouabain-inhibitable 86Rb uptake in intact cells, (ii) ouabain-inhibitable ATPase activity in mixed membrane vesicles, and (iii) number of ouabain-binding sites and by similar Kd values for ouabain binding and K1/2 for ouabain inhibition of Na+,K+-ATPase as compared to the wild type. The increase in abundance of the Na+ pump is associated with a 4-fold increase in abundance of the mRNA for the alpha 1 subunit of the Na+,K+-ATPase. We could not detect mRNA for alpha 2 or alpha 3 or for the beta subunits. The increase in abundance of the A system and Na+,K+-ATPase is associated with a negligible increase in intracellular Na+ concentration. We propose that the increase in the abundance of the A system and the Na+,K+-ATPase is the result of a mutation in regulatory gene R1 that controls the A system and the Na+,K+-ATPase and is not due to a primary effect of a possible initial increase in Na+ concentration.  相似文献   

18.
Intracellular Na+ regulation in cardiac myocytes   总被引:6,自引:0,他引:6  
Intracellular [Na+] ([Na+]i) is regulated in cardiac myocytes by a balance of Na+ influx and efflux mechanisms. In the normal cell there is a large steady state electrochemical gradient favoring Na+ influx. This potential energy is used by numerous transport mechanisms, including Na+ channels and transporters which couple Na+ influx to either co- or counter-transport of other ions and solutes. Six sarcolemmal Na+ influx pathways are discussed in relatively quantitative terms: Na+ channels, Na+/Ca2+ exchange, Na+/H+ exchange, Na+/Mg2+ exchange, Na+/HCO3- cotransport and Na+/K+/2Cl- cotransport. Under normal conditions Na+/Ca2+ exchange and Na+ channels are the dominant Na+ influx pathways, but other transporters may become increasingly important during altered conditions (e.g. acidosis or cell volume stress). Mitochondria also exhibit Na+/Ca2+ antiporter and Na+/H+ exchange activity that are important in mitochondrial function. These coupled fluxes of Na+ with Ca2+, H+ and HCO3- make the detailed understanding of [Na+]i regulation pivotal to the understanding of both cardiac excitation-contraction coupling and pH regulation. The Na+/K+-ATPase is the main route for Na+ extrusion from cells and [Na+]i is a primary regulator under physiological conditions. [Na+]i is higher in rat than rabbit ventricular myocytes and the reason appears to be higher Na+ influx in rat with a consequent rise in Na+/K+-ATPase activity (rather than lower Na+/K+-ATPase function in rat). This has direct functional consequences. There may also be subcellular [Na+]i gradients locally in ventricular myocytes and this may also have important functional implications. Thus, the balance of Na+ fluxes in heart cells may be complex, but myocyte Na+ regulation is functionally important and merits focused attention as in this issue.  相似文献   

19.
In order to test the hypothesis that intracellular Na+ accumulation and cellular Mg2+ deficiency may be involved in the abnormalities in Ca2+ handling and reactivity in spontaneously hypertensive rats (SHR) platelets, the metabolism of Na+, Ca2+ and Mg2+ was determined in fluorescent dye loaded platelets from 15 SHR and 15 Wistar-Kyoto rats (WKY) at 12 weeks of age. Mg2+ leak was estimated as the Mg2+ influx induced by an increase in extracellular [Mg2+] (from 1 to 5 mmol/l) and Mg2+/Na+ exchange activity was estimated as the Mg2+ influx induced by a decrease in extracellular [Na+] (from 140 to 50 mmol/l). Cellular metabolism of the fluorescent dye was similar in the two groups. Mean platelet [Ca2+]i was significantly increased under basal and thrombin (0.1 U/ml)-stimulated conditions in SHR compared to WKY, both in the presence and absence of extracellular Ca2+. Mean Ca2+ discharge capacity was similar between the two groups. There was no difference in mean [Na+]i between the two groups. Basal [Mg2+]i was also increased in SHR platelets. Mg2+ leak was higher in SHR than in WKY, while Mg2+/Na+ exchange activity was similar in the two groups. There was no difference in serum Mg2+ concentration between SHR and WKY. These data suggest that abnormal Ca2+ handling is accompanied by elevation in [Mg2+]i via increased permeability of platelet cell membranes to Mg2+ in SHR without any alteration in [Na+]i, and do not support the Mg2+ deficiency hypothesis in genetically hypertensive rats.  相似文献   

20.
OBJECTIVE: The presence of both alpha1- and alpha2-isoforms of the Na+/K+-ATPase (NKA) in cardiomyocytes indicates different functions. We hypothesized that preferential localization of the alpha2-isoform to the t-tubules, locally controlling the Na+/Ca2+-exchanger (NCX), underlies a specific role in Ca2+ handling. METHODS: We studied NKA isoform distribution in isolated cardiomyocytes from Wistar rats using immunocytochemistry. NKA pump and NCX currents (I(pump) and I(NCX)) were measured in control and detubulated cardiomyocytes. Intracellular Na+ concentration [Na+]i was assessed with the fluorescent dye SBFI. RESULTS: The alpha2-isoform abundance was higher in the t-tubules than in the surface sarcolemma. We established that 0.3 microM ouabain specifically blocked the alpha2-isoform in isolated rat cardiomyocytes. This low concentration blocked 10.7+/-0.6% of I(pump) in control, but only 6.0+/-0.5% in detubulated cardiomyocytes. Moreover, measured and calculated alpha1-specific and alpha2-specific I(pump) in control (547+/-29 pA and 66 pA, respectively) and in detubulated cells (495+/-30 pA and 31 pA, respectively) showed that 53% of the alpha2-isoform, but only 9.5% of the alpha1-isoform, were localized to the t-tubules. Despite the small abundance of the alpha2-isoform (approximately 11% of total NKA), selective inhibition of this isoform induced a 40% increase in contractility in field stimulated cardiomyocytes, but no increase in global [Na+]i. However, inhibition of the alpha2-isoform increased I(NCX) indicating local subsarcolemmal accumulation of Na+ near NCX. CONCLUSIONS: The alpha2-isoform of the NKA is functionally coupled to the NCX and can regulate Ca2+ handling without changing global [Na+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号