首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Regulation of YKL-40 production by human articular chondrocytes   总被引:6,自引:0,他引:6  
OBJECTIVE: YKL-40 (human cartilage glycoprotein 39) is one of the most abundant proteins secreted by cultured chondrocytes. The objectives of the present study were to identify regulators of YKL-40 production in cartilage and chondrocytes and to map the localization of YKL-40 in chondrocytes. METHODS: Human articular chondrocytes and cartilage explants (obtained from subjects at autopsy, from a tissue bank, and from osteoarthritis [OA] patients undergoing total joint replacement surgery) were stimulated with cytokines, growth factors, and other agents. YKL-40 expression was analyzed by Northern blot and polymerase chain reaction. YKL-40 secretion into the media was determined by enzyme-linked immunosorbent assay. RESULTS: YKL-40 production increased to very high levels during the early phase of chondrocyte monolayer culture and in normal cartilage explant cultures as a response to tissue injury. Spontaneous YKL-40 release was higher in OA than in normal cartilage explant cultures. In chondrocyte monolayer cultures, interleukin-1beta (IL-1beta) and transforming growth factor beta (TGFbeta) decreased the levels of secreted YKL-40, and this was associated with a reduction in YKL-40 messenger RNA levels. IL-1beta, but not TGFbeta, reduced YKL-40 production in cartilage explant cultures. Media from explants treated with cycloheximide had no detectable YKL-40, suggesting that the released protein was newly synthesized. Immunofluorescence microscopy showed YKL-40 staining in the Golgi system of the chondrocytes, but YKL-40 could not be detected in the extracellular matrix. CONCLUSION: The spontaneous increase in the production of YKL-40 in the early phase of culture appears to represent a cellular response to changes in the extracellular matrix environment. This, coupled with the profound suppressive effects of IL-1beta and TGFbeta on YKL-40 production, identifies a novel regulatory pattern for this major chondrocyte-derived protein.  相似文献   

2.
3.
OBJECTIVE: Bone morphogenetic protein (BMP) and transforming growth factor beta (TGFbeta) are potent anabolic factors in adult articular chondrocytes. In this study, we investigated whether intracellular inhibitors of BMP and TGFbeta signaling, inhibitory Smad6 (I-Smad6) and I-Smad7, are expressed in articular chondrocytes in normal and osteoarthritic (OA) cartilage, and whether their expression shows a correlation with the anabolic activity of OA chondrocytes in vivo and after interleukin-1beta (IL-1beta) stimulation in vitro. METHODS: RNA isolated directly from normal and OA human knee cartilage as well as from cultured articular chondrocytes was analyzed by (quantitative) polymerase chain reaction technology. Immunolocalization of the I-Smads was performed on tissue sections and compared with the anabolic cellular activity as documented by in situ hybridization experiments for aggrecan and type II collagen. RESULTS: Both Smad6 and Smad7 were expressed in all samples of normal and OA cartilage. Immunostaining (including confocal microscopy) confirmed the presence of Smad6 and Smad7 in the majority of normal and degenerated articular chondrocytes; localization was mostly cytoplasmic. No correlation between expression of the main anabolic genes and expression of the I-Smads was found. In cultured articular chondrocytes, stimulation with IL-1beta showed up-regulation of Smad7, whereas Smad6 was down-regulated. CONCLUSION: Both Smad6 and Smad7 are expressed in adult human articular chondrocytes. The primarily cytoplasmic localization suggests permanent activation of the I-Smads in articular cartilage in vivo. No evidence was found that up-regulation or down-regulation of I-Smads in OA cartilage correlates directly with the anabolic (or catabolic) activity of articular chondrocytes. The regulation in chondrocytes of Smad6 and Smad7 expression by IL-1beta suggests a potentially important role of IL-1beta signaling in chondrocytes, via indirect influencing of the BMP/TGFbeta signaling cascade.  相似文献   

4.
5.
OBJECTIVE: Aging and osteoarthritic (OA) cartilage commonly demonstrate enhanced expression of the large, transforming growth factor beta (TGFbeta)-inducible glycoprotein cartilage intermediate-layer protein (CILP) as well as enhanced extracellular inorganic pyrophosphate (PPi) that promotes the deposition of calcium pyrophosphate dihydrate crystals. In normal chondrocytes, TGFbeta induces elevated chondrocyte extracellular PPi. Insulin-like growth factor 1 (IGF-1) normally blocks this response and reduces extracellular PPi. However, chondrocyte resistance to IGF-1 is observed in OA and aging. Because CILP was reported to chromatographically fractionate with PPi-generating nucleotide pyrophosphatase phosphodiesterase (NPP) activity, it has been broadly assumed that CILP itself has NPP activity. Our objective was to directly define CILP functions and their relationship to IGF-1 in chondrocytes. METHODS: Using primary cultures of articular chondrocytes from the knee, we defined the function of the previously described CILP (CILP-1) and of a recently described 50.6% identical protein that we designated the CILP-2 isoform. RESULTS: Both CILP isoforms were constitutively expressed by primary cultured articular chondrocytes, but only CILP-1 expression was detectable in cultured knee meniscal cartilage cells. Neither CILP isoform had intrinsic NPP activity. But CILP-1 blocked the ability of IGF-1 to decrease extracellular PPi, an activity specific for the CILP-1 N-terminal domain. The CILP-1 N-terminal domain also suppressed IGF-1-induced (but not TGFbeta-induced) proliferation and sulfated proteoglycan synthesis, and it inhibited ligand-induced IGF-1 receptor autophosphorylation. CONCLUSION: Two CILP isoforms are differentially expressed by chondrocytes. Neither CILP isoform exhibits PPi-generating NPP activity. But, increased expression of CILP-1, via N-terminal domain-mediated inhibitory effects of CILP-1 on chondrocyte IGF-1 responsiveness, could impair chondrocyte growth and matrix repair and indirectly promote PPi supersaturation in aging and OA cartilage.  相似文献   

6.
7.
OBJECTIVE: Articular chondrocyte senescence is responsible, at least in part, for the increased incidence of osteoarthritis (OA) with increased age. Recently, it was suggested that caveolin 1, a 21-24-kd membrane protein, participates in premature cellular senescence. Caveolin 1 is the principal structural component of caveolae, vesicular invaginations of the plasma membrane. This study was undertaken to investigate whether the catabolic factors oxidative stress and interleukin-1beta (IL-1beta) induce features of premature senescence of articular chondrocytes through up-regulation of caveolin 1 expression. METHODS: Caveolin 1 expression was investigated in human OA cartilage by real-time polymerase chain reaction and in rat OA cartilage by immunohistologic analysis. We studied whether IL-1beta and H2O2 induce caveolin 1 expression in OA chondrocytes and analyzed the relationship between cellular senescent phenotypes and caveolin 1 expression in human chondrocytes. RESULTS: In human and rat OA articular cartilage, caveolin 1 positivity was associated with cartilage degeneration. Both IL-1beta and H2O2 up-regulated caveolin 1 messenger RNA and protein levels, and both treatments induced marked expression of senescent phenotypes: altered cellular morphology, cell growth arrest, telomere erosion, and specific senescence-associated beta-galactosidase activity. Caveolin 1 overexpression induced p38 MAPK activation and impaired the ability of chondrocytes to produce type II collagen and aggrecan. In contrast, down-regulation of caveolin 1 with antisense oligonucleotide significantly inhibited the features of chondrocyte senescence induced by catabolic factors. Caveolin 1 induction and stresses with both IL-1beta and H2O2 up-regulated p53 and p21 and down-regulated phosphorylated retinoblastoma (Rb), suggesting that the p53/p21/Rb phosphorylation pathway, as well as prolonged p38 MAPK activation, may mediate the features of chondrocyte senescence induced by stress. CONCLUSION: Our findings suggest that IL-1beta and oxidative stress induce features of premature senescence in OA chondrocytes, mediated, at least in part, by stress-induced caveolin 1 expression. This indicates that caveolin 1 plays a role in the pathogenesis of OA via promotion of chondrocyte down-regulation.  相似文献   

8.
9.
OBJECTIVE: To correlate the increased collagenase production previously seen in chondrocytes isolated from osteoarthritic (OA) lesions and the expression of cytokines and cytokine receptors. METHODS: Chondrocytes were isolated from OA cartilage and characterized for synthesis of collagenases, cytokines, and cytokine receptors by Northern and Western blot analyses, RNA protection assay, and flow cytometry. RESULTS: Chondrocytes located in cartilage proximal to the macroscopic OA lesions bound more tumor necrosis factor alpha (TNFalpha) and interleukin-1beta (IL-1beta) compared with chondrocytes isolated from morphologically normal cartilage from the same joint. In response to TNFalpha stimulation, messenger RNA (mRNA) levels for the IL-1 receptor I (IL-1RI), IL-1RII, TNF receptor II (TNFR II), and IL-6 receptor as well as the level of proinflammatory cytokines, such as IL-1alpha, IL-1beta, lymphotoxin beta, TNFalpha, and IL-6, also increased. In contrast, treatment with transforming growth factor beta1 (TGFbeta1) resulted in down-regulation of matrix metalloproteinase 1 (MMP-1) and MMP-13 concomitant with a reduction in the levels of mRNA for IL-1RI, IL-1RII, TNFRI, and TNFRII and proinflammatory cytokine levels. In contrast, the levels of mRNA for TGFbeta receptor I, TGFbeta1, and TGFbeta3 were up-regulated. CONCLUSION: These data show that TGFbeta1 has antagonistic effects upon OA chondrocytes, in contrast to the effects seen with TNFalpha. The cyclical course of OA, where a period of active disease is followed by a period of remission, can be explained by a sequential pattern of cytokine stimulation followed by a feedback inhibition of autocrine cytokine production and cytokine receptor expression, thus affecting collagenase synthesis.  相似文献   

10.
11.
OBJECTIVE: Treatment of normal cartilage with transforming growth factor beta (TGFbeta) can increase the synthesis of collagenase 3 by chondrocytes and mimic the in situ distribution of this enzyme in osteoarthritic (OA) cartilage, which occurs predominantly in the deep zone. In this study, we examined the elements of the TGFbeta system that are potentially relevant to this effect. METHODS: TGFbeta1 and TGFbeta2 levels in cultured cartilage explants were determined by enzyme-linked immunosorbent assay (ELISA). OA cartilage explants were treated with small latent TGFbeta1 complex in the presence of various inhibitors, and collagenase 3 levels were determined by ELISA. The inhibitors were against serine proteases, plasmin, cathepsins, furin, and a neutralizing antibody against the mannose-6 phosphate/ insulin-like growth factor 2 receptor (M6P/IGF-2R). Small latent TGFbeta1, TGFbeta receptor types I, II, and III (TGFbetaRI, RII, and RIII), M6P/IGF-2R, and furin were immunolocalized in cartilage. RESULTS: Our data showed that latent TGFbeta1 is the major isoform that is synthesized; levels of 17.2 +/-1.7 pg/mg and 1.1 +/- 0.3 pg/mg tissue wet weight (mean +/- SEM) were found for total TGFbeta1 and TGFbeta2, respectively, in OA cartilage. A general serine protease inhibitor abrogated activation of both endogenous and exogenous small latent TGFbeta1. Plasmin and furin inhibitors and anti-M6P/IGF-2R reduced the levels of exogenous small latent TGFbeta1 complex-induced collagenase 3 by 33%, 95%, and 76%, respectively, but the cathepsin inhibitor had no effect. Immunolocalization of the small latent TGFbeta1 complex as well as of TGFbetaRI and RII revealed a statistically significant increase in the chondrocyte score in only the deep zone of OA cartilage. The M6P/IGF-2R level was significantly higher in OA cartilage in both the superficial and deep zones. Furin was found in normal cartilage exclusively in the superficial zone, whereas in OA cartilage, a level similar to that in normal cartilage was found in the superficial zone, but a significantly higher cell score (mean +/- SEM 23.6 +/- 4.7%) was registered in the deep zone. CONCLUSION: The mechanisms of TGFbeta activation/ activity with regard to collagenase 3 modulation in cartilage appear to be controlled by furin convertase with or without M6P/IGF-2R. These factors and the small latent TGFbeta complex are increased in the deep zone of OA cartilage, corresponding to the preferential site of collagenase 3 production.  相似文献   

12.
13.
OBJECTIVE--To localise the cysteine endopeptidase cathepsin B in chondrocytes and cartilage from normal and osteoarthritic (OA) human femoral heads in order to provide qualitative information on its cellular expression and distribution at possible sites of action. METHODS--OA articular cartilage was obtained at surgery for total hip replacement; control cartilage was obtained at postmortem. Chondrocytes were isolated by sequential enzymatic digestion and cathepsin B analysed by immunocytochemistry and activity staining with a fluorogenic substrate. Lysosomes were visualised by fluorescence microscopy after staining of living cells with acridine orange. Using a histochemical reaction, enzyme activity was measured in cryosections of full thickness cartilage. RESULTS--Chondrocytes from normal cartilage contained very few lysosomes and only a minor cell population was cathepsin B positive. A high proportion of chondrocytes from active OA cartilage contained a large number of lysosomes and an excess of cathepsin B in intracellular organelles; the enzyme was stored in an active form. In this respect, OA chondrocytes closely resembled normal cells that had been phenotypically modulated by serial subcultures. No cathepsin B activity could be detected by histochemistry in either chondrocytes or matrix of normal cartilage. While apparently intact and severely degraded OA cartilage was also cathepsin B negative, tissue at sites of active destruction and, particularly, at repair sites was highly positive. CONCLUSION--The presence and the particular distribution of active cathepsin B in OA cartilage at 'more involved' sites suggest a pathological role for this enzyme in sustaining and perpetuating cartilage degradation. While other stimuli may also be responsible for cathepsin B expression in OA chondrocytes, the similarity with artificially modulated cells indicates fibroblastic metaplasia as a plausible mechanism.  相似文献   

14.
OBJECTIVE: The proinflammatory chemokine interleukin-8 (IL-8) induces chondrocyte hypertrophy. Moreover, chondrocyte hypertrophy develops in situ in osteoarthritic (OA) articular cartilage and promotes dysregulated matrix repair and calcification. Growth plate chondrocyte hypertrophy is associated with expression of the type III sodium-dependent inorganic phosphate (Pi) cotransporter phosphate transporter/retrovirus receptor 1 (PiT-1). This study was undertaken to test the hypothesis that IL-8 promotes chondrocyte hypertrophy by modulating chondrocyte PiT-1 expression and sodium-dependent Pi uptake, and to assess differential roles in this activity. METHODS: The selective IL-8 receptor CXCR1 and the promiscuous chemokine receptor CXCR2 were used. Human knee OA cartilage, cultured normal bovine knee chondrocytes, and immortalized human articular chondrocytic CH-8 cells were transfected with CXCR1/CXCR2 chimeric receptors in which the 40-amino acid C-terminal cytosolic tail domains were swapped and site mutants of a CXCR1-specific region were generated. RESULTS: Up-regulated PiT-1 expression was detected in OA cartilage. IL-8, but not IL-1 or the CXCR2 ligand growth-related oncogene alpha, induced PiT-1 expression and increased sodium-dependent Pi uptake by >40% in chondrocytes. The sodium/phosphate cotransport inhibitor phosphonoformic acid blocked IL-8-induced chondrocyte hypertrophic differentiation. Signaling mediated by kinase Pyk-2 was essential for IL-8 induction of PitT-1 expression and Pi uptake. Signaling through the TSYT(346-349) region of the CXCR1 cytosolic tail, a region divergent from the CXCR2 cytosolic tail, was essential for IL-8 to induce Pi uptake. CONCLUSION: Our results link low-grade IL-8-mediated cartilaginous inflammation in OA to altered chondrocyte differentiation and disease progression through PiT-1 expression and sodium-dependent Pi uptake mediated by CXCR1 signaling.  相似文献   

15.
16.
OBJECTIVE: To examine by immunohistochemistry the relative distributions of 6 matrix metalloproteinases (MMPs 1, 2, 3, 8, 9, and 13) and the 2 proinflammatory cytokines interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) in osteoarthritic (OA) cartilage compared with normal, age-matched articular cartilage. METHODS: Articular cartilage samples were obtained from the tibial plateau of OA knees removed at arthroplasty and from normal, nonarthritic, knees obtained at autopsy. Specimens were promptly fixed in Carnoy's fixative, processed, embedded in paraffin, sectioned, and examined by immunohistochemistry for MMP and cytokine production. In addition, human articular chondrocytes (HAC) were treated in vitro with either IL-1beta, TNFalpha, or phorbol myristate acetate (PMA) to assess their potential to produce each of the MMPs, as determined by Western blotting and gelatin zymography. RESULTS: Immunodetection of the collagenases (MMPs 1, 8, and 13) and stromelysin 1 (MMP-3) was demonstrated in a proportion of chondrocytes in the superficial zone of almost all of the OA specimens that had degenerative matrix changes. The gelatinases (MMPs 2 and 9) were also demonstrated by immunohistochemistry but were not so prominent. IL-1beta- and TNFalpha-positive chondrocytes were also observed in a proportion of cells in the superficial zones of OA specimens. Much less immunostaining for MMPs and cytokines was observed in the deep zone of all OA specimens, where the cartilage matrix and chondrocyte morphology appeared normal. In contrast, full-thickness normal cartilage specimens showed virtually no immunostaining for these MMPs or cytokines. Confirmation that chondrocytes can produce these 6 MMPs was obtained from HAC cultures treated with either IL-1beta, TNFalpha, or PMA; conditioned medium from activated HAC contained all the MMPs demonstrated by immunohistochemistry. Dual immunolocalization studies of OA cartilage specimens demonstrated the coexpression of IL-1 with MMP-8 by individual chondrocytes in situ. CONCLUSION: These results indicate that the superficial zone of OA cartilage specimens, which is characterized by fibrillations, chondrocyte clusters, and degenerative matrix changes, contains a variable proportion of cells that immunostain for IL-1beta, TNFalpha, and 6 different MMPs. These observations support the concept that cytokine-MMP associations reflect a modified chondrocyte phenotype and an intrinsic process of cartilage degradation in OA.  相似文献   

17.
18.
19.
A role for chemokines in the induction of chondrocyte phenotype modulation   总被引:2,自引:0,他引:2  
OBJECTIVE: To extend the study of the chemokine receptor repertoire on human chondrocytes to receptors with reported housekeeping functions (CXCR3, CXCR4, CXCR5, and CCR6) and to evaluate whether ligands of these receptors play a role in chondrocyte phenotype modulation and proliferation. METHODS: Chemokine receptor expression was determined by flow cytometry. Subcultures of chondrocytes were collected and fixed at confluence or during the exponential phase of growth and analyzed for chemokine receptor modulation. The effects of chemokines on isolated cells as well as chondrocytes cultured within an intact extracellular matrix were investigated. Isolated human chondrocytes were stimulated with 100 nM chemokines (monokine induced by interferon-gamma, stromal cell-derived factor 1alpha [SDF-1alpha], B cell-attracting chemokine 1 [BCA-1], or macrophage inflammatory protein 3alpha), and conditioned media were assessed for matrix-degrading enzyme contents (matrix metalloproteinases [MMPs] 1, 3, and 13, and N-acetyl-beta-D-glucosaminidase [NAG]). Cell proliferation and phenotype modulation were evaluated by bromodeoxyuridine incorporation and cathepsin B production. Induction of cell proliferation was assessed in cartilage explants by immunodetection of the proliferation-associated antigen S100A4. RESULTS: CXCR3, CXCR4, CXCR5, and CCR6 were detected on human chondrocytes. CXCR3 and CXCR4 expression was increased in exponentially growing chondrocyte subcultures. Ligands of all receptors enhanced the release of MMPs 1, 3, and 13. Release of NAG and cathepsin B was significantly higher in chemokine-stimulated cultures than in unstimulated cultures. SDF-1alpha and BCA-1 also induced DNA synthesis and chondrocyte proliferation, as was shown by the up-regulation of S100A4 in cartilage explants as well. CONCLUSION: Our findings extend the repertoire of functional responses elicited by the activity of chemokines on chondrocytes and open new avenues in our understanding of the control of chondrocyte differentiation status by chemokines and their receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号