首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prion diseases are fatal neurodegenerative disorders that affect both humans and animals. The rapid clinical progression, change in protein conformation, cross-species transmission and massive neuronal degeneration are some key features of this devastating degenerative condition. Although the etiology is unknown, aberrant processing of cellular prion proteins is well established in the pathogenesis of prion diseases. Normal cellular prion protein (PrP(c)) is highly conserved in mammals and expressed predominantly in the brain. Nevertheless, the exact function of the normal prion protein in the CNS has not been fully elucidated. Prion proteins may function as a metal binding protein because divalent cations such as copper, zinc and manganese can bind to octapeptide repeat sequences in the N-terminus of PrP(c). Since the binding of these metals to the octapeptide has been proposed to influence both structural and functional properties of prion proteins, alterations in transition metal levels can alter the course of the disease. Furthermore, cellular antioxidant capacity is significantly compromised due to conversion of the normal prion protein (PrP(c)) to an abnormal scrapie prion (PrP(sc)) protein, suggesting that oxidative stress may play a role in the neurodegenerative process of prion diseases. The combination of imbalances in cellular transition metals and increased oxidative stress could further exacerbate the neurotoxic effect of PrP(sc). This review includes an overview of the structure and function of prion proteins, followed by the role of metals such as copper, manganese and iron in the physiological function of the PrP(c), and the possible role of transition metals in the pathogenesis of the prion disease.  相似文献   

2.
Cell models for prion diseases are mainly of neuronal origin. However, the pathological isoform PrP(Sc) of cellular prion protein (PrP(c)) and prion infectivity are found in a variety of extraneural tissues in prion diseases. Although many cell types are not able to propagate PrP(Sc), little is known about cellular mechanism counteracting prion infection. It is desirable to identify neuronal or non-neuronal cell models that restrict PrP(Sc) generation or propagate PrP(Sc) only transiently. Neuroendocrine cells are derived from tumours forming the interface between endocrine and nervous system. We investigated the susceptibility of such murine cell lines to prion infection, which were in principle able to transiently propagate PrP(Sc). Surprisingly and in contrast to neuronal cells prion infection was abrogated by rapid and PrP(Sc)-specific down-regulation of PrP(c) expression upon exposure to prion-infected material. Cell lines described here provide novel models for studying PrP(c) regulation and intrinsic cellular defence mechanisms upon prion exposure.  相似文献   

3.
Prion diseases are transmissible neurodegenerative disorders that are invariably fatal in humans and animals. Although the nature of the infectious agent and pathogenic mechanisms of prion diseases are not clear, it has been reported that prion diseases may be associated with aberrant metabolism of cellular prion protein (PrP(C)). In various reports, it has been postulated that PrP(C) may be involved in one or more of the following: neurotransmitter metabolism, cell adhesion, signal transduction, copper metabolism, antioxidant activity or programmed cell death. Despite suggestive results supporting each of these mechanisms, the physiological function(s) of PrP(C) is not known. To investigate whether PrP(C) can prevent apoptotic cell death in prion diseases, we established the cell lines stably expressing PrP(C) from PrP knockout (PrP(-/-)) neuronal cells and examined the role of PrP(C) under apoptosis and/or serum-deprived condition. We found that PrP(-/-) cells were vulnerable to apoptotic cell death and that this vulnerability was rescued by the expression of PrP(C). The expression levels of apoptosis-related proteins including p53, Bax, caspase-3, poly(ADP-ribose) polymerase (PARP) and cytochrome c were significantly increased in PrP(-/-) cells. In addition, Ca(2+) levels of mitochondria were increased, whereas mitochondrial membrane potentials were decreased in PrP(-/-) cells. These results strongly suggest that PrP(C) may play a central role as an effective anti-apoptotic protein through caspase-dependent apoptotic pathways in mitochondria, supporting the concept that disruption of PrP(C) and consequent reduction of anti-apoptotic capacity of PrP(C) may be one of the pathogenic mechanisms of prion diseases.  相似文献   

4.
Prion diseases of humans and animals occur following infection with infectious agents containing PrP(Sc) or in situations in which there is a mutation of the prion protein (PrP) gene. The cellular prion protein (PrP(C)) is a sialoglycoprotein that is expressed predominantly in neurons. PrP(C) is converted into a pathogenic form of PrP (PrP(Sc)), which is distinguishable from PrP(C) by its relative resistance to protease digestion. A number of postulates have been advanced for the function of normal PrP (PrP(C)), but this issue has not been resolved. To investigate the function(s) of PrP(C), we established clonal PC12 cell lines, which have elevated PrP(C) expression. The results show that there were alterations in dopamine metabolism and in monoamine oxidase (MAO) activity in transfected PC12 cells that overexpress PrP(C). There was an increase in concentration of DOPAC, a metabolite of dopamine, and in MAO activity in cells overexpressing PrP(C). MAO is involved in oxidative degradation of dopamine (DA). Our data suggest that PrP(C) plays a role in DA metabolism by regulating MAO activity.  相似文献   

5.
Transmissible spongiform encephalopathies are characterised by the transformation of the normal cellular prion protein (PrP(C)) into an abnormal isoform (PrP(TSE)). Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor antagonists can inhibit glutathione depletion and neurotoxicity induced by PrP(TSE) and a toxic prion protein peptide, PrP106-126, in vitro. NMDA receptor activation is known to increase intracellular accumulation of Ca(2+), resulting in up-regulation of arachidonic acid (AA) metabolism. This can stimulate the lipoxygenase pathways that may generate a number of potentially neurotoxic metabolites. Because of the putative relationship between AA breakdown and PrP106-126 neurotoxicity, we investigated AA metabolism in primary cerebellar granule neuron cultures treated with PrP106-126. Our studies revealed that PrP106-126 exposure for 30 min significantly up-regulated AA release from cerebellar granule neurons. PrP106-126 neurotoxicity was mediated through the 5-lipoxygenase (5-LOX) pathway, as shown by abrogation of neuronal death with the 5-LOX inhibitors quinacrine, nordihydroguaiaretic acid, and caffeic acid. These inhibitors also prevented PrP106-126-induced caspase 3 activation and annexin V binding, indicating a central role for the 5-LOX pathway in PrP106-126-mediated proapoptosis. Interestingly, inhibitors of the 12-lipoxygenase pathway had no effect on PrP106-126 neurotoxicity or proapoptosis. These studies clearly demonstrate that AA metabolism through the 5-LOX pathway is an important early event in PrP106-126 neurotoxicity and consequently may have a critical role in PrP(TSE)-mediated cell loss in vivo. If this is so, therapeutic intervention with 5-LOX inhibitors may prove beneficial in the treatment of prion disorders.  相似文献   

6.
The cellular prion protein (PrP(C)) is a highly conserved glycoprotein of unknown biological function. To gain insight into the physiological role of PrP(C), we generated a novel PrP knockout cell line, named PrP(o/o) ML, by immortalization of neuroepithelial precursor cells derived from the cerebellum of PrP-knockout mice using the temperature-sensitive simian virus 40 (SV40) large T antigen. We demonstrated that the PrP(o/o) ML cell line is a unipotent precursor line with glutamatergic properties, which can acquire neuronal features when cultivated under specific conditions. The role of the prion protein in the process of neuronal differentiation was then analyzed in the PrP(o/o) ML cells reconstituted with either the full-length or an amino-terminally deleted form of the prion protein. We show that the expression of PrP(C) facilitates the processes of neuronal differentiation and neuritogenesis and that the deletion of its amino-terminal domain reduces the efficiency, but does not suppress this activity. This cell line represents a useful tool for studying PrP-dependent signal transduction pathways during differentiation of neuronal stem/precursor cells.  相似文献   

7.
Summary Amyloid plaques in Creutzfeldt-Jakob discase, kuru, and Gerstmann-Sträussler-Scheinker syndrome are known to contain an abnormal isoform of a cellular protein, the prion protein (PrP). The prion protein in its normal cellular isoform is a membranebound glycoprotein of unknown function. The mechanisms causing a modification of PrP and accumulation in amyloid plaques are unknown. Here we present a case of Creutzfeldt-Jakob disease with widespread deposition of immunohistochemically labeled PrP in the internal granular layer of the cerebellum. Immunohistochemically labeled PrP was deposited in delicate granules, which often were associated with cellular processes or the cytoplams of undefined cells, or diffusely deposited in the neuropil.Supported by research grants from the Wilhelm-Sander-Stiftung (89.036.1) and the Friedrich-Baur-Stiftung (H. Kretzschmar)  相似文献   

8.
9.
Prion diseases are probably caused by an abnormal form of a cellular glycoprotein, the prion protein. Recent evidence suggests that the prion strain causing BSE has been transmitted to humans, thereby provoking a variant form of Creutzfeldt-Jacob disease. In this work, we analyzed the behavior of normal and malformed isoforms of the bovine PrP in transfected mammalian cell lines. Biochemical and immunocytochemical assays were complimented with imaging of live cells expressing fusion constructs between PrP and GFP. Bovine homologues of human E200K and D178N (129M) mutations were used as models of pathogenic isoforms. We show that the GFP does not impair the metabolism of native and mutant bPrPs and is thus a valid marker of PrP cellular distribution. We also show that each amino acid replacement provokes alterations in the cell sorting and processing of bPrP. These are different from those ascribed to both murine mutant homologues. However, human and bovine PrPs carrying the D178N genotype had similar cellular behavior.  相似文献   

10.
Prion diseases are rare fatal neurodegenerative disorders that may either occur sporadically, or be inherited or infectiously acquired in humans. Irrespective of etiology, they can be transmitted to other individuals, this fact being responsible for the public attention prion diseases have received especially since the nineteen nineties, when a new variant of Creutzfeldt-Jakob disease linked to the consumption of prion contaminated beef occurred for the first time in Great Britain. The infectious particle, termed prion, is presumably composed exclusively of a misfolded, partially protease-resistant conformer (PrP(Sc)) of a normal cell surface protein, the cellular prion protein (PrP(C)). The pathogenesis of prion diseases comprises entry, spread, and amplification of infectivity in the body periphery in infectiously acquired forms, as well as mechanisms of neuronal cell death in the central nervous system in all disease subtypes. Most experimental therapeutic approaches are either targeted to PrP(C) or PrP(Sc), or to the process of conversion from PrP(C) to PrP(Sc). Neuroprotective strategies aiming at an interruption of central nervous system pathogenesis have also been tested, albeit with only moderate success. In this review, we discuss actual and potential drug targets in the context of the pathogenic mechanisms of prion diseases.  相似文献   

11.
Although familial prion disorders are a direct consequence of mutations in the prion protein gene, the underlying mechanisms leading to neurodegeneration remain unclear. Potential pathogenic mechanisms include abnormal cellular metabolism of the mutant prion protein (PrP(M)), or destabilization of PrP(M) structure inducing a change in its conformation to the pathogenic PrP-scrapie (PrP(Sc)) form. To further clarify these mechanisms, we investigated the biogenesis of mutant PrP V203I and E211Q associated with Creutzfeldt-Jakob disease, and PrP Q212P associated with Gerstmann-Straussler-Scheinker syndrome in neuroblastoma cells. We report that all three PrP(M) forms accumulate similarly in the cytosol in response to proteasomal inhibition, and finally assemble as classical aggresomes. Since the three PrP(M) forms tested in this report are distinct, we propose that sequestration of misfolded PrP(M) into aggresomes is likely a general response of the cellular quality control that is not specific to a particular mutation in PrP. Moreover, since PrP has the remarkable ability to refold into PrP(Sc) that can subsequently replicate, PrP(M) sequestered in aggresomes may cause neurotoxicity by both direct and indirect pathways; directly through PrP(Sc) aggregates, and indirectly by depleting normal PrP, through induction of a cellular stress response, or by other undefined pathways. On the other hand, sequestered PrP(M) may be relatively inert, and cellular toxicity may be mediated by early intermediates in aggresome formation. Taken together, these observations demonstrate the role of proteasomes in the pathogenesis of familial prion disorders, and argue for further explanation of its mechanistic details.  相似文献   

12.
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrP(C)). Although the exact function of PrP(C) has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrP(C) protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC(50)=428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases.  相似文献   

13.
Prion diseases are fatal neurodegenerative disorders with no effective therapy. A hallmark of prion disease is the conversion of the normal cellular form of prion protein PrP(C) into a disease-associated isoform PrP(Sc). The authors recently have shown that a tyrosine kinase inhibitor, imatinib mesylate, induces clearance of PrP(Sc) via specific inhibition of c-Abl in prion-infected cell culture models. In this study, the authors assessed the in vivo effects of imatinib mesylate on prion disease using a scrapie-infected mouse model and further investigated prion infectivity of the drug-treated scrapie-infected neuroblastoma (ScN2a) cells. The authors found that imatinib mesylate abolished prion infectivity to almost undetectable level in ScN2a cells and the level of PrP(Sc) was significantly decreased by the drug in scrapie-infected mouse spleens as well as in ScN2a cells. Moreover, the drug treatment at an early phase of peripheral scrapie infection delayed the appearance of PrP(Sc) in the central nervous system (CNS) and onset of clinical disease in mice. However, neither intraperitoneal nor intracerebroventricular delivery of the drug exerted any PrP(Sc) clearance effect in the CNS.  相似文献   

14.
The biological role of the scrapie isoform of prion protein (PrP(Sc)) as an infectious agent in numerous human and non-human disorders of the central nervous system is well established. In contrast, and despite decades of intensive research, the physiological function of the endogenous cellular form of the prion protein (PrP(C)) remains elusive. In mammals, the ubiquitous expression of PrP(C) suggests biological functions other than its pathological role in propagating the accumulation of its misfolded isotype. Other functions that have been attributed to PrP(C) include signal transduction, synaptic transmission and protection against cell death through the apoptotic pathway. More recently, immunoregulatory properties of PrP(C) have been reported. We review accumulating in vitro and in vivo evidence regarding physiological functions of PrP(C).  相似文献   

15.
The normal cellular prion protein (PrP(C)) plays an essential role in the development of prion diseases. Indirect evidence has suggested that different PrP(C) glycoforms may be expressed in different brain regions and perform distinct functions. However, due to a lack of monoclonal antibodies (Mabs) that are specific for mouse PrP(C), the expression of PrP(C) in the mouse brain has not been studied in great detail. We used Mabs specific for either the N-terminus or the C-terminus of the mouse PrP(C) to study its expression in the mouse brain by immunoblotting and immunohistochemistry. Immunoblotting studies demonstrated that the expression of PrP(C) differed quantitatively as well as qualitatively in different regions of the brain. The anti-C-terminus Mabs reacted with all three molecular weight bands of PrP(C); the anti-N-terminus Mabs only reacted with the 39-42 kDa PrP(C). The results from immunohistochemical staining revealed the spatial distribution of PrP(C) in the mouse brain, which were consistent with that from immunoblotting. Although expression of PrP(C) has been reported to be required for long-term survival of Purkinje cells, we were unable to detect PrP(C) in the Purkinje cell layer in the cerebellum with multiple anti-PrP Mabs. Our findings suggest that PrP(C) variants, i.e. various glycoforms and truncated forms, might be specifically expressed in different regions of mouse brain and might have different functions.  相似文献   

16.
A synthetic peptide corresponding to the 106-126 amyloidogenic region of the cellular human prion protein (PrP(c)) is useful for in vitro study of prion-induced neuronal cell death. The aim of the present work was to examine the implication of the cellular prion protein in the toxicity mechanism induced by PrP 106-126. The effect of PrP 106-126 was investigated both on human neuroblastoma SH-SY5Y cells and on SH-SY5Y overexpressing murine cellular prions (wtPrP). We show by metabolic assay tests and ATP assays that PrP(c) expression does not modulate the toxicity of the prion peptide. Moreover, we investigated the effect of this peptide on an established non neuronal model, rabbit kidney epithelial A74 cells that express a doxycycline-inducible murine PrP(c) gene. We show for the first time that the prion peptide 106-126 does not exert any toxic effect on this cell line in the presence or absence of doxycycline. Our results show that the PrP 106-126-induced cell alteration is independent of PrP(c) expression. Rather, it seems to act via an interaction with lipidic components of the plasma membrane as strengthened by our results showing the differential susceptibility of neuronal and non neuronal cell lines that significantly differ by their membrane fatty acid composition.  相似文献   

17.
Prion encephalopathies include fatal diseases of the central nervous system of men and animals characterized by nerve cell loss, glial proliferation and deposition of amyloid fibrils into the brain. During these diseases a cellular glycoprotein (the prion protein, PrP(C)) is converted, through a not yet completely clear mechanism, in an altered isoform (the prion scrapie, PrP(Sc)) that accumulates within the brain tissue by virtue of its resistance to the intracellular catabolism. PrP(Sc) is believed to be responsible for the neuronal loss that is observed in the prion disease. The PrP 106-126, a synthetic peptide that has been obtained from the amyloidogenic portion of the prion protein, represents a suitable model for studying the pathogenic role of the PrP(Sc), retaining, in vitro, some characteristics of the entire protein, such as the capability to aggregate in fibrils, and the neurotoxicity. In this work we present the results we have recently obtained regarding the action of the PrP 106-126 in different cellular models. We report that the PrP 106-126 induces proliferation of cortical astrocytes, as well as degeneration of primary cultures of cortical neurons or of neuroectodermal stable cell lines (GH(3) cells). In particular, these two opposite effects are mediated by the same attitude of the peptide to interact with the L-type calcium channels: in the astrocytes, the activity of these channels seems to be activated by PrP 106-126, while, in the cortical neurons and in the GH(3) cells, the same treatment causes a blockade of these channels causing a toxic effect.  相似文献   

18.
Update on Creutzfeldt-Jakob disease   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Prion diseases are transmissible fatal neurodegenerative disorders in which infectivity is associated with the accumulation of PrP(Sc), a disease-related isoform of normal cellular prion protein. The recent emergence of variant Creutzfeldt-Jakob disease has led to major public health concerns, and the need for the development of effective treatments. As PrP(Sc) is associated both with pathology and infectivity, therapeutic approaches to date have largely aimed at preventing its accumulation, but this strategy has produced only modest results in animal models. The link between PrP(Sc) and neurotoxicity is unclear, and alternative pathological processes need to be considered. Here we focus on the latest progress in therapeutic strategies and potential mechanisms of prion neurotoxicity. RECENT FINDINGS: Passive immunisation with anti-prion protein antibodies prevents peripheral prion replication and blocks progression to clinical disease in peripherally infected mice. A new approach, in which neuronal cellular prion protein is depleted in mice with established neuroinvasive prion infection, prevents the onset of clinical disease, blocks neuronal cell loss and reverses early spongiform pathology. This dramatic protective effect occurs despite the continued build-up of extraneuronal PrP(Sc) and continued replication of prion infectivity, effectively producing a sub-clinical state. SUMMARY: New insights into the mechanisms of neurotoxicity in prion diseases support the concept that PrP(Sc) itself is not directly neurotoxic. They suggest that neuronal prion propagation results in the production of a toxic intermediate or depletion of a key constituent. Prevention of the formation of such a species rather than PrP(Sc) accumulation itself is a clear target for prion therapeutics.  相似文献   

19.
Effects of oxidative stress on prion protein expression in pc12 cells   总被引:7,自引:0,他引:7  
PC12 cells are known to express the prion protein, a normal cell surface glycoprotein. This protein is upregulated in PC12 cells differentiated with nerve growth factor. A neurotoxic prion protein peptide, PrP106-126, is not toxic to PC12 cells alone. PrP106-126 is toxic to PC12 cells co-cultured with microglia and more so to NGF-differentiated PC12 cells. PC12 cells selected for resistance to either copper toxicity or oxidative stress have higher levels of PrPC expression. Both PC12 variants are more sensitive to the toxicity of PrP106-126. This suggests that PC12 sensitivity to PrP106-126 toxicity is related to prion protein expression and not to a state of high differentiation induced by NGF. Variants of PC12 cells that are more resistant to copper toxicity have higher levels of anti-oxidant enzymes, superoxide dismutase and glutathione peroxidase. Our results suggest that cells expressing higher levels of PrPC have higher resistance to oxidative stress or copper toxicity but are more sensitive to PrP106-126 toxicity. Prion protein expression may be involved in both the metabolism of copper and resistance to oxidative stress. Increased cellular resistance to copper toxicity may be partly related to increased activity of anti-oxidant enzymes.  相似文献   

20.
Prion diseases in humans and animals comprise a group of invariably fatal neurodegenerative diseases characterized by the formation of a pathogenic protein conformer designated PrP(Sc) and infectious particles denoted prions. The cellular prion protein (PrP(C)) has a central role in the pathogenesis of prion disease. First, it is the precursor of PrP(Sc) and infectious prions and second, its expression on neuronal cells is required to mediate toxic effects of prions. To specifically study the role of PrP(C) as a mediator of toxic signaling, we have developed novel cell culture models, including primary neurons prepared from PrP-deficient mice. Using these approaches we have been able to show that PrP(C) can interact with and mediate toxic signaling of various β-sheet-rich conformers of different origins, including amyloid β, suggesting a pathophysiological role of the prion protein beyond prion diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号