首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim: Nestin, an intermediate filament originally identified as a marker of neural progenitor cells, is transiently expressed in endothelial cells and tubuloepithelial cells during kidney development. However, in adult kidneys, podocytes are the only cells that express nestin. In this study, we examined tubulointerstitial nestin expression in human glomerulonephritis. Methods: Renal biopsy specimens obtained from 41 adult patients with immunoglobulin (Ig)A nephropathy were studied. Nestin expression was determined by immunohistochemical staining and estimated by digital image analysis. To identify the phenotype of nestin‐positive cells, a double immunofluorescent study was performed for nestin and CD34 (a marker for endothelial cells) or α‐smooth muscle actin (α‐SMA, a marker for myofibroblasts). Results: In normal kidney, nestin expression was restricted to the podocytes and was not detected in tubular cells and tubulointerstitial cells. In contrast, increased nestin expression was observed at tubulointerstitial areas of IgA nephropathy. The degree of tubulointerstitial nestin expression was positively correlated with tubulointerstitial fibrosis (r = 0.546, P < 0.001). The double immunofluorescent study showed that most nestin‐positive cells in the interstitium were co‐stained with CD34 or α‐SMA, suggesting that peritubular endothelial cells and tubulointerstitial myofibroblasts express nestin during the progression of tubulointerstitial injury. In addition, strong nestin expression was associated with deterioration of renal function. Conclusion: Nestin expression is associated with tubulointerstitial injury and predicts renal prognosis in IgA nephropathy. Nestin could be a new marker for peritubular endothelial cell injury and tubulointerstitial fibrosis.  相似文献   

2.
Hypoxia-inducible factors and kidney vascular development   总被引:3,自引:0,他引:3  
Among the genes strongly induced by hypoxia-inducible factors (HIF) and highly expressed during kidney microvascular development is vascular endothelial growth factor, which encodes a potent endothelial mitogen and chemoattractant critical for embryonic vasculogenesis and angiogenesis. In developing kidney, glomerular podocytes are particularly rich sources of vascular endothelial growth factor, which probably serves to attract endothelial precursors into vascular clefts of immature glomeruli, promote their mitosis and differentiation into glomerular endothelial cells, and assist with maintenance of their highly differentiated state through maturation. This article summarizes the structure, function, and expression of HIF and discusses HIF target genes expressed during kidney vascular development. Furthermore, it is speculated that different HIF heterodimers are stabilized in different cell populations, which may lead to cell-selective induction of HIF target genes important for renal vasculogenesis/angiogenesis.  相似文献   

3.
Nestin is an intermediate filament protein originally identified in neuroepithelial stem cells. This cytoskeletal-associated protein is also expressed in some non-neuronal organs including renal tubular cells and glomerular endothelial cells during kidney development. Little is known, however, about nestin expression in the kidney during injury. In this study, we find nestin expression induced in renal tubular and interstitial myofibroblasts in the adult rat kidney following unilateral ureteral obstruction. The degree of nestin expression was well correlated with the degree of tubulointerstitial fibrosis. Immunohistochemical identification of specific nephron segments showed that nestin was primarily expressed by proximal tubules, partially by distal tubules and thick ascending limbs of Henle but not by collecting ducts. The nestin-positive tubular cells also expressed vimentin and heat-shock protein 47 (HSP47) suggesting these cells reverted to a mesenchymal phenotype. Not all vimentin- or HSP-expressing cells expressed nestin; however, suggesting that nestin is distinct from these conventional mesenchymal markers. Nestin expression was also found associated with phenotypical changes in cultured renal cells induced by hypoxia or transforming growth factor-beta. Nestin expression was located in hypoxic regions of the kidney with an obstructed ureter. Our results indicate that nestin could be a novel marker for tubulointerstitial injury.  相似文献   

4.
足细胞中巢蛋白的表达及其相互作用分子的研究   总被引:5,自引:0,他引:5  
目的 观察细胞骨架蛋白巢蛋白(Nestin)在肾脏足细胞的表达及其在足细胞中的作用方式。方法 免疫组化、免疫荧光、免疫电镜方法检测Nestin在人正常肾组织、体外培养的小鼠足细胞中的表达。免疫共沉淀方法检测足细胞中与巢蛋白相互作用的蛋白分子。结果 在正常肾组织中巢蛋白的表达局限于肾小球。免疫电镜证实巢蛋白主要表达于足细胞胞浆及初级足突,体外培养的足细胞中也可观察到巢蛋白丝状分布于胞浆。免疫共沉淀显示足细胞中Nestin与另两种细胞骨架蛋白波形蛋白(vimentin)、α-internexin相互作用。 结论 巢蛋白除了表达于中枢神经干细胞、胰岛干细胞等之外,在肾脏足细胞中也有表达,并与足细胞中其他细胞骨架蛋白相互作用,共同维持其正常形态和功能。  相似文献   

5.
PDGF-C is a new member of the PDGF-family and has recently been identified as a rat mesangial cell mitogen. Its expression and function in human kidneys is unknown. Localization of PDGF-C protein was analyzed by immunohistochemistry using a rabbit polyclonal antibody directed against the core-domain of PDGF-C in human fetal kidneys (n = 8), normal adult human kidneys (n = 9), and in renal biopsies of patients with IgA nephropathy (IgAN, n = 31), membranous nephropathy (MGN, n = 8), minimal change disease (MC, n = 7), and transplant glomerulopathy (TxG, n = 12). Additionally, PDGF-C mRNA was detected in microdissected glomeruli by real-time RT-PCR in cases of normal adult kidneys (n = 7), IgAN (n = 27), MGN (n = 11), and MC (n = 13). In the fetal kidney, PDGF-C localized to the developing mesangium, ureteric bud epithelium, and the undifferentiated mesenchyme. In the adult kidney, PDGF-C was constitutively expressed in parietal epithelial cells of Bowman's capsule, tubular epithelial cells (loops of Henle, distal tubules, collecting ducts), and in arterial endothelial cells. A marked upregulation of glomerular PDGF-C protein was seen in MGN and TxG with a prominent positivity of virtually all podocytes. In MC, PDGF-C localized to podocytes in a more focal distribution. In MGN, increased glomerular PDGF-C protein expression was due to increased mRNA synthesis as a 4.3-fold increase in PDGF-C mRNA was detected in microdissected glomeruli from MGN compared with normal. PDGF-C protein was additionally expressed in individual mesangial cells in TxG. Finally, upregulated PDGF-C protein expression was detected within sclerosing glomerular and fibrosing tubulointerstitial lesions in individual cases from all analyzed groups. We conclude that PDGF-C is constitutively expressed in the human kidney and is upregulated in podocytes and interstitial cells after injury/activation of these cells.  相似文献   

6.
Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.  相似文献   

7.
Nestin, a marker of multi-lineage stem and progenitor cells, is a member of intermediate filament family, which is expressed in neuroepithelial stem cells, several embryonic cell types, including mesonephric mesenchyme, endothelial cells of developing blood vessels, and in the adult kidney. We used Nestin-green fluorescent protein (GFP) transgenic mice to characterize its expression in normal and post-ischemic kidneys. Nestin-GFP-expressing cells were detected in large clusters within the papilla, along the vasa rectae, and, less prominently, in the glomeruli and juxta-glomerular arterioles. In mice subjected to 30 min bilateral renal ischemia, glomerular, endothelial, and perivascular cells showed increased Nestin expression. In the post-ischemic period, there was an increase in fluorescence intensity with no significant changes in the total number of Nestin-GFP-expressing cells. Time-lapse fluorescence microscopy performed before and after ischemia ruled out the possibility of engraftment by the circulating Nestin-expressing cells, at least within the first 3 h post-ischemia. Incubation of non-perfused kidney sections resulted in a medullary-to-cortical migration of Nestin-GFP-positive cells with the rate of expansion of their front averaging 40 microm/30 min during the first 3 h and was detectable already after 30 min of incubation. Explant matrigel cultures of the kidney and aorta exhibited sprouting angiogenesis with cells co-expressing Nestin and endothelial marker, Tie-2. In conclusion, several lines of circumstantial evidence identify a sub-population of Nestin-expressing cells with the mural cells, which are recruited in the post-ischemic period to migrate from the medulla toward the renal cortex. These migrating Nestin-positive cells may be involved in the process of post-ischemic tissue regeneration.  相似文献   

8.
Infection of podocytes by HIV-1 induces unique changes in phenotype, which contribute to the pathogenesis of glomerular disease in HIV-associated nephropathy (HIVAN). The host genetic pathways altered by HIV-1 infection that are responsible for these phenotypic changes are largely unknown. For identifying such pathways, representational difference analysis was performed comparing cDNA from HIV-1 transgenic podocytes with nontransgenic controls. In this way, a gene named sidekick-1 (sdk-1) was cloned, a transmembrane protein of the Ig superfamily that is highly upregulated in HIV-1 transgenic podocytes. Sdk-1 and its ortholog, sidekick-2 (sdk-2), were recently shown to guide axonal terminals to specific synapses in developing neurons. Their presence and role in other organs, including the kidney, has not been described. The current study demonstrates developmental expression of both sdk-1 and sdk-2 and a tight spatial and temporal regulation of these genes in kidney. During nephrogenesis, sidekick expression was observed first in ureteric bud and ureteric bud-derived tissues in a pattern similar to other genes known to play important roles in branching morphogenesis. In adult murine renal tissue, sidekick proteins were seen in glomeruli at low levels, and expression of sdk-1 was greatly upregulated in diseased HIV-1 transgenic mouse kidneys. In a human HIVAN kidney biopsy, sidekick expression was increased in glomeruli in a pattern consistent with the mouse model. It is proposed that the dysregulation of sdk-1 protein may play an important role in HIVAN pathogenesis.  相似文献   

9.
Studies using adult human islets and mouse embryonic stem cells have suggested that the neurepithelial precursor cell marker nestin also identifies and can be used to purify beta-cell precursors. To determine whether nestin can be used to identify beta-cell progenitors in the developing human pancreas, we characterized nestin expression from 12 to 24 gestational weeks, purified nestin+ cells using an enhancer/promoter-driven selection plasmid, and determined whether nestin+ cells can differentiate into beta-cells. Nestin was visualized in the platelet endothelial cell adhesion molecule and alpha smooth muscle actin-positive blood vessels and colocalized with vimentin in the interstitium. Nestin was not observed in pan cytokeratin (pCK)-positive ductal epithelium or insulin cells. Purified nestin+ cells also coexpressed vimentin and lacked pCK immunoreactivity. Purified adult and fetal pancreatic fibroblasts also expressed nestin. The nestin enhancer/promoter used in the selection plasmid was sufficient to drive reporter gene expression, green fluorescent protein, in human fetal pancreatic tissue. Exposure of selected nestin+ cells to nicotinamide, hepatocyte growth factor/scatter factor, betacellulin, activin A, or exendin-4 failed to induce pancreatic and duodenal homeobox gene-1 or insulin message as determined by RT-PCR. Transplantation of nestin+ cells and fetal pancreatic fibroblasts into athymic mice also failed to result in the development of beta-cells, whereas nestin- fetal pancreatic epithelial cells gave rise to functional insulin-secreting beta-cells. We conclude that nestin is not a specific marker of beta-cell precursors in the developing human pancreas.  相似文献   

10.
The Wilms' tumor suppressor gene WT1 encodes a zinc finger protein that is required for urogenital development. In the kidney, WT1 is most highly expressed in glomerular epithelial cells or podocytes, which are an essential component of the filtering system. Human subjects heterozygous for point mutations in the WT1 gene develop renal failure because of the formation of scar tissue within glomeruli. The relationship between WT1 expression in podocytes during development and glomerular scarring is not well understood. In this study, transgenic mice that expressed a mutant form of WT1 in podocytes were derived. The capillaries within transgenic glomeruli were dilated, indicating that WT1 might regulate the expression of growth factors that affect capillary development. Platelet endothelial cell adhesion molecule-1 expression was greatly reduced on glomerular endothelial cells of transgenic kidneys. These results suggest that WT1 controls the expression of growth factors that regulate glomerular capillary development and that abnormal capillary development might lead to glomerular disease.  相似文献   

11.
Stem cells in the kidney   总被引:28,自引:0,他引:28  
The kidney is derived from the ureteric bud and the metanephrogenic mesenchyme, and these two progenitor cells differentiate into more than 26 different cell types in the adult kidney. The ureteric bud contains the precursor of the epithelial cells of the collecting duct and the renal mesenchyme contains precursors of all the epithelia of the rest of the nephron, endothelial cell precursors and stroma cells, but the relatedness among these cells is unclear. A single metanephric mesenchymal cell can generate all the epithelial cells of the nephron (except the collecting duct), indicating that the kidney contains epithelial stem cells. It is currently unknown whether these stem cells also are present in the adult kidney but experience in other organs makes this likely. It also is unclear whether embryonic renal epithelial stem cells can generate other cell types, but preliminary studies in our laboratory suggest that they can differentiate into myofibroblasts, smooth muscle, and perhaps endothelial cells, indicating that they are pluripotent renal stem cells. The important problem to be solved now is the identification and location of adult renal stem cells. This article discusses work done in other organs and in renal development that we believe may be useful for the resolution of this problem.  相似文献   

12.
BACKGROUND: The matricellular protein SPARC (secreted protein acidic and rich in cysteine) is expressed during development, tissue remodeling and repair. It functions as an endogenous inhibitor of cell proliferation, regulates angiogenesis, regulates cell adhesion to extracellular matrix, binds cytokines such as platelet derived growth factor and stimulates transforming growth factor-beta (TGF-beta) production. This study describes the expression of SPARC during human renal development, in normal kidneys and during renal allograft rejection. METHODS: A total of 60 renal specimens, including normal areas from tumor nephrectomies (N = 24), fetal kidneys (N = 27) and explanted renal allografts (N = 9), were included in the study. SPARC protein was localized by immunohistochemistry using two different antibodies. On consecutive sections SPARC mRNA was detected by in situ hybridization. RESULTS: In the normal adult kidney SPARC protein was expressed by visceral and parietal epithelial cells, collecting duct epithelium (CD), urothelium, smooth muscle cells of muscular arteries and focally in interstitial cells. During renal development immature glomeruli demonstrated a polarized SPARC expression in visceral epithelial cells at their surface abutting the capillary basement membranes. In the fully differentiated glomeruli the expression pattern mirrored that of the adult kidney. Furthermore, SPARC was abundantly expressed by derivatives of the ureteric bud, and smooth muscle cells of arterial walls. During chronic allograft rejection SPARC is expressed in neointimal arterial smooth muscle cells, infiltrating inflammatory cells as well as by interstitial myofibroblasts in areas of interstitial fibrosis. SPARC mRNA synthesis detected by in situ hybridization mirrored these protein expression patterns. CONCLUSION: These studies co-localize SPARC to several sites of renal injury previously shown to be sites of PDGF B-chain expression and/or activity. We speculate that SPARC could function as an accessory molecule in chronic PDGF-mediated sclerosing interstitial and vascular injury. SPARC localization to glomerular epithelial cells corresponds to similar findings in rodents, and may reflect its role in cell adhesion and /or regulation of cell shape.  相似文献   

13.
The mammalian kidney, the metanephros, is formed by a reciprocally inductive interaction between two precursor tissues, the metanephric mesenchyme and the ureteric bud. The ureteric bud induces the metanephric mesenchyme to differentiate into the epithelia of glomeruli and renal tubules. Multipotent renal progenitors that form colonies upon Wnt4 stimulation and strongly express Sall1 exist in the metanephric mesenchyme; these cells can partially reconstitute a three-dimensional structure in an organ culture setting. Six2 maintains this mesenchymal progenitor population by opposing Wnt4-mediated epithelialization. Upon epithelial tube formation, Notch2 is required for the differentiation of proximal nephron structures (podocyte and proximal tubules). In addition, the induction methods of the intermediate mesoderm, the precursor of the metanephric mesenchyme, begin to be elucidated. If derivation of metanephric mesenchyme becomes possible, we will be closer to the generation and manipulation of multiple cell lineages in the kidney.  相似文献   

14.
Expression of somatostatin in the adult and developing mouse kidney   总被引:1,自引:0,他引:1  
  相似文献   

15.
Semaphorins are guidance proteins that play important roles in organogenesis and disease. Expression of class 3 semaphorins and their receptors is regulated during kidney development. Gain- and loss-of-function experiments demonstrated that tight semaphorin3a gene dosage is required for podocyte differentiation, and for the establishment of a normal glomerular filtration barrier. Sema3a modulates kidney vascular patterning acting as a negative regulator of endothelial cell migration and survival. Excess podocyte semaphorin3a expression causes glomerular disease in mice. In addition, Sema3a is a negative regulator of ureteric bud branching, whereas Sema3c is a positive regulator of ureteric bud and endothelial cell branching morphogenesis. In summary, secreted semaphorins modulate ureteric bud branching, vascular patterning, and podocyte-endothelial crosstalk, suggesting that they play a role in renal disease. Understanding the signaling pathways downstream from semaphorin receptors will provide insight into the mechanism of action of semaphorins in renal pathology.  相似文献   

16.
Developmental assembly of the renal microvasculature requires spatially and temporally coordinated migration, assembly, differentiation, and maturation of endothelial cells in the context of adjacent epithelial and mesangial cells. In this study, endothelial expression and distribution of the receptor tyrosine phosphatase ECRTP/DEP-1 were evaluated during and after developmental assembly of the renal microvasculature. Monoclonal antibodies against ECRTP/DEP-1 ectodomain epitopes localize its expression to membrane surfaces of endothelial cells in glomerular, peritubular capillary, and arterial renal sites of mature human and murine kidney. During kidney development, ECRTP/DEP-1 immunostaining is evident on a subpopulation of metanephric mesenchymal cells and on putative progenitors of glomerular capillary endothelial cells early in their recruitment to developing glomeruli. ECRTP/DEP-1 is prominently displayed on luminal membrane surfaces with punctate accumulations at inter-endothelial contacts that overlap with vascular endothelial-cadherin staining. ECRTP/DEP-1 is recruited to inter-endothelial contacts in confluent cultured human renal and dermal microvascular endothelial cells, yet experimental dissociation of vascular endothelial-cadherin from endothelial junctional complexes fails to redistribute ECRTP/DEP-1. These findings indicate that ECRTP/DEP-1 is expressed in anticipation of glomerular capillary endothelial recruitment during development, and suggest that ECRTP/DEP-1 ectodomain interacts with endothelial surface ligands that are engaged by cell-cell contact.  相似文献   

17.
18.
19.
20.
Deficiency of lysosomal alpha-galactosidase A (alpha-Gal A) in Fabry disease results in cellular accumulation of globotriaosylceramide (Gl3), often leading to end-stage renal failure. Gl3 accumulates in endothelial, glomerular, and tubular cells. Replacement therapy with recombinant alpha-Gal A to some extent reduces cellular accumulation of Gl3 in the kidney. This study shows high lysosomal expression of alpha-Gal A in all tubular segments and interstitial cells of normal human kidney. However, glomeruli and endothelial cells did not express the enzyme to any significant extent. Recombinant enzyme was taken up by rat yolk sac cells in a receptor-associated protein-inhibitive manner, and surface plasmon resonance experiments revealed binding to megalin, indicating a possible mechanism for uptake of alpha-Gal A in the tubular cells. After infusion into experimental animals or patients, alpha-Gal A was recovered in the urine, indicating glomerular filtration. Recombinant alpha-Gal A was also found in kidneys of normal and alpha-Gal A knockout mice by Western blotting and localized to endosomes and lysosomes in proximal tubules, interstitial cells, and glomerular podocytes by immunocytochemistry and autoradiography but not in vascular endothelial cells. In conclusion, intravenously administered enzyme is taken up by interstitial cells, is to some extent filtered in glomeruli, and is taken up by podocytes and reabsorbed by receptor-mediated endocytosis in proximal tubule cells, directly indicating a potential beneficial effect of enzyme replacement therapy for these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号