首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Troglitazone glucuronidation in human liver and intestine microsomes and recombinant UDP-glucuronosyltransferases (UGTs) were thoroughly characterized. All recombinant UGT isoforms in baculovirus-infected insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) exhibited troglitazone glucuronosyltransferase activity. Especially UGT1A8 and UGT1A10, which are expressed in extrahepatic tissues such as stomach, intestine, and colon, showed high catalytic activity, followed by UGT1A1 and UGT1A9. The kinetics of the troglitazone glucuronidation in the recombinant UGT1A10 and UGT1A1 exhibited an atypical pattern of substrate inhibition when the substrate concentration was over 200 micro M. With a Michaelis-Menten equation at 6 to 200 micro M troglitazone, the K(m) value was 11.1 +/- 5.8 micro M and the V(max) value was 33.6 +/- 3.7 pmol/min/mg protein in recombinant UGT1A10. In recombinant UGT1A1, the K(m) value was 58.3 +/- 29.2 micro M and the V(max) value was 12.3 +/- 2.5 pmol/min/mg protein. The kinetics of the troglitazone glucuronidation in human liver and jejunum microsomes also exhibited an atypical pattern. The K(m) value was 13.5 +/- 2.0 micro M and the V(max) value was 34.8 +/- 1.2 pmol/min/mg for troglitazone glucuronidation in human liver microsomes, and the K(m) value was 8.1 +/- 0.3 micro M and the V(max) was 700.9 +/- 4.3 pmol/min/mg protein in human jejunum microsomes. When the intrinsic clearance was estimated with the in vitro kinetic parameter, microsomal protein content, and weight of tissue, troglitazone glucuronidation in human intestine was 3-fold higher than that in human livers. Interindividual differences in the troglitazone glucuronosyltransferase activity in liver microsomes from 13 humans were at most 2.2-fold. The troglitazone glucuronosyltransferase activity was significantly (r = 0.579, p < 0.05) correlated with the beta-estradiol 3-glucuronosyltransferase activity, which is mainly catalyzed by UGT1A1. The troglitazone glucuronosyltransferase activity in pooled human liver microsomes was strongly inhibited by bilirubin (IC(50) = 1.9 micro M), a typical substrate of UGT1A1. These results suggested that the troglitazone glucuronidation in human liver would be mainly catalyzed by UGT1A1. Interindividual differences in the troglitazone glucuronosyltransferase activity in S-9 samples from five human intestines was 8.2-fold. The troglitazone glucuronosyltransferase activity in human jejunum microsomes was strongly inhibited by emodin (IC(50) = 15.6 micro M), a typical substrate of UGT1A8 and UGT1A10, rather than by bilirubin (IC(50) = 154.0 micro M). Therefore, it is suggested that the troglitazone glucuronidation in human intestine might be mainly catalyzed by UGT1A8 and UGT1A10.  相似文献   

2.
Macelignan is a natural phenolic compound that possesses many types of health benefits such as antiinflammation. This study aimed to characterize the metabolism of macelignan via the glucuronidation pathway and to identify the main UGT enzymes involved in macelignan glucuronidation. The rates of glucuronidation were determined by incubating macelignan with UDPGA‐supplemented microsomes. Kinetic parameters were derived by fitting an appropriate model to the data. Reaction phenotyping, the relative activity factor (RAF) approach and activity correlation analysis were employed to identify the main UGT enzymes contributing to the hepatic metabolism of macelignan. Glucuronidation of macelignan in pooled human liver microsomes (pHLM) was rather efficient with a high CLint (the intrinsic clearance) value of 13.90 ml/min/mg. All UGT enzymes, except UGT1A4, 1A6 and 2B10, showed metabolic activities toward macelignan. UGT1A1 and 2B7 were the enzymes with the highest activities; the CLint values were 4.92 and 2.13 ml/min/mg, respectively. Further, macelignan glucuronidation was significantly correlated with 3‐O‐glucuronidation of β‐estradiol (r = 0.69; p < 0.01) and glucuronidation of zidovudine (r = 0.60; p < 0.05) in a bank of individual HLMs (n = 14). Based on the RAF approach, UGT1A1 and 2B7, respectively, contributed 55.40% and 32.20% of macelignan glucuronidation in pHLM. In conclusion, macelignan was efficiently metabolized via the glucuronidation pathway. It was also shown that UGT1A1 and 2B7 were probably the main contributors to the hepatic glucuronidation of macelignan. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
(R,S)-Oxazepam is a 1,4-benzodiazepine anxiolytic drug that is metabolized primarily by hepatic glucuronidation. In previous studies, S-oxazepam (but not R-oxazepam) was shown to be polymorphically glucuronidated in humans. The aim of the present study was to identify UDP-glucuronosyltransferase (UGT) isoforms mediating R- and S-oxazepam glucuronidation in human liver, with the long term objective of elucidating the molecular genetic basis for this drug metabolism polymorphism. All available recombinant UGT isoforms were screened for R- and S-oxazepam glucuronidation activities. Enzyme kinetic parameters were then determined in representative human liver microsomes (HLMs) and in UGTs that showed significant activity. Of 12 different UGTs evaluated, only UGT2B15 showed significant S-oxazepam glucuronidation. Furthermore, the apparent K(m) for UGT2B15 (29-35 microM) was similar to values determined for HLMs (43-60 microM). In contrast, R-oxazepam was glucuronidated by UGT1A9 and UGT2B7. Although apparent K(m) values for HLMs (256-303 microM) were most similar to UGT2B7 (333 microM) rather than UGT1A9 (12 microM), intrinsic clearance values for UGT1A9 were 10 times higher than for UGT2B7. A common genetic variation results in aspartate (UGT2B15*1) or tyrosine (UGT2B15*2) at position 85 of the UGT2B15 protein. Microsomes from human embryonic kidney (HEK)-293 cells overexpressing UGT2B15*1 showed 5 times higher S-oxazepam glucuronidation activity than did UGT2B15*2 microsomes. Similar results were obtained for other substrates, including eugenol, naringenin, 4-methylumbelliferone, and androstane-3alpha-diol. In conclusion, S-oxazepam is stereoselectively glucuronidated by UGT2B15, whereas R-oxazepam is glucuronidated by multiple UGT isoforms. Allelic variation associated with the UGT2B15 gene may explain polymorphic S-oxazepam glucuronidation in humans.  相似文献   

4.
Yu L  Lu S  Lin Y  Zeng S 《Biochemical pharmacology》2007,73(11):1842-1851
Mitiglinide (MGN) is a new potassium channel antagonist for the treatment of type 2 diabetes mellitus. In the present study, a potential metabolic pathway of MGN, via carboxyl-linked glucuronic acid conjugation, was found. MGN carboxyl-glucuronide was isolated from a reaction mixture consisting of MGN and human liver microsomes fortified with UDP-glucuronic acid (UDPGA) and identified by a hydrolysis reaction with beta-glucuronidase and HPLC-MS/MS. Kinetic analysis indicated that MGN from four species had the highest affinity for the rabbit liver microsomal enzyme (K(m)=0.202 mM) and the lowest affinity for the dog liver microsomal enzyme (K(m)=1.164 mM). The metabolic activity (V(max)/K(m)) of MGN to the carboxyl-glucuronidation was in the following order: rabbit>dog>rat>human. With the assessment of MGN glucuronide formation across a panel of recombinant UDP-glucuronosyltransferase (UGT) isoforms (UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7), only UGT1A3 and UGT2B7 exhibited high MGN glucuronosyltransferase activity. The K(m) values of MGN glucuronidation in recombinant UGT1A3 and UGT2B7 microsomes were close to those in human liver microsomes. The formation of MGN glucuronidation by human liver microsomes was effectively inhibited by quercetin (substrate for UGT1A3) and diclofenac (substrate for UGT2B7), respectively. The MGN glucuronidation activities in 15 human liver microsomes were significantly correlated with quercetin (r(2)=0.806) and diclofenac glucuronidation activities (r(2)=0.704), respectively. These results demonstrate that UGT1A3 and UGT2B7 are catalytic enzymes in MGN carboxyl-glucuronidation in human liver.  相似文献   

5.
The stereoselective glucuronidation of propranolol (PL) in human and cynomolgus monkey liver microsomes, and the roles of human hepatic UDP-glucuronosyltransferase (UGT) isoforms involved in the enantiomeric glucuronidation of PL using recombinant UGT enzymes were investigated. In Michaelis-Menten plots, R- and S-PL glucuronidation by human liver microsomes showed sigmoidal kinetics whereas the kinetics of enantiomeric PL glucuronidation by cynomolgus monkey liver microsomes was monophasic. The Km, Vmax and CLint values of cynomolgus monkey liver microsomes were generally higher than the S50, Vmax and CLmax values of human liver microsomes in R- and S-PL glucuronidation. The glucuronidation of R- and S-PL was catalyzed by at least 3 UGT isoforms: UGT1A9, UGT2B4 and UGT2B7. Michaelis-Menten plots for R- and S-PL glucuronidation by UGT1A9 were monophasic, whereas the kinetics of UGT2B7 showed sigmoidal curves. Enantiomeric R-PL glucuronidation by UGT2B4 showed sigmoidal kinetics, whereas S-PL glucuronidation displayed monophasic kinetics. UGT1A9 showed remarkable stereoselectivity in Vmax and CLint values of R-PL < S-PL. These findings demonstrate that the profiles of enantiomeric PL glucuronidation in human and cynomolgus monkey liver microsomes are largely different and suggest that the human hepatic UGT isoforms UGT1A9, UGT2B4 and UGT2B7 play distinctive roles in enantiomeric PL glucuronidation.  相似文献   

6.
Estragole (4-allyl-1-methoxybenzene) is a naturally occurring food flavoring agent found in basil, fennel, bay leaves, and other spices. Estragole and its metabolite, 1'-hydroxyestragole (1'-HE), are hepatocarcinogens in rodent models. Recent studies from our laboratory have shown that glucuronidation of 1'-HE is a major detoxification pathway for estragole and 1'-HE, accounting for as much as 30% of urinary metabolites of estragole in rodents. Therefore, this study was designed to investigate the glucuronidation of 1'-HE in human liver microsomes in vitro and identify the specific uridine diphosphate glucuronosyltransferase (UGT) isoforms responsible for 1'-HE glucuronidation. The formation of the glucuronide of 1'-HE (1'-HEG) followed atypical kinetics, and the data best fit to a Hill equation, resulting in apparent kinetic parameters of Km = 1.45 mM, Vmax = 164.5 pmoles/min/mg protein, and n = 1.4. There was a significant intersubject variation in 1'-HE glucuronidation in 27 human liver samples, with a CV of 42%. A screen of cDNA expressed UGT isoforms indicated that UGT2B7 (83.94 +/- 0.188 pmols/min/mg), UGT1A9 (51.36 +/- 0.72 pmoles/min/mg), and UGT2B15 (8.18 +/- 0.037 pmoles/min/mg) were responsible for 1'-HEG formation. Glucuronidation of 1'-HE was not detected in cells expressing UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, and UGT1A10. 1'-HE glucuronidation in 27 individual human liver samples significantly (p < 0.05) correlated with the glucuronidation of other UGT2B7 substrates (morphine and ibuprofen). These results imply that concomitant chronic intake of therapeutic drugs and dietary components that are UGT2B7 and/or UGT1A9 substrates may interfere with estragole metabolism. Our results also have toxicogenetic significance, as UGT2B7 is polymorphic and could potentially result in genetic differences in glucuronidation of 1'-HE and, hence, toxicity of estragole.  相似文献   

7.
Acyl glucuronidation is an important metabolic pathway for fluoroquinolone antibiotics. However, it is unclear which human UDP-glucuronosyltransferase (UGT) enzymes are involved in the glucuronidation of the fluoroquinolones. The in vitro formation of levofloxacin (LVFX), grepafloxacin (GPFX), moxifloxacin (MFLX), and sitafloxacin (STFX) glucuronides was investigated in human liver microsomes and cDNA-expressed recombinant human UGT enzymes. The apparent Km values for human liver microsomes ranged from 1.9 to 10.0 mM, and the intrinsic clearance values (calculated as Vmax/Km) had a rank order of MFLX > GPFX > STFX > > LVFX. In a bank of human liver microsomes (n = 14), the glucuronidation activities of LVFX, MFLX, and STFX correlated highly with UGT1A1-selective beta-estradiol 3-glucuronidation activity, whereas the glucuronidation activity of GPFX correlated highly with UGT1A9-selective propofol glucuronidation activity. Among 12 recombinant UGT enzymes, UGT1A1, 1A3, 1A7, and 1A9 catalyzed the glucuronidation of these fluoroquinolones. Results of enzyme kinetics studies using the recombinant UGT enzymes indicated that UGT1A1 most efficiently glucuronidates MFLX, and UGT1A9 most efficiently glucuronidates GPFX. In addition, the glucuronidation activities of MFLX and STFX in human liver microsomes were potently inhibited by bilirubin with IC50 values of 4.9 microM and 4.7 microM, respectively; in contrast, the glucuronidation activity of GPFX was inhibited by mefenamic acid with an IC50 value of 9.8 microM. These results demonstrate that UGT1A1, 1A3, and 1A9 enzymes are involved in the glucuronidation of LVFX, GPFX, MFLX, and STFX in human liver microsomes, and that MFLX and STFX are predominantly glucuronidated by UGT1A1, whereas GPFX is mainly glucuronidated by UGT1A9.  相似文献   

8.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

9.
Jatrorrhizine, one of the protoberberine alkaloids derived from the plant Coptis chinensis, is expected to be developed as a new gastric prokinetic drug, but its metabolic characteristics in humans remain unknown. This study characterized the phase I and phase II metabolites, metabolic kinetics, and cytochrome P450 (CYP) and UDP‐glucuronosyltransferase (UGT) enzymes responsible for the metabolism of jatrorrhizine in human liver microsomes (HLMs). Chemical inhibition in HLMs and metabolism by recombinant human CYP or UGT enzymes were employed to determine the key metabolic enzyme subtypes. In HLMs, demethyleneberberine (demethylated product) and jatrorrhizine glucuronide were identified as the phase I and phase II metabolites, respectively. The enzyme kinetics for both demethylation and glucuronidation were fitted to the Michaelis–Menten equation. Demethylation was inhibited significantly by furafylline and predominantly catalysed by recombinant CYP1A2, whereas glucuronidation was inhibited by silibinin, quercetin, as well as 1‐naphthol and catalysed by recombinant UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9 and UGT1A10. These results showed that jatrorrhizine is metabolized by human CYP1A2 and multiple UGT1A isoforms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.  相似文献   

11.
A metabolite formed by incubation of human liver microsomes, etoposide, and UDP-glucuronic acid was identified as etoposide glucuronide by liquid chromatography-tandem mass spectrometry analysis. According to the derivatization with trimethylsilylimidazole (Tri-Sil-Z), it was confirmed that the glucuronic acid is linked to an alcoholic hydroxyl group of etoposide and not to a phenolic group. Among nine recombinant human UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9. UGT1A10, UGT2B7, and UGT2B15), only UGT1A1 exhibited the catalytic activity of etoposide glucuronidation. The enzyme kinetics in pooled human liver microsomes and recombinant UGT1A1 microsomes showed a typical Michaelis-Menten plot. The kinetic parameters of etoposide glucuronidation were K(m) = 439.6 +/- 70.7 microM and V(max) = 255.6 +/- 19.2 pmol/min/mg of protein in human liver microsomes and K(m) = 503.2 +/- 110.2 microM and V(max) = was 266.5 +/- 28.6 pmol/min/mg of protein in recombinant UGT1A1. The etoposide glucuronidation in pooled human liver microsomes was inhibited by bilirubin (IC(50) = 31.7 microM) and estradiol (IC(50) = 34 microM) as typical substrates for UGT1A1. The inhibitory effects of 4-nitrophenol (IC(50) = 121.0 microM) as a typical substrate for UGT1A6 and UGT1A9, imipramine (IC(50) = 393.8 microM) as a typical substrate for UGT1A3 and UGT1A4, and morphine (IC(50) = 109.3 microM) as a typical substrate for UGT2B7 were relatively weak. The interindividual difference in etoposide glucuronidation in 13 human liver microsomes was 78.5-fold (1.4-109.9 pmol/min/mg of protein). The etoposide glucuronidation in 10 to 13 human liver microsomes was significantly correlated with beta-estradiol-3-glucuronidation (r = 0.841, p < 0.01), bilirubin glucuronidation (r = 0.935, p < 0.01), and the immunoquantified UGT1A1 protein content (r = 0.800, p < 0.01). These results demonstrate that etoposide glucuronidation in human liver microsomes is specifically catalyzed by UGT1A1.  相似文献   

12.
Investigation of human UDP-glucuronosyltransferase (UGT) isoforms has been limited by a lack of specific substrate probes. In this study serotonin was evaluated for use as a probe substrate for human UGT1A6 using recombinant human UGTs and tissue microsomes. Of the 10 commercially available recombinant UGT isoforms, only UGT1A6 catalyzed serotonin glucuronidation. Serotonin-UGT activity at 40 mM serotonin concentration varied more than 40-fold among human livers (n = 54), ranging from 0.77 to 32.9 nmol/min/mg of protein with a median activity of 7.1 nmol/min/mg of protein. Serotonin-UGT activity kinetics of representative human liver microsomes (n = 7) and pooled human kidney, intestinal and lung microsomes and recombinant human UGT1A6 typically followed one enzyme Michaelis-Menten kinetics. Serotonin glucuronidation activity in these human liver microsomes had widely varying V(max) values ranging from 0.62 to 51.3 nmol/min/mg of protein but very similar apparent K(m) values ranging from 5.2 to 8.8 mM. Pooled human kidney, intestine, and lung microsomes had V(max) values (mean +/- standard error of the estimates) of 8.8 +/- 0.4, 0.22 +/- 0.00, and 0.03 +/- 0.00 nmol/min/mg of protein (respectively) and apparent K(m) values of 6.5 +/- 0.9, 12.4 +/- 2.0, and 4.9 +/- 3.3 mM (respectively). In comparison, recombinant UGT1A6 had a V(max) of 4.5 +/- 0.1 nmol/min/mg of protein and an apparent K(m) of 5.0 +/- 0.4 mM. A highly significant correlation was found between immunoreactive UGT1A6 protein content and serotonin-UGT activity measured at 4 mM serotonin concentration in human liver microsomes (R(s) = 0.769; P < 0.001) (n = 52). In conclusion, these results indicate that serotonin is a highly selective in vitro probe substrate for human UGT1A6.  相似文献   

13.
Valproic acid (VPA) is a widely used anticonvulsant that is also approved for mood disorders, bipolar depression, and migraine. In vivo, valproate is metabolized oxidatively by cytochromes P450 and beta-oxidation, as well as conjugatively via glucuronidation. The acyl glucuronide conjugate (valproate-glucuronide or VPAG) is the major urinary metabolite (30-50% of the dose). It has been hypothesized that glucuronidation of antiepileptic drugs is spared over age, despite a known decrease in liver mass. The formation rates of VPAG in a bank of elderly (65 years onward) human liver microsomes (HLMs) were measured by liquid chromatography/tandem mass spectrometry and compared with those in a younger (2-56 years) HLM bank. In vitro kinetic studies with recombinant UDP-glucuronosyltransferases (UGTs) were completed. A 5- to 8-fold variation for the formation of VPAG was observed within the microsomal bank obtained from elderly and younger donors. VPAG formation ranged from 6.0 to 53.4 nmol/min/mg protein at 1 mM substrate concentration (n=36). The average velocities at 0.25, 0.5, and 1 mM VPA were 7.0, 13.4, and 25.4 nmol/min/mg protein, respectively, in the elderly HLM bank. Rates of VPAG formation were not significantly different in the HLM bank obtained from younger subjects. Intrinsic clearances (V(max)/K(m)) for several cloned, expressed UGTs were determined. UGT1A4, UGT1A8, and UGT1A10 also were found to catalyze the formation of VPAG in vitro. This is the first reported activity of these UGTs toward VPA glucuronidation. UGT2B7 had the highest intrinsic clearance, whereas UGT1A1 demonstrated no activity. In conclusion, our investigation revealed no differences in VPAG formation in younger versus elderly HMLs and revealed three other UGTs that form VPAG in vitro.  相似文献   

14.
Carvedilol ((+/-)-1-carbazol-4-yloxy)-3-[[2-(o-methoxyphenoxy)ethyl]amino]-2-propanol) is metabolized primarily into glucuronide conjugates. In the present study, we identified the human UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of carvedilol by thin-layer chromatography using microsomes from human liver or insect cells expressing recombinant UGT isoforms. We observed two forms of carvedilol glucuronides, namely G1 and G2, in hepatic microsomes. The glucuronidation of carvedilol was catalyzed by at least three recombinant UGT isoforms: UGT1A1, UGT2B4, and UGT2B7. UGT2B4 formed both G1 and G2, whereas UGT1A1 and UGT2B7 were responsible for the formation of glucuronide G2 and G1, respectively. The enzyme kinetics for carvedilol glucuronidation by UGT1A1, UGT2B4, and UGT2B7 in addition to human liver microsomes were examined by Lineweaver-Burk analysis. The values of Km and Vmax for human liver microsomes were 26.6 microM and 106 pmol/min/mg protein for G1, and 46.0 microM and 44.5 pmol/min/mg protein for G2, respectively. The Km values for UGT1A1, UGT2B4, and UGT2B7 for G1 and G2 (22.1-55.1 microM) were comparable to those of the liver microsomes, whereas the Vmax values were in the range of 3.33 to 7.88 pmol/min/mg protein. The Km and Vmax/Km values for UGT2B4 and UGT2B7 for G1 were similar, whereas UGT2B4 had lower Km and higher Vmax/Km values for G2 compared with those of UGT1A1. These results suggest that G1 formation is catalyzed by UGT2B4 and UGT2B7, whereas G2 is formed by UGT2B4 and UGT1A1. These three hepatic UGT isoforms may have important roles in carvedilol metabolism.  相似文献   

15.
16.
Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate‐glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3‐ to 12‐fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis‐Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well‐characterized UGT2B7 substrates) in a concentration‐dependent manner, or by fluconazole (a typical UGT2B7‐selective inhibitor) in a time‐dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration‐dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug‐drug interactions between clopidogrel and the other substrate drugs of UGT2B7.  相似文献   

17.
Denopamine is one of the oral beta(1)-adrenoceptor-selective partial agonists. Denopamine glucuronide is the most abundant metabolite in human, rat, and dog urine when administered orally. Species differences in denopamine glucuronidation were investigated with liver microsomes obtained from humans and experimental animals. In rat and rabbit, only the phenolic glucuronide was detected, whereas in dog and monkey, not only the phenolic glucuronide but also the alcoholic glucuronide was found. In contrast, in humans, the alcoholic glucuronide was detected exclusively. The kinetics of denopamine glucuronidation in human liver microsomes showed a typical Michaelis-Menten plot. The K(m) and V(max) values accounted for 2.87 +/- 0.17 mM and 7.29 +/- 0.23 nmol/min/mg protein, respectively. With the assessment of denopamine glucuronide formation across a panel of recombinant UDP-glucuronosyltransferase (UGT) isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17), only UGT2B7 exhibited high denopamine glucuronosyltransferase activity. The K(m) value of denopamine glucuronidation in recombinant UGT2B7 microsomes was close to those in human liver and jejunum microsomes. The formation of denopamine glucuronidation by human liver, jejunum, and recombinant UGT2B7 microsomes was effectively inhibited by diclofenac, a known substrate for UGT2B7. The denopamine glucuronidation activities in seven human liver microsomes were significantly correlated with diclofenac glucuronidation activities (r(2) = 0.685, p < 0.05). These results demonstrate that the denopamine glucuronidation in human liver and intestine is mainly catalyzed by UGT2B7 and that glucuronidation of the alcoholic hydroxyl group, but not the phenolic hydroxyl group, occurs regioselectively in humans.  相似文献   

18.
Wu B  Zhang S  Hu M 《Molecular pharmaceutics》2011,8(6):2379-2389
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.  相似文献   

19.
1. Almokalant, a class III antiarrythmic drug, is metabolized to form isomeric glucuronides identified in human urine. Synthesis of the total glucuronide was studied in human liver and kidney microsomes. Recombinant UDP-glucuronosyltransferases (UGTs) were screened for activity and kinetic analysis was performed to identify the isoform(s) responsible for the formation of almokalant glucuronide in man. 2. From a panel of recombinant isoforms used, both UGT1A9 and 2B7 catalysed the glucuronidation of almokalant. The Km values in both instances were similar with 1.06 mM for the 1A9 and 0.97 mM for the 2B7. Vmax for 1A9 was fourfold higher than that measured for UGT2B7, 92 compared with 21 pmol min(-1) mg(-1), respectively, but UGT1A9 was expressed at approximately twofold higher level than the UGT2B7 in the recombinant cell lines. Therefore, the contribution of UGT2B7 to almokalant glucuronidation could be as significant as that of UGT1A9 in man. 3. Liver and kidney microsomes displayed similar Km values to the cloned expressed UGTs, with the liver and kidney microsomes at 1.68 and 1.06 mM almost identical to the 1A9. 4. The results suggest a significant role for UGT1A9 and 2B7 in the catalysis of almokalant glucuronidation.  相似文献   

20.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigated, and the major human UGT isozymes involved were identified. UGT1A1, 1A3, 1A9, 2B4, and 2B7 showed glucuronidation activity for both (R)- and (S)-glucuronide, with UGT2B7 possessing the highest activity. UGT2B7 formed the (R)-glucuronide at a rate 2.8-fold higher than that for (S)-glucuronide, whereas the other UGTs had similar formation rates. The glucuronidation of racemic flurbiprofen by HLMs also resulted in the formation of (R)-glucuronide as the dominant form, which occurred to a degree similar to that by recombinant UGT2B7 (2.1 versus 2.8). The formation of (R)-glucuronide correlated significantly with morphine 3-OH glucuronidation (r = 0.96, p < 0.0001), morphine 6-OH glucuronidation (r = 0.91, p < 0.0001), and 3'-azido-3'-deoxythymidine glucuronidation (r = 0.85, p < 0.0001), a reaction catalyzed mainly by UGT2B7, in individual HLMs. In addition, the formation of both glucuronides correlated significantly (r = 0.99, p < 0.0001). Mefenamic acid inhibited the formation of both (R)- and (S)-glucuronide in HLMs with similar IC(50) values (2.0 and 1.7 muM, respectively), which are close to those in recombinant UGT2B7. In conclusion, these findings suggest that the formation of (R)- and (S)-glucuronide from racemic flurbiprofen is catalyzed by the same UGT isozyme, namely UGT2B7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号