首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transient effects of prostaglandin E2 (PGE2) on cancellous and cortical bone in iliac crests and mid-tibial shafts of nine intact young adult dogs were evaluated following 31 days of treatment. Histomorphometric bone changes were characterized from in vivo fluorescent double-labeled undecalcified bone specimens. PGE2 caused an increase in cancellous bone remodeling evidence by increased in activation frequency; increased percent eroded and formation surfaces; increased mineral apposition and bone formation rates; and shortened resorption, formation, and total bone remodeling periods. Activated cancellous bone remodeling did not lead to decreased cancellous bone mass, indicating an imbalance between bone resorption and formation in favor of formation (activation----resorption----stimulated formation; A----R----F increases) at remodeling sites. The PGE2 treatment activated bone modeling in the formation mode (activation----formation; A----F) at the periosteal and endocortical surfaces and increased activation frequency of intracortical bone remodeling in the tibial shaft. Increased modeling activation converted quiescent bone surfaces to formation surfaces with stimulated osteoblastic activity (i.e., increased percent labeled periosteal and endocortical surfaces, mineral apposition rates, and woven and lamellar trabecular bone formation) leading to 9- to 26-fold increases in newly formed bone mass in subperiosteal, subendosteal, and marrow regions, compared to controls. However, increased intracortical bone remodelling elevated remodeling space (i.e., increased cortical porosity), producing a bone loss that partially offsets the bone gain. The combined events lead to a positive bone balance in PGE2-treated cortical bone, compared to a negative bone balance in control bones. Collectively our data suggest that in vivo PGE2 is a powerful activator of cancellous and cortical bone formation, which may be able to build a peak bone mass to prevent and/or correct the skeletal defects to cure osteoporosis.  相似文献   

2.
W S Jee  S Mori  X J Li  S Chan 《BONE》1990,11(4):253-266
To assess the efficacy of prostaglandin E2 (PGE2) in augmenting cortical bone mass, graded doses of PGE2 were subcutaneously administered for 30 days to seven-month old sham-ovariectomized (SHAM) and ovariectomized (OVX) rats. Both groups were operated at three months of age. Histomorphometric analyses of double fluorescent labeled tibial shafts were performed on basal control, OVX, and SHAM rats treated with 0, 0.3, 1, 3, and 6 mg PGE2/kg/d for 30 days. Baseline aging data showed increased cortical tissue and cortical bone area and reduced bone formation parameters at the periosteal and endocortical bone envelopes between three and eight months of age. The tibial shafts of OVX rats compared to SHAM controls showed elevated periosteal mineral apposition rate and endocortical bone formation parameters. PGE2 administration to OVX and SHAM rats increased cortical bone by the addition of new circumferential bone on the endocortical and periosteal surfaces, as well as woven cancellous bone in the marrow region. Stimulated osteoblastic recruitment and activity enhanced bone formation at all bone surfaces. The new bone was both lamellar and woven in nature. PGE2 treatment also activated intracortical bone remodeling (not seen in untreated eight-month old rats), creating a porous cortex. Thus, PGE2 administration activated cortical bone modeling in the formation mode (A----F), as well as intracortical bone remodeling (A----R----F). PGE2 administration to OVX rats resulted in more intracortical bone remodeling, periosteal bone formation, and new cancellous bone production than observed in PGE2 treated controls. The findings that PGE2 administration to OVX and intact female rats increases cortical bone mass, coupled with observations that mouse, rat, dog, and man respond similarly to PGE2, suggest that PGE2 administration may be useful in the prevention and treatment of postmenopausal osteoporosis.  相似文献   

3.
Transiliac cortical bone histomorphometry was performed in 56 metabolic bone disease-free individuals 1.5-22.9 years of age. During the growing years, the two cortices of an iliac bone specimen differ with regard to bone cell activity on their surfaces, probably reflecting a modeling drift. INTRODUCTION: Standard bone histomorphometry in the clinical setting is typically limited to the analysis of cancellous bone. However, during the growth period, important changes occur also in the cortical compartment. MATERIALS AND METHODS: Transiliac bone samples from 56 individuals between 1.5 and 22.9 years of age (25 male; tetracycline labeling present in 42 subjects) and without evidence of metabolic bone disease were analyzed. Each of the three bone surface types (periosteal, intracortical, endocortical) of each cortex was evaluated separately. Results were expressed relative to those obtained in trabecular bone. RESULTS: A significant increase in cortical width with age was detected only for the internal cortex. Porosity of the external cortex was highest in the 7- to 10.9-year age group and decreased thereafter, whereas there was no clear trend with age for the porosity of the internal cortex. Intracortical remodeling activity decreased after 14 years of age. Periosteal bone formation was very active until 13 years of age, but was close to zero in subjects above that age. As to endocortical surfaces, all bone surface-based parameters of bone formation were higher on the internal cortex than on the external cortex, whereas bone resorption parameters were higher on the external cortex. CONCLUSIONS: In growing subjects, the two cortices of an iliac bone specimen differ with regard to bone cell activity on their surfaces. These data raise fundamental questions about the regulation of bone cell activity in children and adolescents.  相似文献   

4.
Idiopathic juvenile osteoporosis (IJO), a rare cause of osteoporosis in children, is characterized by the occurrence of vertebral and metaphyseal fractures. Little is known about the histopathogenesis of IJO. We analyzed by quantitative histomorphometry iliac crest biopsies from 9 IJO patients (age, 10.0-12.3 years; 7 girls) after tetracycline labeling. Results were compared with identically processed samples from 12 age-matched children without metabolic bone disease and 11 patients with osteogenesis imperfecta type I. Compared with healthy controls, cancellous bone volume (BV) was markedly decreased in IJO patients (mean [SD]: 10.0% [3.1%] vs. 24.4% [3.8%]), because of a 34% reduction in trabecular thickness (Tb.Th) and a 37% lower trabecular number (Tb.N; p < 0.0001 each; unpaired t-test). Bone formation rate (BFR) per bone surface was decreased to 38% of the level in controls (p = 0.0006). This was partly caused by decreased recruitment of remodeling units, as shown by a trend toward lower activation frequency (54% of the control value; p = 0.08). Importantly, osteoblast team performance also was impaired, as evidenced by a decreased wall thickness (W.Th; 70% of the control value; p < 0.0001). Reconstruction of the formative sites revealed that osteoblast team performance was abnormally low even before mineralization started at a given site. No evidence was found for increased bone resorption. Compared with children with osteogenesis imperfecta (OI), IJO patients had a similarly decreased cancellous BV but a much lower bone turnover. These results suggest a pathogenetic model for IJO, in which impaired osteoblast team performance decreases the ability of cancellous bone to adapt to the increasing mechanical needs during growth. This will finally result in load failure at sites where cancellous bone is essential for stability.  相似文献   

5.
T Tanizawa  A Itoh  T Uchiyama  L Zhang  N Yamamoto 《BONE》1999,25(4):493-499
Histological indicators of bone turnover were compared in the three endosteal envelopes (cancellous, endocortical, and intracortical) of iliac bone specimens obtained from 82 osteoporotic women, to assess the correlation between bone turnover and bone volume in different remodeling sites. Although there was a significant but weak correlation between the mineral apposition rate (MAR), a histological indicator of bone formation at the basic multicellular unit (BMU) level, and the three endosteal envelopes, the bone formation rate corrected for bone surface (BFR/BS) and mineralizing surface (MS/BS), indicators of the rate of bone formation reflecting activation frequency, in the cancellous and endocortical envelopes was more closely related to the rate in the intracortical envelope. The endocortical BFR/BS and MS/BS were higher than the rate in the cancellous envelope (1.6-2.1 times and 2.0-2.4 times, respectively), indicating a higher turnover rate in the endocortical envelope. According to stepwise regression analysis of the significant determinants contributing to bone mass, several histological determinants relating to bone turnover were identified: (1) trabecular thickness (Tb.Th) was a positive determinant, whereas age and cancellous bone volume referent BFR (BFR/BV) were negatively correlated determinants of the cancellous bone volume (BV/TV) (R2 = 0.50, p < 0.001); and (2) the endocortical wall thickness (W.Th) of the given side and the cortical width (Ct.Wi) of the opposite side were positive determinants, whereas the cancellous osteoid surface (OS/BS), cancellous MAR, and endocortical eroded surface (ES/BS) of the given side were the negatively correlated determinants of the Ct.Wi of the thicker cortex (R2 = 0.62, p < 0.001). In the thinner cortex, the endocortical W.Th of the given side and Ct.Wi of the opposite side were only used as the positive determinants of the Ct.Wi of the given side (R2 = 0.55, p < 0.001). In addition: (3) a significant but weak correlation was found using the intracortical BFR/BV as a positively correlated determinant of the cortical porosity (Ct.Po) in the thicker cortex (R2 = 0.17, p < 0.01). Although these histological determinants do not fully explain the mechanisms of bone loss, an increased rate of bone turnover contributes to bone loss not only in the cancellous and intracortical envelopes, but also in the endocortical envelope, indicating increased endocortical bone resorption in osteoporosis.  相似文献   

6.
It has been suggested that, in hip fracture, the cortex on the inferoanterior (IA) to superoposterior (SP) axis is thinned and shows increased porosity. This is dependent on the presence of giant canals (i.e., diameter >385 microm), which are related to clusters of remodeling osteons. To investigate further the relationship between remodeling and bone loss, osteonal diameter (On.Dm), wall thickness (W.Th), osteoid width (O.Wi), and extent (OS) were measured in femoral neck biopsies from 12 female intracapsular hip fracture cases and 11 age- and gender-matched controls. Over 83% of giant canals were "composite" osteonal systems in which a single canal was surrounded by multiple packets of osteonal bone. Among smaller canals, over 80% of systems had a canal encircled by a single cement line containing one packet of bone ("simple"). Composites were nearly twice as prevalent in fractures (fracture cases 9.8 +/- 0.7/25 mm(2), controls 5.3 +/- 0.4/25 mm(2), p < 0. 0001), and were dependent (R(2) = 0.52) on femoral neck region (p = 0.0008) and the regional distribution of clusters of remodeling osteons (p = 0.0045). Both the inferior (I) and anterior (A) regions had an elevated number of composites (I: 263% of control values, p = 0.0054; A: 202% of control values, p = 0.0092). On.Dm was similar in fracture cases and controls (simple: fracture cases 183 +/- 3 microm, controls 191 +/- 4 microm; composites: fracture cases 446 +/- 13 microm, controls 460 +/- 13 microm). W.Th in simples was similar in fracture cases and controls (fracture cases 51 +/- 0.8 microm, controls 49 +/- 0.7 microm), but composites had significantly (p < 0. 0001) thinner walls, with the reduction in fracture cases (31%) being twice that of controls (12%, p < 0.0001). There were no differences in O.Wi. It was unusual for osteoid to fully surround the composite canal surface; OS was 38% lower in composite than simple canals (p < 0.0001). This study indicates that, in the femoral neck cortex, the principal remodeling deficit in hip fracture is specific to composite osteons. Hip fracture cases had zonal increases in composite osteon density with reduced bone formation. The data suggest that generation of composite osteons is a plausible mechanism leading to increasing porosity and trabecularization of the cortex, thus weakening the cortex in regions maximally loaded on fall impact.  相似文献   

7.
Structural and cellular changes during bone growth in healthy children   总被引:4,自引:0,他引:4  
Parfitt AM  Travers R  Rauch F  Glorieux FH 《BONE》2000,27(4):487-494
Normal postnatal bone growth is essential for the health of adults as well as children but has never been studied histologically in human subjects. Accordingly, we analyzed iliac bone histomorphometric data from 58 healthy white subjects, aged 1.5-23 years, 33 females and 25 males, of whom 48 had undergone double tetracycline labeling. The results were compared with similar data from 109 healthy white women, aged 20-76 years, including both young adult reference ranges and regressions on age. There was a significant increase with age in core width, with corresponding increases in both cortical width and cancellous width. In cancellous bone there were increases in bone volume and trabecular thickness, but not trabecular number, wall thickness, interstitial thickness, and inferred erosion depth. Mineral apposition rates declined on the periosteal envelope and on all subdivisions of the endosteal envelope. Because of the concomitant increase in wall thickness, active osteoblast lifespan increased substantially. Bone formation rate was almost eight times higher on the outer than on the inner periosteum, and more than four times higher on the inner than on the outer endocortical surface. On the cancellous surface, bone formation rate and activation frequency declined in accordance with a fifth order polynomial that matched previously published biochemical indices of bone turnover. The analysis suggested the following conclusions: (1) Between 2 and 20 years the ilium grows in width by periosteal apposition (3.8 mm) and endocortical resorption (3.2 mm) on the outer cortex, and net periosteal resorption (0.4 mm) and net endocortical formation (1.0 mm) on the inner cortex. (2) Cortical width increases from 0.52 mm at age 2 years to 1.14 mm by age 20 years. To attain adult values there must be further endocortical apposition of 0.25 mm by age 30 years, at a time when cancellous bone mass is declining. (3) Lateral modeling drift of the outer cortex enlarges the marrow cavity; the new trabeculae filling this space arise from unresorbed cortical bone and represent cortical cancelization; (4) Lateral modeling drift of the inner cortex encroaches on the marrow cavity; some trabeculae are incorporated into the expanding cortex by compaction. (5) The net addition of 37 microm of new bone on each side of a trabecular plate results from a <5% difference between wall thickness and erosion depth and between bone formation and bone resorption rates; these small differences on the same surface are characteristic of bone remodeling. (6) Because the amount of bone added by each cycle of remodeling is so small, the rate of bone remodeling during growth must be high to accomplish the necessary trabecular hypertrophy.  相似文献   

8.
Hodsman AB  Kisiel M  Adachi JD  Fraher LJ  Watson PH 《BONE》2000,27(2):311-318
Parathyroid hormone (PTH) increases trabecular but may decrease cortical bone mass during treatment of postmenopausal osteoporosis. In a 2-year trial, PTH, with or without sequential calcitonin (CT), was given to 29 osteoporotic women (mean age 67 +/- 7 years), in 3-month cycles [28 days hPTH(1-34), 50 microg/day, +/-42 days CT, 75 units/day, 20 days "free"]. Over 2 years, lumbar spine bone mineral density measurements increased an average of 10%. Paired iliac crest biopsies were obtained 28 days and 2 years after starting the trial. The addition of CT made no difference to changes seen with cyclical PTH alone. Thus, the histomorphometric analyses for all 29 treated patients were compared with a separate group of biopsies from untreated osteoporotic control patients (n = 15). No significant increments in total bone volume or trabecular architecture were seen over 2 years of cyclical PTH treatment, although the light microscopic appearance of bone was normal. At the level of the bone remodeling unit, a twofold increase in total trabecular erosion surface over the control measurements was observed within the first 28 days of PTH treatment (10 +/- 5 vs. 5 +/- 3% trabecular surface, p < 0.01), which was sustained over 2 years. Trabecular bone formation rates (surface referent) were 11 +/- 7 microm(3)/microm(2)/year in control patients and threefold higher in treated patients both acutely (31 +/- 31 microm(3)/microm(2)/year, p < 0.01) and after 2 years (33 +/- 43 microm(3)/microm(2)/year, p < 0. 05). The activation frequency of trabecular remodeling was threefold higher than controls through 2 years of treatment (p < 0.05). The mean wall thickness of completed osteons after 2 years of treatment was significantly larger than controls (28 +/- 7 vs. 22 +/- 5 microm, p < 0.01), suggesting a positive remodeling balance, as well as the histomorphometric evidence of increased bone turnover and the increased resorption surfaces. Over 2 years of cyclical PTH therapy, cortical thickness remained significantly higher than controls (680 +/- 202 vs 552 +/- 218 microm, p < 0.05), without significant changes in cortical porosity. Thus, the histomorphometric changes during cyclical PTH therapy in patients with severe osteoporosis are consistent with increased trabecular bone turnover and a positive remodeling balance, with no evidence for detrimental changes in cortical bone.  相似文献   

9.
Jordan GR  Loveridge N  Bell KL  Power J  Rushton N  Reeve J 《BONE》2000,26(3):305-313
Intracapsular femoral neck fractures are associated with decreased cortical width and increased proportions of Haversian canals with diameters greater than the normal mean plus 3 SD (i.e., >385 microm). Such canals might be formed if closely associated resorbing osteons merge; a cortical event analogous with the loss of cancellous connectivity. To test this, we investigated the pattern of osteon distribution in the aging femoral neck to determine if remodeling osteons were distributed in anatomical clusters. Femoral neck biopsies from female patients with intracapsular hip fractures (n = 13) were compared with age/gender-matched cadaveric controls (n = 13). Solochrome-stained sections were analyzed for Haversian canal location, canal diameter, and the presence of an osteoid surface. Clustering was investigated using statistical software with a cluster defined as two or more osteoid-bearing osteon centers within 0.75 mm of each other. Clusters occurred more frequently than would be expected by chance (p < 0.001). Fracture cases had more clusters per unit area (3.14 +/- 0.31 clusters/25 mm2 of cortical bone) than controls (1.89 +/- 0.22) (p = 0.002). In fracture cases, the antero-inferior, antero-superior, and infero-anterior regions had more clusters per 25 mm2 than comparable control regions (ant/inf: 4.12 +/- 0.79, 1.70 +/- 0.60,p = 0.025; ant/sup: 5.31 +/- 1.1, 1.80 +/- 0.59,p = 0.013; inf/ant: 3.15 +/- 0.49, 1.27 +/-0.29, p = 0.004). The mean number of clusters per 25 mm2 per region correlated with the mean porosity per region (adjusted r2 = 0.60;p = 0.014), and the total number of giant canals per region correlated with the total number of clusters per region (adjusted r2 = 0.58; p = 0.011). In conclusion, remodeling osteons are clustered or grouped anatomically, and fracture cases have more clusters than controls. Our data suggest that merging of adjacent, clustered osteons during resorption could lead to the rapid development of canals with excessive diameters and focal weakness. Clustering is greatest in those regions that we have previously shown to have the largest relative reductions in bone strength compared with controls and known to be maximally loaded during a sideways fall. This implicates the remodeling process underlying clustering of remodeling osteons in the aetiology of hip fracture.  相似文献   

10.
Rauch F  Travers R  Glorieux FH 《BONE》2007,40(2):274-280
Although intracortical bone remodeling is a key aspect of bone physiology, very little is known about this process during human bone development. In this study, we examined transiliac bone samples from 56 individuals between 1.5 and 22.9 years of age (31 female; tetracycline labeling present in 42 subjects) who did not have evidence of metabolic bone disease. Parameters of osteonal structure (osteon diameter, wall thickness, diameter of osteonal canals) and dynamic measures of intracortical remodeling were determined separately for the external and internal cortex. We found that measures of osteonal structure were independent of age. However, the percentage of osteons showing metabolic activity was lower in the older study subjects, corresponding to a slowdown in the turnover of cortical bone. Most dynamic parameters of bone metabolism were higher in the internal cortex than in the external cortex. Cortical porosity was negatively associated with age on the external, but not on the internal cortex. The bone forming activity that refills the remodeling cavities seemed to favor the side of the osteonal canal that faced towards the periosteum. In summary, intracortical remodeling activity varies markedly during bone development, and is slightly asymmetric between the two cortices of an iliac bone specimen. Remodeling during development is thus an age-dependent process that varies with location even within the same bone.  相似文献   

11.
In 19 patients with primary hyperparathyroidism (PHPT) (14 women and 5 men; age 53 +/- 11 years, range 29-69 years), bone densitometry, biochemical markers of bone turnover, and iliac crest bone biopsies were obtained before and 3 years after successful surgical treatment. A significant increase in bone mineral content (BMC) was observed in both the lumbar spine (p < 0.001) and the proximal part of the distal forearm (p < 0.001), whereas the increase in BMC in the femoral neck was insignificant. Biochemical markers of bone formation (serum alkaline phosphatase, serum bone alkaline phosphatase and serum osteocalcin) and resorption (serum pyridinoline cross-linked telopeptide of type I collagen and urine N-telopeptide of type I collagen) all decreased following treatment. In cortical bone, relative cortical width increased following surgery (p < 0.05) and cortical porosity decreased (p < 0.01). No changes were observed in core width or cortical width. In cancellous bone, no significant changes were observed in any of the measured structural parameters. However, significant reductions in the extent of osteoid- (p < 0.01) and tetracycline-labeled surfaces (p < 0.001), and in bone formation rate (p < 0.001) and activation frequency (p < 0.001), were found. The numerical decrease in the extent of eroded surfaces did not reach significance (p = 0.057). No changes were observed in mineral appositional rate and adjusted appositional rate. The amount of bone resorbed (expressed as the resorption depth) and the amount of bone reformed (expressed as wall thickness) per remodeling cycle seemed unaffected by the treatment. Consequently, no effect on bone balance per remodeling cycle could be detected. The present study of PHPT patients showed that, within 3 years after surgery, BMC of both cancellous and cortical bone areas had increased. At the same time, bone turnover decreased markedly, as judged from biochemical as well as histomorphometric data, but no changes were seen in trabecular bone structure. In cortical bone, the relative cortical width increased and the cortical porosity decreased.  相似文献   

12.
Investigations of the actions of estrogen on the skeleton have mainly focused on cancellous bone and there are no reported histomorphometric studies of the effects of oestrogen on cortical bone in humans. The aim of this study was to investigate the effects of both conventional hormone replacement therapy (HRT) and high-dose oestradiol on cortical bone in postmenopausal women. Transiliac biopsies were obtained from nine postmenopausal women aged 54-71 yr before and after 2 yr (mean, 23.5 months) of conventional HRT and in seven postmenopausal women aged 52-67 yr after long-term, high-dose oestradiol implant therapy (at least 14 yr). Indices of bone turnover, remodeling, and cortical structure were assessed by image analysis. Cortical width was highest in the women treated with high-dose oestrogen therapy (2.29 +/- 0.78 mm; mean +/- SD) and lowest in untreated women (1.36 +/- 0.60 mm; P=0.014). The proportion of canals with an eroded surface was significantly lower in the high-dose oestrogen group than in women before or after conventional HRT (3.03 +/- 3.7% vs. 11.1 +/- 7.1% and 10.5 +/- 8.6%; P=0.017 and 0.05, respectively). Bone formation rate (microm2/microm/day) in untreated women was significantly higher than in the high-dose oestrogen group (0.121 +/- 0.072 vs. 0.066 +/- 0.045, respectively; P=0.05), values in women treated with conventional HRT being intermediate. Our results provide the first histomorphometric evidence in postmenopausal women of dose-dependent oestrogen-induced suppression of bone turnover in iliac crest cortical bone. There was also a trend toward higher wall width with increasing dose of oestrogen, consistent with the previously reported anabolic effect in cancellous bone.  相似文献   

13.
Lee KC  Maxwell A  Lanyon LE 《BONE》2002,31(3):407-412
Functional adaptation of the mouse ulna in response to artificial loading in vivo was assessed using a technique previously developed in the rat. Strain gauge recordings from the mouse ulnar midshaft during locomotion showed peak strains of 1680 muepsilon and maximum strain rates of 0.03 sec(-1). During falls from 20 cm these reached 2620 muepsilon and 0.10 sec(-1). Axial loads of 3.0 N and 4.3 N, applied through the olecranon and flexed carpus, engendered peak strains at the lateral ulnar midshaft of 2000 muepsilon and 3000 muepsilon, respectively. The left ulnae of 17, 17-week-old female CD1 mice were loaded for 10 min with a 4 Hz trapezoidal wave engendering a strain rate of 0.1 sec(-1) for 5 days/week for 2 weeks. The mice were killed 3 days later. The response of the cortical bone of the diaphysis was assessed histomorphometrically using double calcein labels administered on days 3 and 12 of the loading period. Loading to peak strains of 2000 muepsilon stimulated lamellar periosteal bone formation, but no response endosteally. The greatest increase in cortical bone area was 4 mm distal to the midshaft (5 +/- 0.4% compared with 0.1 +/- 0.1% in controls [p < 0.01]). Periosteal bone formation rate (BFR) at this site was 0.73 +/- 0.06 microm(2)/microm per day, compared with 0.03 +/- 0.02 microm(2)/microm per day in controls (p < 0.01). Loading to peak strains of 3000 muepsilon induced a mixed woven/lamellar periosteal response and lamellar endosteal bone formation. Both of these were greatest 3-4 mm distal to the ulnar midshaft. At this level, the loading-induced periosteal response increased cortical bone area by 21 +/- 4% compared with 0.03 +/- 0.02% in controls, and resulted in a BFR of 2.84 +/- 0.42 microm(2)/microm per day, compared with 0.01 +/- 0.01 microm(2)/microm per day in controls (p < 0.05). Endosteal new bone formation resulted in a 2 +/- 0.4% increase in cortical bone area, compared with 0.4 +/- 0.3% in controls, and a BFR of 1.05 +/- 0.23 microm(2)/microm per day, compared with 0.22 +/- 0.15 microm(2)/microm per day in controls (p < 0.05). These data show that the axial ulna loading technique developed in the rat can be used successfully in the mouse. As in the rat, a short daily period of loading results in an osteogenic response related to peak strain magnitude. One important advantage in using mice over rats involves the potential for assessing the effects of loading in transgenics.  相似文献   

14.
Exercise enhances bone growth and increases peak bone mass. The aim of this study was to determine whether or not 4 weeks of deconditioning after 8 weeks of exercise in growing rats would result in a decrease in bone gain or reverse the benefits of exercise. Fifty 4-week-old female Sprague-Dawley rats were randomized by a stratified weight method into 5 groups with 10 rats in each group: 8 weeks exercise (8EX), 8 weeks sedentary control (8S), 12 weeks exercise (12EX), 8 weeks exercise followed by 4 weeks sedentary (8EX4S), and 12 weeks sedentary control (12S). The exercise consisted of running on a treadmill with a 5 degrees slope at 24 m/minute for 1 h/day and 5 days/week. After each period of exercise, cancellous and cortical bone histomorphometry were performed on double fluorescent labeled 5-microm-thick sections of the proximal tibia and 40-microm-thick sections of the tibial shaft, respectively. Eight and 12 weeks of exercise resulted in a significant increase in the body weight and gastrocnemius muscle weight by two-way analysis of variance (ANOVA). The femoral wet weight (mg; mean +/- SD; 8EX, 781 +/- 45.1 vs. 8S, 713 +/- 40.5; p < 0.05; 12EX, 892 +/- 41.6 vs. 12S, 807 +/- 19.8; p < 0.05) was significantly higher in the exercise group than that in the respective control groups. The femoral wet weight and bone volume (BV) of the 8EX4S group (818 +/- 46.2 mg and 531 +/- 31.2 microl, respectively) were significantly lower than those of the 12EX group (p < 0.05) and did not differ significantly from those of the 12S groups. The cancellous BV was significantly higher in the 8EX and 12EX groups than that in the respective sedentary groups (p < 0.05). The cortical bone area of the tibial shaft was also significantly higher in the 12EX than that in the 12S group (p < 0.05). The increase in the cancellous BV or cortical bone area was caused by an increase in the mineral apposition rate (MAR), without a significant effect in the labeled perimeter. The bone formation rate (BFR; microm3/microm2 per day) in the cancellous bone (12EX, 27.9 +/- 7.74 vs. 12S, 15.4 +/- 4.56; p < 0.05) or periosteal surface (12EX, 127.6 +/- 27.7 vs. 12S, 79.5 +/- 18.6; p < 0.05) was significantly higher in the exercised groups than that in the respective control group (p < 0.05). Again, deconditioning resulted in a decrease in the cancellous BFR, BV, periosteal BFR, and cortical bone area to levels not significantly different from the 12S group. In conclusion, our findings showed that exercised growing rats, when deconditioned, lost the benefits gained through exercise and their bone parameters were reduced to levels not different from the sedentary control. Thus, continued exercise is required to maintain high bone mass.  相似文献   

15.
Anabolic osteoporosis drugs improve bone mineral density by increasing bone formation. The objective of this study was to evaluate the early effects of abaloparatide on indices of bone formation and to assess the effect of abaloparatide on modeling-based formation (MBF), remodeling-based formation (RBF), and overflow MBF (oMBF) in transiliac bone biopsies. In this open-label, single-arm study, 23 postmenopausal women with osteoporosis were treated with 80 μg abaloparatide daily. Subjects received double fluorochrome labels before treatment and before biopsy collection at 3 months. Change in dynamic histomorphometry indices in four bone envelopes were assessed. Median mineralizing surface per unit of bone surface (MS/BS) increased to 24.7%, 48.7%, 21.4%, and 16.3% of total surface after 3 months of abaloparatide treatment, representing 5.5-, 5.2-, 2.8-, and 12.9-fold changes, on cancellous, endocortical, intracortical, and periosteal surfaces (p < .001 versus baseline for all). Mineral apposition rate (MAR) was significantly increased only on intracortical surfaces. Bone formation rate (BFR/BS) was significantly increased on all four bone envelopes. Significant increases versus baseline were observed in MBF on cancellous, endocortical, and periosteal surfaces, for oMBF on cancellous and endocortical surfaces, and for RBF on cancellous, endocortical, and intracortical surfaces. Overall, modeling-based formation (MBF + oMBF) accounted for 37% and 23% of the increase in bone-forming surface on the endocortical and cancellous surfaces, respectively. Changes from baseline in serum biomarkers of bone turnover at either month 1 or month 3 were generally good surrogates for changes in histomorphometric endpoints. In conclusion, treatment with abaloparatide for 3 months stimulated bone formation on cancellous, endocortical, intracortical, and periosteal envelopes in transiliac bone biopsies obtained from postmenopausal women with osteoporosis. These increases reflected stimulation of both remodeling- and modeling-based bone formation, further elucidating the mechanisms by which abaloparatide improves bone mass and lowers fracture risk. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

16.
Endocortical remodeling and wall thickness (W.Th.) were measured in femoral neck bone from 12 female fracture cases (81.3 +/- 1.5 years) and 12 sex-matched controls (81.9 +/- 1.9 years). Regionally, osteoid and eroded surface were increased, whereas W.Th. was reduced. These processes likely contribute to cortical bone loss seen in hip fracture. INTRODUCTION: Because periosteal expression of alkaline phosphatase was similar between cases and controls, we hypothesized that the mechanism causing the marked femoral neck cortical thinning associated with hip fracture may be net endocortical bone loss. METHODS: Twelve female cases of femoral neck fracture (mean age = 81.3 +/- 1.5 years) and 12 age- and sex-matched postmortem controls (mean age = 81.9 +/- 1.9 years) were included in the study. Samples of their femoral neck bone were embedded in methyl methacrylate, sectioned at 10 microm, and stained with Solochrome cyanine R and Goldner's trichrome for the detection of osteoid (%OS/BS) and resorption surfaces (%ES/BS) respectively. In addition, wall thickness (W.Th.) and lamellar thickness (Lm.Th.) data were also collected from identifiable endocortical bone packets as a measure of formative potential. RESULTS AND CONCLUSIONS: %OS/BS was significantly elevated in the anterior (control = 3.4 +/- 0.7: fracture = 11.0 +/- 2.3; p = 0.0001), inferior (3.4 +/- 1.0: 9.9 +/- 3.0; p = 0.0009), and posterior quadrants (3.2 +/- 0.8: 9.1 +/- 2.3; p = 0.0021). Only for anterior region was increased %ES/BS demonstrated in the fracture group (2.8 +/- 0.6: 5.3 +/- 0.7; p = 0.055). W.Th. (mm) was reduced only in the inferior region of the fracture cases (control = 33.7 +/- 1.2: fracture = 30.6 +/- 0.9; p = 0.013), whereas Lm.Th. was also reduced inferiorly (control = 2.7 +/- 0.08: fracture = 2.5 +/- 0.08; p = 0.042). These data suggest that an endocortical remodeling imbalance involving reduced bone formation within inferior region coupled with elevated anterior resorption may make an important contribution to the cortical thinning observed in cases of femoral neck fracture.  相似文献   

17.
BACKGROUND: The increase of bone mineral density in cortical bone after parathyroidectomy is smaller than that in cancellous bone. Changes of serum bone markers reflect those of bone metabolism both in cortical and cancellous bone after parathyroidectomy. The present study was undertaken to investigate changes of histomorphometric parameters of cortical and cancellous bone together and their correlation with those of serum bone markers. METHODS: Iliac bone biopsy was performed before and 1 week after parathyroidectomy in Group I (n = 13), and before and 4 and 12 weeks after in Group II (n = 11). Moreover, changes of histomorphometric parameters of the endocortical, intracortical and periosteal surfaces as well as in cancellous bone were monitored. Serum levels of intact parathyroid hormone and bone markers were measured simultaneously. Results. In cancellous bone, osteoclast surface (Oc.S/BS) decreased to 0% within 4 weeks after parathyroidectomy, while osteoblast surface (Ob.S/BS) transiently increased at 1 week, followed by a reduction at 4 weeks to levels below the pre-surgical level. In cortical bone, Oc.S/BS was not reduced to 0%, while a significant and temporary increase of Ob.S/BS was observed only on the endocortical and intracortical surfaces at 4 weeks, but not at 1 week. Serum bone resorption markers did not completely disappear and significant and sustained increases of bone formation markers were observed until 4 weeks after parathyroidectomy. CONCLUSIONS: Changes of bone formation markers lagged behind those of histomorphometric parameters in cancellous bone because changes of cortical bone were observed later and were incomplete compared with those of cancellous bone.  相似文献   

18.
Bone fluoride content (BFC) was measured and histomorphometric analysis of undecalcified sections was performed in transiliac biopsy cores from 29 patients (16 men, 13 women, aged 51 +/- 17 years) suffering from skeletal fluorosis due to chronic exposure to fluoride. The origin of the exposure, known in 20 patients, was either hydric (endemic or sporadic) or industrial, or in a few cases iatrogenic. Measured on calcined bone using a specific ion electrode, BFC was significantly high in each specimen (mean +/- SD; 0.79 +/- 0.36% on bone ash). The radiologically evident osteosclerosis observed in each patient was confirmed by a significant increase in cancellous bone volume (40.1 +/- 11.2% vs. 19.0 +/- 2.8% in controls, p less than 0.0001). There were significant increases in cortical width (1292 +/- 395 mcm vs. 934 +/- 173 mcm, p less than 0.0001) and porosity (14.4 +/- 6.4% vs. 6.5 +/- 1.7%, p less than 0.002), but without reduction of cortical bone mass. Cancellous osteoid volume and perimeter, as well as width of osteoid seams, were significantly increased in fluorotic patients. The increase in cancellous osteoid perimeter was almost three-fold greater than that noted in cancellous eroded perimeter. In 15 patients doubly labeled with tetracycline, the mineral apposition rate was significantly decreased, mineralization lag time was significantly increased. The fluorotic group had a greater number of osteoblasts than controls with a very high proportion of flat osteoblasts. The ultrastructural characteristics reflecting the activity of the bone cells were clearly visible on electron microscopy. Bone formation rate and adjusted apposition rate were significantly decreased in skeletal fluorosis. On stained sections and microradiographs, bone tissue showed typical modifications for skeletal fluorosis (linear formation defects, mottled bone). The volume of cancellous interstitial mineralization defects and the proportion of mottled periosteocytic lacunae were markedly increased in skeletal fluorosis. These two parameters were significantly correlated together but neither of these was significantly correlated with BFC. Renal function did not significantly influence the changes in BFC and histomorphometry of fluorotic patients. Skeletal fluorosis is thus characterized by an unbalanced coupling in favor of bone formation, and a great number of osteoblasts with a high proportion of flat osteoblasts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Using bone histomorphometry, we found that a 1-month treatment with PTH(1-34) [hPTH(1-34)] stimulated new bone formation on cancellous, endocortical, and periosteal bone surfaces. Enhanced bone formation was associated with an increase in osteoblast apoptosis. INTRODUCTION: The precise mechanisms by which hPTH(1-34) increases bone mass and improves bone structure are unclear. Using bone histomorphometry, we studied the early effects of treating postmenopausal women with osteoporosis with hPTH(1-34). MATERIALS AND METHODS: Tetracycline-labeled iliac crest bone biopsies were obtained from 27 postmenopausal women with osteoporosis who were treated for 1 month with hPTH(1-34), 50 microg daily subcutaneously. The results were compared with tetracycline-labeled biopsies from a representative control group of 13 postmenopausal women with osteoporosis. RESULTS: The bone formation rate on the cancellous and endocortical surfaces was higher in hPTH(1-34)-treated women than in control women by factors of 4.5 and 5.0, respectively. We also showed a 4-fold increase in bone formation rate on the periosteal surface, suggesting that hPTH(1-34) has the potential to increase bone diameter in humans. On the cancellous and endocortical surfaces, the increased bone formation rate was primarily caused by stimulation of formation in ongoing remodeling units, with a modest amount of increased formation on previously quiescent surfaces. hPTH(1-34)-stimulated bone formation was associated with an increase in osteoblast apoptosis, which may reflect enhanced turnover of the osteoblast population and may contribute to the anabolic action of hPTH(1-34). CONCLUSIONS: These findings provide new insight into the cellular basis by which hPTH(1-34) improves cancellous and cortical bone architecture and geometry in patients with osteoporosis.  相似文献   

20.
The cellular mechanisms for bone loss in type I (postmenopausal) osteoporosis are highly controversial. We attempted to resolve this by assessing rates of formation and resorption of iliac cancellous bone by a new histomorphometric method in 89 women with osteoporosis (mean age +/- SD, 66 +/- 6 years) and in 32 carefully selected normal postmenopausal women (64 +/- 6 years). In the osteoporotic women, bone resorption rate was increased by 39% (P less than 0.05) at the cellular level and by 67% (P less than 0.05) at the tissue level, whereas bone formation was unchanged at the tissue level but decreased by 14% (P less than 0.01) at the cellular (osteoblast) level. This pronounced remodeling imbalance (P less than 0.001) was probably exacerbated by a 45% increase (P less than 0.1) in activation frequency of new remodeling foci. These abnormalities were associated with a high rate of cancellous bone loss (median, 5.8%/year versus 0.1% year in controls). Thus, accelerated loss of cancellous bone in type I osteoporosis results from the combination of increased bone resorption and inadequate compensation by bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号