首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu BF  Bi HC  Huang M 《药学学报》2011,46(10):1173-1177
孕烷受体(pregnane X receptor,PXR)和组成性雄甾烷受体(constitutive androstane receptor,CAR)是核受体(nuclear receptor,NR)亚家族的重要成员;为配体活化的转录因子,能调控大量的靶基因。本文主要对其基本结构、机制及参与转录活化的辅助因子作简要介绍,重点讲述了它们在调节药物代谢与转运、糖异生及生酮作用、脂质代谢以及炎症反应等方面的意义。通过对PXR及CAR的研究,可以有效预测和防止药物相互作用;为寻找疾病治疗新靶标提供方向。  相似文献   

2.
Regulation of hepatic cytochromes p450 by lipids and cholesterol   总被引:1,自引:0,他引:1  
  相似文献   

3.
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from the endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. They regulate numerous genes which are involved in drug and xenobiotic metabolism, including Phase I (cytochrome P450), Phase II (conjugation catalyzed by sulfotransferases, glucuronosyltransferases and glutathione S-transferases), and transporters (multidrug resistance proteins, multidrug resistance-associated proteins, and organic anion-transporting polypeptides). Although CAR and PXR were initially characterized as xenosensors, it is now evident that CAR and PXR also trigger pleiotropic effects on physiological or pathological functions. Recent studies have shown that the activation of CAR and PXR alters lipid metabolism, glucose homeostasis, and inflammation. Therefore, in addition to regulating drug elimination pathways, they also play important roles in regulating metabolic pathways. As a result, these receptors may be closely associated with the pathogenesis of many diseases. However, the pathophysiological roles of CAR and PXR are not fully understood. The purpose of this review is to discuss the physiological and pathological roles of CAR and PXR in liver diseases.  相似文献   

4.
5.
6.
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are key regulators of xenobiotic-inducible cytochrome P450 gene expression. Whereas much is known about their role in regulating drug metabolism, little is known regarding their role in regulating drug transport in vivo. Wild-type mice and mice lacking PXR (PXR-KO) were used to examine the inducible expression of two drug transporter genes, Oatp2 (Slc21a5) and Mrp3 (Abcc3), in liver following treatment with selective PXR and CAR activators. Selective activation of PXR or CAR induced Oatp2 and Mrp3 expression in wild-type mice but not in PXR-KO mice. Basal expression levels of Oatp2 and Mrp3 gene were significantly higher in PXR-KO mice when compared with wild-type mice. Additionally, phenobarbital (PB)-inducible Oatp2 and Mrp3 gene expression was significantly increased in the PXR-KO mice when compared with wild-type PB-treated mice. We also examined the effect of PXR ablation on PB-inducible hepatic CYP3A activity in vivo. Microsomes isolated from PB-treated PXR-KO mice exhibited a significantly elevated rate of testosterone 6 beta-hydroxylation when compared with microsomes isolated from wild-type PB-treated mice. PB treatment produced significantly increased levels of hepatomegaly in PXR-KO mice when compared with wild-type PB-treated mice. Taken together, these results suggest that nonliganded PXR plays a net negative role in coregulating shared PXR/CAR-target gene expression in vivo and extend the hypothesis that PXR and CAR coregulate not only drug metabolism but also drug transport.  相似文献   

7.
Activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) by xenobiotic inducers of cytochromes P450 is part of a pleiotropic response that includes liver hypertrophy, tumor promotion, effects on lipid homeostasis, and energy metabolism. Here, we describe an acute response to CAR and PXR activators that is associated with induction of Insig-1, a protein with antilipogenic properties. We first observed that activation of CAR and PXR in mouse liver results in activation of Insig-1 along with reduced protein levels of the active form of sterol regulatory element binding protein 1 (Srebp-1). Studies in mice deficient in CAR and PXR revealed that the effect on triglycerides involves these two nuclear receptors. Finally, we identified a functional binding site for CAR and PXR in the Insig-1 gene by in vivo, in vitro, and in silico genomic analysis. Our experiments suggest that activation Insig-1 by drugs leads to reduced levels of active Srebp-1 and consequently to reduced target gene expression including the genes responsible for triglyceride synthesis. The reduction nuclear Srebp-1 by drugs is not observed when Insig-1 expression is repressed by small interfering RNA. In addition, observed that Insig-1 is also a target of AMP-activated kinase, the hepatic activity of which is increased by activators of CAR and PXR and is known to cause a reduction of triglycerides. The fact that drugs that serve as CAR or PXR ligands induce Insig-1 might have clinical consequences and explains alterations lipid levels after drug therapy.  相似文献   

8.
Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance.  相似文献   

9.
The nuclear pregnane X receptor (PXR) and constitutive androstane receptor (CAR) play central roles in protecting the body against environmental chemicals (xenobiotics). PXR and CAR are activated by a wide range of xenobiotics and regulate cytochrome P450 and other genes whose products are involved in the detoxification of these chemicals. In this report, we have used receptor-selective agonists together with receptor-null mice to identify PXR and CAR target genes in the liver and small intestine. Our results demonstrate that PXR and CAR regulate overlapping but distinct sets of genes involved in all phases of xenobiotic metabolism, including oxidative metabolism, conjugation, and transport. Among the murine genes regulated by PXR were those encoding PXR and CAR. We provide evidence that PXR regulates a similar program of genes involved in xenobiotic metabolism in human liver. Among the genes regulated by PXR in primary human hepatocytes were the aryl hydrocarbon receptor and its target genes CYP1A1 and CYP1A2. These findings underscore the importance of these two nuclear receptors in defending the body against a broad array of potentially harmful xenobiotics.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The constitutive androstane receptor (CAR, NR1I3) has emerged as an important regulator of drug metabolism. CAR responds to a wide spectrum of xenobiotics by inducing expression of cytochrome P450 (CYP) enzymes and a number of other proteins responsible for drug metabolism in the liver. The xenosensor function of CAR overlaps with that of the pregnane X receptor (PXR), another xenobiotic receptor that belongs to the nuclear hormone superfamily. We observed that injection of dexamethasone (Dex), a ligand for the glucocorticoid receptor (GR) and PXR but not CAR, results in an unexpected twofold increase in the stomach weight of CAR-null animals relative to wild-type animals. Here, we show that CAR knockout mice have elevated levels of Dex in the brain, resulting in a more rapid and robust increase in the hypothalamic expression of the GR-responsive target genes encoding neuropeptide Y (NPY) and neuropeptide Y receptor subtype 1 (NPY-R1). As expected, this is accompanied by a higher increase in the food intake of the CAR-null animals. The data described here highlight the complexity of the overlapping functions of CAR and PXR.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号