首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly invasive human prostate cancer PC3 cell line was found to express the alpha(v)beta3 integrin; in contrast, the noninvasive LNCaP prostate cancer cell line did not express alpha(v)beta3. PC3 cells adhered to and migrated on vitronectin (VN), an alpha(v)beta3 ligand expressed in mature bone where prostate cancer cells preferentially metastasize. In contrast, LNCaP cells did not adhere to or migrate on VN. Analysis of primary human prostate cancer cells isolated from 16 surgical specimens, showed that these cells expressed alpha(v)beta3, whereas normal prostate epithelial cells did not. In addition, only primary prostate cancer cells adhered to and migrated on VN. The role of alpha(v)beta3 in mediating prostate epithelial cell migration was confirmed using LNCaP cell transfectants expressing beta3 (beta3-LNCaP). Exogenous expression of alpha(v)beta3 induced LNCaP cells to adhere to and migrate on VN. In response to alpha(v)beta3 engagement, increased tyrosine phosphorylation of focal adhesion kinase (FAK), a signaling molecule activated by integrins and able to modulate cell migration, was detected. Transfection of FAK-related nonkinase, known to compete with FAK for its correct localization and phosphorylation, caused inhibition of beta3-LNCaP cell migration, specifically on VN. These data indicate that de novo expression of alpha(v)beta3 integrin in prostate cancer cells generates a migratory phenotype that is modulated by a FAK signaling pathway. This study points to alpha(v)beta3 as potential target in prostate cancer cell invasion and metastasis.  相似文献   

2.
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that on activation generates signals that can modulate crucial cell functions, including cell proliferation, migration, and survival. In vitro, overexpression of FAK has been shown to promote cell proliferation by signaling through the Ras/mitogen-activated protein kinase cascade in several cell types. We have shown previously that overexpression of exogenous FAK lacking alternative splicing in malignant astrocytoma clones injected intracerebrally into SCID mouse brains promotes tumor cell proliferation. Here, we show that in anaplastic astrocytoma biopsy samples, FAK is expressed as an unspliced variant and migrates with a faster mobility similar to that observed in embryonic brain. Compared with nonneoplastic adult brain biopsies, the levels of FAK protein are elevated as are its levels of activation as assessed by autophosphorylation and overall tyrosine phosphorylation. The activity of Src kinase in these tumors is also elevated, as well as the activity of Src kinase associated with FAK; the latter may result in enhanced Src kinase phosphorylation of FAK. Phosphorylated Shc is associated with FAK in the anaplastic astrocytoma biopsy samples and in astrocytoma cells overexpressing FAK in vitro but not in nonneoplastic brain biopsy samples. Elevated extracellular signal-regulated kinase-2 activation and elevated expression of cyclins D and E are also found in anaplastic astrocytoma biopsy samples. These data provide evidence that the increased FAK activity in these tumors contributes to phosphorylation of Shc and likely to the promotion of Ras activity, extracellular signal-regulated kinase-2 activation, and cell proliferation in vivo.  相似文献   

3.
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Osteopontin (OPN), which is abundantly expressed in bone matrix, is involved in cell adhesion, migration, invasion and cell proliferation via interaction with its receptor, alphavbeta3 integrin. However, the effect of OPN on migration activity in human lung cancer cells is mostly unknown. Here we found that OPN increased the migration via activation of alphavbeta3 integrin in human lung cancer cells (A549 cells). Phosphatidylinositol 3-kinase inhibitor (PI3K; Ly294002), Akt inhibitor or ERK inhibitor (PD98059) inhibited the OPN-induced increase in the migration of lung cancer cells. OPN stimulation increased the phosphorylation of focal adhesion kinase (FAK), p85 subunit of PI3K, serine 473 of Akt and ERK. In addition, treatment of A549 cells with NF-kappaB inhibitor (PDTC) or IkappaB protease inhibitor (TPCK) inhibited OPN-induced migration of lung cancer cells. Stimulation of A549 cells with OPN also induced IkappaB kinase alpha/beta (IKK alpha/beta) phosphorylation, IkappaBalpha phosphorylation, p65 Ser(536) phosphorylation, and kappaB-luciferase activity. The OPN-mediated increases in IKK alpha/beta, IkappaBalpha and p65 Ser(536) phosphorylation were inhibited by Ly294002, Akt inhibitor and PD98059. Co-transfection with FAK, p85, Akt and ERK mutants also reduced the OPN-induced kappaB-luciferase activity. Taken together, these results suggest that OPN acts through alphavbeta3 integrin, which in turn activates the FAK, PI3K, Akt, ERK and NF-kappaB pathways, contributing to the migration of lung cancer cells.  相似文献   

4.
Integrins regulate both adhesion and signaling processes involved in proliferation and survival. alpha(v)beta(3) and alpha(v)beta(5) integrins have been shown to mediate cell adhesion and migration. Here we used human ovarian cancer cell lines (IGROV1, SKOV-3) that express alpha(v)beta(3) and alpha(v)beta(5) to study their role in cell proliferation and the signaling pathways involved. We found that alpha(v) integrins regulate cell proliferation through activation of integrin-linked kinase (ILK). An anti-alpha(v)-blocking antibody specifically inhibits the growth of IGROV1 and SKOV-3. The inhibition of cell proliferation involves alpha(v)beta(3) in IGROV1 cells, and both alpha(v)beta(3) and alpha(v)beta(5) in SKOV-3 cells. The reduced growth rate induced by alpha(v) integrin blockade is linked in both cell lines to G1/S cell cycle arrest. alpha(v) integrin blockade by neutralizing antibody as well as cyclic-RGD peptide caused an inhibition of ILK activity and phosphorylation of PKB/Akt on serine-473 but not on threonine-308, and was accompanied by an increase in p27(Kip1) expression. Overexpression of wild-type ILK rescued the phosphorylation of PKB/Akt on serine-473 in cells treated with anti-alpha(v) antibody. Inhibition of ILK by a pharmacological inhibitor results in inhibition of cell proliferation, PKB/Akt phosphorylation and increase of p27(Kip1). These results demonstrate that alpha(v) integrins regulate ovarian cancer cell proliferation through ILK.  相似文献   

5.
Focal adhesion kinase (FAK) is upregulated in several epithelial tumours and there has been considerable interest in developing small molecule kinase inhibitors of FAK. However, FAK also has important adaptor functions within the cell, integrating signals from both integrins and growth factors. To investigate the role of FAKs kinase domain, we generated fak-deficient squamous cell carcinoma (SCC) cell lines. Re-expression of a wild type or kinase dead FAK allowed us to delineate its kinase dependent functions. In addition, we used the novel FAK kinase inhibitor PF-562,271. The kinase activity of FAK was important for tumour cell migration and polarity but more striking was its requirement for the anchorage independent 3 dimensional (3D) proliferation of SCC cells and their growth as xenografts in mice. Inhibition of FAK activity and prevention of growth in 3D correlated with Src inhibition. We further identified a mechanism whereby FAK regulates proliferation in 3D via regulation of the kinase activity of Src. This was dependent on the kinase activity of FAK and its resulting phosphorylation on Y397 that provides a high affinity binding site for Src. These data support the further development of FAK kinase inhibitors as agents that have the potential to inhibit both tumour cell migration and proliferation.  相似文献   

6.
Cellular Src activity modulates cell migration, proliferation, and differentiation, and recent reports suggest that individual members of the Src family may play specific roles in these processes. As we have found that Lyn, but not Fyn, activity promotes migration of glioblastoma cells in response to the cooperative signal generated by platelet-derived growth factor receptor beta and integrin alpha(v)beta3, we compared the activity and expression of Lyn and Fyn in glioblastoma (grade IV) tumor biopsy samples with that in anaplastic astrocytoma (grade III) tumors, nonneoplastic brain, and normal autopsy brain samples. Lyn kinase activity was significantly elevated in glioblastoma tumor samples. Notably, the Lyn kinase activity accounted for >90% of pan-Src kinase activity in glioblastoma samples but only approximately 30% of pan-Src kinase activity in the other groups. The levels of phosphorylation of the autophosphorylation site were consistent with significantly higher Lyn activity in glioblastoma tumor tissue than nonneoplastic brain. Although the normalized levels of Lyn protein and the relative levels of Lyn message were significantly higher in glioblastoma samples than nonneoplastic brain, the normalized levels of Lyn protein did not correlate with Lyn activity in the glioblastoma samples. There was no significant difference in the normalized levels of c-Src and Fyn protein and message in the glioblastoma and nonneoplastic brain. Immunostaining revealed that Lyn is located primarily in the glioblastoma cells in the tumor biopsies. These data indicate that Lyn kinase activity is significantly elevated in glioblastoma tumors and suggest that it is the Lyn activity that promotes the malignant phenotype in these tumors.  相似文献   

7.
Accumulating evidence reveals a significant correlation between angiopoietin 2 (Ang2) expression and tumor invasion and metastasis in various human cancers, but the major focus of recent studies has been on the angiogenic effects of Ang2. We recently reported that Ang2-stimulated glioma cell invasion results from the up-regulation and activation of matrix metalloprotease 2 (MMP-2) in tumor cells. In this study, we identify a novel mechanism by which Ang2 stimulates MMP-2 expression leading to glioma cell invasion. We show that Ang2 interacts with alpha(v)beta(1) integrin in Tie2-deficient human glioma cells, activating focal adhesion kinase (FAK), p130(Cas), extracellular signal-regulated protein kinase (ERK) 1/2, and c-jun NH(2)-terminal kinase (JNK) and substantially enhancing MMP-2 expression and secretion. The Ang2/alpha(v)beta(1) integrin signaling pathway was attenuated by functional inhibition of beta(1) and alpha(v) integrins, FAK, p130(Cas), ERK1/2, and JNK. Furthermore, expression of a negative regulator of FAK, FAK-related nonkinase, by U87MG/Ang2-expressing glioma xenografts suppressed Ang2-induced MMP-2 expression and glioma cell infiltration in the murine brain. These data establish a functional link between Ang2 interaction with alpha(v)beta(1) integrin and glioma cell invasion through the FAK/p130(Cas)/ERK1/2 and JNK-mediated signaling pathway.  相似文献   

8.
Aguirre Ghiso JA 《Oncogene》2002,21(16):2513-2524
Activation of focal adhesion kinase (FAK), overexpressed in several human cancers, induces survival, proliferation and motility of cells in culture, but its functional importance in human tumor growth in vivo has not been elucidated. I explored the role of FAK in regulating tumorigenicity of human carcinoma cells, HEp3. These cells overexpress urokinase receptor (uPAR) which, by activating alpha5beta1 integrin, initiates an intracellular signal through FAK and Src leading to ERK activation and tumorigenicity in vivo. Down regulation of uPAR in these cells led to an approximately 3-5-fold reduction in FAK phosphorylation and association with Src and dormancy in vivo. Both FAK phosphorylation and ability to grow in vivo were restored by re-expression of uPAR. The FAK signaling pathway in T-HEp3 cells, measured by FAK phosphorylation, GTP-loaded Ras and ERK activation, was inhibited by transient or stable transfection of FAK related non-kinase (FRNK), known to have a dominant negative function, but not by a FRNK mutant version (S1034-FRNK). Most importantly, while vector- and mutant-S1034-FRNK transfected cells inoculated onto chicken embryo CAMs formed progressively growing tumors, the HA-FRNK-expressing T-HEp3 cells did not proliferate in vivo and remained dormant for at least 6 weeks. Both cell types had similar rate of apoptosis in vivo and the p38(SAPK) or PI3K-Akt signaling pathways were unaffected by FRNK. FRNK induced dormancy could be reverted by expression of an active-R4F-Mek1 mutant. These results show that active FAK is an important mediator of uPAR-regulated tumorigenicity of HEp3 cells and that interruption of FAK mitogenic signaling either through down-regulation of uPAR or by expression of FRNK can force human carcinoma cells into dormancy.  相似文献   

9.
Glioblastomas are highly lethal cancers that resist current therapies. Novel therapies under development target molecular mechanisms that promote glioblastoma growth. In glioblastoma patient specimens, the non-receptor tyrosine kinase focal adhesion kinase (FAK) is overexpressed. Upon growth factor receptor stimulation or integrin engagement, FAK is activated by phosphorylation on critical tyrosine residues. Activated FAK initiates a signal transduction cascade which promotes glioma growth and invasion by increasing cellular adhesion, migration, invasion, and proliferation. We find that human glioma cell lines express different levels of total FAK protein and activating phosphorylation of tyrosine residues Tyr397, Tyr861, and Tyr925. As all glioma cell lines examined expressed phosphorylated FAK, we examined the efficacy of a novel low-molecular weight inhibitor of FAK, TAE226, against human glioma cell lines. TAE226 inhibited the phosphorylation of FAK as well as the downstream effectors AKT, extracellular signal-related kinase, and S6 ribosomal protein in multiple glioma cell lines. TAE226 induced a concentration-dependent decrease in cellular proliferation with an associated G(2) cell cycle arrest in every cell line and an increase in apoptosis in a cell-line-specific manner. TAE226 also decreased glioma cell adhesion, migration, and invasion through an artificial extracellular matrix. Together, these data demonstrate the potential benefit of TAE226 for glioma therapy.  相似文献   

10.
Focal adhesion kinase (FAK) was first identified as a viral Src substrate, and substantial experimental data have significantly correlated the elevated FAK expression in human tumor cells with an increased cell adhesion and invasion potential. However, studies investigating the role of FAK in cell proliferation have been limited. Recently, a technique known as RNA interference (RNAi) was successfully adapted to mammalian cells to decrease specifically the expression of targeted cellular genes. In this study, we investigated the role of FAK in cell proliferation, adhesion, and migration by using small interfering RNA (siRNA) technique. Firstly, we constructed a plasmid library expressing short hairpin RNAs (shRNAs) targeting FAK and selected clones substantially suppressing FAK expression in HeLa and HT1080 cells. We then studied the function of FAK in the highly invasive human prostate cancer cell line, PC3M, and mouse breast cancer cell line 4T1, by using selected shRNA clones (#40 and #42) and siRNAs chemically synthesized following the target sequences of #40 and #42. We demonstrated that the decrease of FAK protein expression by treatment with shRNA/siRNA targeting FAK inhibited cell adhesion on a fibronectin/laminin-coated plate, cell migration in a haptotactic migration assay, and cell proliferation in vitro. Furthermore, it suppressed tumor growth in vivo in heterotopic/orthotopic mice models. These results support our hypothesis that FAK plays a crucial role in tumor formation and growth in vivo by regulation of cell adhesion and proliferation by FAK-dependent signals.  相似文献   

11.
Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, is involved in diverse cellular processes ranging from nutrient and energy homeostasis to proliferation and apoptosis. Its role in glioblastoma multiforme has yet to be elucidated. We identified GSK3 as a regulator of glioblastoma multiforme cell survival using microarray analysis and small-molecule and genetic inhibitors of GSK3 activity. Various molecular and genetic approaches were then used to dissect out the molecular mechanisms responsible for GSK3 inhibition-induced cytotoxicity. We show that multiple small molecular inhibitors of GSK3 activity and genetic down-regulation of GSK3alpha/beta significantly inhibit glioma cell survival and clonogenicity. The potency of the cytotoxic effects is directly correlated with decreased enzyme activity-activating phosphorylation of GSK3alpha/beta Y276/Y216 and with increased enzyme activity inhibitory phosphorylation of GSK3alpha S21. Inhibition of GSK3 activity results in c-MYC activation, leading to the induction of Bax, Bim, DR4/DR5, and tumor necrosis factor-related apoptosis-inducing ligand expression and subsequent cytotoxicity. Additionally, down-regulation of GSK3 activity results in alteration of intracellular glucose metabolism resulting in dissociation of hexokinase II from the outer mitochondrial membrane with subsequent mitochondrial destabilization. Finally, inhibition of GSK3 activity causes a dramatic decrease in intracellular nuclear factor-kappaB activity. Inhibition of GSK3 activity results in c-MYC-dependent glioma cell death through multiple mechanisms, all of which converge on the apoptotic pathways. GSK3 may therefore be an important therapeutic target for gliomas. Future studies will further define the optimal combinations of GSK3 inhibitors and cytotoxic agents for use in gliomas and other cancers.  相似文献   

12.
Recent studies have shown that integrin alpha v beta 3, a receptor for vitronectin, plays an important role in tumor-induced angiogenesis and tumor growth and that antagonists of alpha v beta 3 inhibit angiogenic processes including endothelial cell adhesion and migration. On the other hand, most inhibitors of integrin alpha v beta 3 are peptide antagonists that include the Arg-Gly-Asp (RGD) motif. We therefore reasoned that non-peptide inhibitors of endothelial cell adhesion to vitronectin might be useful for inhibition of tumor angiogenesis in vivo. We screened for low-molecular-weight natural products able to inhibit adhesion of human umbilical vein endothelial cells (HUVECs) to vitronectin, and pyrrothine group compounds including aureothricin, thioaurin and thiolutin were isolated from microbial culture broths. Of these compounds, thiolutin inhibited adhesion of HUVECs to vitronectin the most effectively (IC(50), 0.83 microM). In vivo experiments showed that thiolutin significantly suppressed angiogenesis induced by tumor cells (S-180), a pathological form of neovascularization, in a mouse dorsal air sac assay system. To explore the mechanism of inhibition of HUVEC adhesion to vitronectin by thiolutin, we examined the effect of this agent on intracellular cell adhesion signaling. We found that the amount of paxillin in HUVECs was significantly reduced by thiolutin treatment, while those of other focal adhesion proteins including vinculin and focal adhesion kinase (FAK) were not. Metabolic labeling experiments showed that thiolutin enhanced degradation of paxillin in HUVECs. Protease inhibitors (MG115 and E64-D) decreased the rate of degradation of the paxillin induced by thiolutin and partially restored thiolutin-induced inhibition of HUVEC adhesion to vitronectin. Based on these findings, we concluded that thiolutin, an inhibitor of HUVEC adhesion to vitronectin, reduces the paxillin level in HUVECs and suppresses tumor cell-induced angiogenesis in vivo.  相似文献   

13.
Signals from fibronectin-binding integrins promote neural crest cell motility during development in part through protein-tyrosine kinase (PTK) activation. Neuroblastoma (NB) is a neural crest malignancy with high metastatic potential. We find that alpha4 and alpha5 integrins are present in late-stage NB tumors and cell lines derived thereof. To determine the signaling connections promoting either alpha4beta1- or alpha5beta1-initiated NB cell motility, pharmacological, dominant negative and short-hairpin RNA (shRNA) inhibitory approaches were undertaken. shRNA knockdown revealed that alpha5beta1-stimulated NB motility is dependent upon focal adhesion kinase (FAK) PTK, Src PTK and p130Cas adapter protein expression. Cell reconstitution showed that FAK catalytic activity is required for alpha5beta1-stimulated Src activation in part through direct FAK phosphorylation of Src at Tyr-418. Alternatively, alpha4beta1-stimulated NB cell motility is dependent upon Src and p130Cas but FAK is not essential. Catalytically inactive receptor protein-tyrosine phosphatase-alpha overexpression inhibited alpha4beta1-stimulated NB motility and Src activation consistent with alpha4-regulated Src activity occurring through Src Tyr-529 dephosphorylation. In alpha4 shRNA-expressing NB cells, alpha4beta1-stimulated Src activation and NB cell motility were rescued by wild type but not cytoplasmic domain-truncated alpha4 re-expression. These studies, supported by results using reconstituted fibroblasts, reveal that alpha4beta1-mediated Src activation is mechanistically distinct from FAK-mediated Src activation during alpha5beta1-mediated NB migration and support the evaluation of inhibitors to alpha4, Src and FAK in the control of NB tumor progression.  相似文献   

14.
Integrin alpha(v)beta(3) is involved in varied cell biological activities, including angiogenesis, cell adhesion, and migration on several extracellular matrix components. Although alpha(v)beta(3) is not typically expressed in epithelial cells, it is expressed in macrophages, activated leukocytes, cytokine-stimulated endothelial cells, osteoclasts, and certain invasive tumors. Interestingly, the adhesion and migration of breast cancer cells on bone matrix are mediated, in part, by alpha(v)beta(3). Similar to breast cancer cells, prostate cancer cells preferentially metastasize to the bone. The biological events that mediate this metastatic pattern of prostate cancer are not well defined. This review discusses the role alpha(v)beta(3) plays in prostate cancer progression, with specific emphasis on bone metastasis and on alpha(v)beta(3) signaling in prostate cancer cells. The data suggest that alpha(v)beta(3), in part, facilitates prostate cancer metastasis to bone by mediating prostate cancer cell adhesion to and migration on osteopontin and vitronectin, which are common proteins in the bone microenvironment. These biological events require the activation of focal adhesion kinase and the subsequent activation of PI-3 kinase/Akt signaling pathway.  相似文献   

15.
Migration and adhesion of tumor cells are essential prerequisites for the formation of metastases in malignant diseases. Protein kinase C (PKC) has been shown to regulate cell migration, adhesion and proliferation. In order to identify a connection between PKC isoforms and tumor progression in renal cell carcinoma (RCC), the influence of PKC isoforms on cell migration, adhesion and proliferation and possible influences of the activity of integrins and focal adhesion kinase (FAK) were analyzed in RCC cells. The experiments were performed in the RCC cell line CCF-RC1 after pre-incubation of the cells with the PKC inhibitors GF109203X, GO6976, RO31-8220 and rottlerin. Cell migration and adhesion were assessed through chemotaxis analysis and adhesion to an endothelial monolayer, respectively. Cell proliferation was analysed by a BrdU incorporation assay. The expression and activity of beta1 integrins and FAK were analysed by Western blot analysis. GF109203X reduced cell migration to 69%, the activity of beta1 integrins to 63% and FAK expression to 82% compared to untreated cells. Rottlerin reduced cell migration in a concentration-dependent manner to 36%, cell proliferation to 81%, expression and activity of beta1 integrins to 72 and 79%, and expression and activity of FAK to 56 and 76% of untreated cells, respectively. RO31-8220 also reduced the expression and activity of beta1 integrins as well as the expression of FAK to 84, 66 and 66% of untreated cells, respectively. GO6976 reduced the expression of FAK to 60% of untreated cells. Cell migration was only slightly reduced by GO6976 to 84% of untreated cells, and cell adhesion remained uninfluenced. These findings show a critical role of PKCdelta in the regulation of tumor cell migration, which seems to be caused by affecting the expression and activity of beta1 integrins and FAK. These results can provide a basis for new strategies in preventing metastases of renal cell carcinoma.  相似文献   

16.
Hsu SL  Cheng CC  Shi YR  Chiang CW 《Cancer letters》2001,167(2):193-204
Our previous report demonstrated that all-trans-retinoic acid (ATRA) induces detachment and death under serum starvation in several human tumor cell lines. In this study, we examined the influence of cell-extracellular matrix interaction on the ability of ATRA to induce apoptosis. Plating of human hepatoma Hep3B cells onto poly-hydroxyethylmethacrylate-coated plates in the absence of serum resulted in the acceleration of ATRA-induced apoptosis. In contrast, ATRA-induced apoptosis was significantly suppressed by plating cells onto Matrigel-coated plates but not suppressed by culturing onto collagen-, laminin-, vitronectin-, or fibronectin-coated plates. Exogenously added soluble collagen, laminin, fibronectin, vitronectin or Matrigel failed to suppress ATRA-induced apoptosis. Results from the adhesion assay indicated that the cell attachment to fibronectin was significantly inhibited by ATRA. Treatment with perturbing antibody against integrin alpha5 or beta1 subunits resulted in promotion of ATRA-induced apoptosis. Moreover, the proteolytic cleavage of alpha5beta1 integrin and focal adhesion kinase (FAK) proteins is linked to the early phase of the ATRA-induced apoptotic process. Furthermore, ATRA-induced detachment, death, and cleavage of alpha5beta1 integrin and FAK were drastically suppressed by plating cells onto Matrigel-coated plates. These findings provide evidence that abrogation of cell adhesion, through proteolysis of alpha5beta1 integrin and FAK, is closely linked to ATRA-induced apoptosis in Hep3B cells.  相似文献   

17.
18.
Huang S  Stupack D  Liu A  Cheresh D  Nemerow GR 《Oncogene》2000,19(15):1915-1923
alpha(v) integrins have been shown to play an important role in epithelial-derived cell migration, cell growth and tumor invasion/metastasis, however their role on cells of hematopoietic origin is less clear. Epstein-Barr virus (EBV), a human herpesvirus associated with several lymphoproliferative disorders in man, induces expression of alpha(v) integrins on transformed B lymphocytes. In the studies reported here, we show that EBV infection increases alpha(v), beta3 and beta5 integrin subunit mRNAs as well as upregulates the expression of the alphavbeta3 integrin protein on human B cells. Among the nine different EBV proteins expressed in latently infected B cells (nuclear and plasma membrane-associated), only LMP1, LMP2A and EBNA2 were shown to selectively transactivate the alpha(v) integrin promoter. Treatment of EBV-transformed B cells with alpha(v) antisense oligonucleotides specifically reduced cell surface expression of alpha(v) integrins, inhibited cell growth in low serum, reduced cell invasion in matrigels and decreased expression of metalloprotease, MMP9. These studies indicate that alpha(v) integrins play a significant role in EBV-induced B-lymphocyte proliferation and invasion. Strategies to interfere with alphav integrin expression and/or function may therefore be of potential value in the treatment of EBV-associated lymphoproliferative disorders.  相似文献   

19.
In addition to their role in cell migration and adhesion, integrins elicit a series of transduction events that regulate cell-cycle progression and apoptosis in a process known as "outside-in" signaling. A second mode of integrin regulation known as "inside-out" signaling, in which the activation of major cell transduction cascades can influence the activation status of some integrins, has also been described. Here, we have assessed the role of the extracellular signal-regulated kinase (ERK1)/ERK2, mitogen-activated protein kinase (MAPK), and phospoinositide 3-kinase (PI-3'K) signaling pathways in the expression and function of alpha(v)beta(3) integrin in breast cancer models. Pharmacological inhibition of MEK1 and MEK2 with U0126 drastically increased the levels of alpha(v)beta(3) in Heregulin (HRG)-overexpressing MDA-MB-231 cells (231/WT, 231/VEC) and derivatives transfected with the antisense orientation of the HRG-beta2 full length cDNA (231/ASPOOL, 231/AS31). Interestingly, this was related to a significant decrease of viability and of the S- and G2/M subcompartment of the cell cycle in MDA MB 231 cells in response to U0126. Furthermore, specific inhibition of the PI-3'K pathway with LY294002 also induced an increase of alpha(v)beta(3) levels but to a lesser extent. Moreover, pretreatment of MDA-MB-231 cells with U0126 antagonized the effects of small peptidomimetic alpha(v)beta(3) antagonists. Remarkably, inhibition of the PI-3'K/AKT pathway did not exert the same effects, thus suggesting that the "outside-in" as well as the "inside-out" alpha(v)beta(3)-mediated signaling goes primarily through the ERK1/ERK2 MAPK pathway in MDA MB 231 breast cancer cells. Collectively, these results strongly suggest the existence of a bidirectional molecular connection alpha(v)beta(3)-ERK1/ERK2 MAPK that would regulate breast cancer cells survival and proliferation.  相似文献   

20.
Urokinase plasminogen activator receptor (uPAR) activates alpha5beta1 integrin and ERK signaling, inducing in vivo proliferation of HEp3 human carcinoma. Here we demonstrate that EGFR mediates the uPAR/integrin/fibronectin (FN) induced growth pathway. Its activation is ligand-independent and does not require high EGFR, but does require high uPAR expression. Only when uPAR level is constitutively elevated does EGFR become alpha5beta1-associated and activated. Domain 1 of uPAR is crucial for EGFR activation, and FAK links integrin and EGFR signaling. Inhibition of EGFR kinase blocks uPAR induced signal to ERK, implicating EGFR as an important effector of the pathway. Disruption of uPAR or EGFR signaling reduces HEp3 proliferation in vivo. These findings unveil a mechanism whereby uPAR subverts ligand-regulated EGFR signaling, providing cancer cells with proliferative advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号